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Abstract: The radius of the contact area has been found by consideration of the contact geometry.   Two variants 

of the position of the contact area at impact between a spherical body and a semi-space surface have been 

examined in this paper.  The differential equations of the displacement (the movement) of the centre of mass of 

the body have been given. The distribution of deformation velocities on the semi-space surface, and the size and 

velocity of the circular surface waves have been found.   The occurrence of micro-impact waves in the initial stage 

of impact have been considered. The equation for the velocity of the front of the micro-impact wave has been 

obtained.  Also, here, the problems of distribution of the stresses on the surface of the contact area and the 

definition of the normal contact stresses of elasticity and viscosity have been considered. It was shown that the 

general viscoelastic stress is the complex stress. An experimental technique for definition of the dynamic 

viscoelastic properties of the materials of the contacting surfaces at impact has been suggested. A comparison of 

two variants of the position of the contact area at impact has been given.  It has been shown here in discussion 

that, using theories of the static (elastic, viscoelastic, elastoplastic) contacts and also so-called quasi-static 

contacts can be very problematic in solving problems of  contact dynamics, and particularly at impact! 
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I. Introduction 
The dynamic contact between two smooth curvilinear surfaces can be considered as the process of their 

mutual collision at impact, which has two phases the compression (the loading) and the restitution (unloading). 

Also, in the case of the contact between two rough surfaces, we can assume that the contact of two asperities is 

similar to the impact between two smooth surfaces. Generally, it does not matter whether it is a sliding or rolling 

contact, but we can say that in the process of the contact, the volumes of deformation of the two contacting bodies 

are always involved in two phases of contact as at impact, that is, in the phase of compression and restitution.   

But, on the other hand, it is obvious that, a static or a quasi-static contact is not similar as at impact.   The question 

arises: What indeed is the difference between the static, quasi-static solution of contact problems and the dynamic 

contact problems at impact? Here in this article, a more complete explanation of the difference has been presented.   

Remark: First of all, we should understand that in static contact the sum of all forces between contacting bodies 

equals zero and there is no acceleration. Similarly, some scholars take that, in so-called quasi-static contact, if the 

applied forces vary slowly in time and with very slow acceleration, the fictitious force (also referred to as the 

inertia force) in the equations of motion can be ignored. Dynamic contact is totally distinctive from static or quasi-

static behaviour!  A dynamic system can be considered as   being in an equilibrium, if a fictitious d'Alembert  

force, which equals the absolute value to the Newton force, is applied! But it is not a quasi-static behaviour 

between contacting bodies. 

 

II. The geometry of the contact between two spherical surfaces 
To determine the viscoelastic forces we have to know the equations or the expressions for r = f(x), and for hx = 

f(x),(see Figure 1). For example, we can use the radius of a contact area 𝑟 = (𝑅𝑥)1/2 according to the Hertz 
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theory, but according to this theory, the area of contact is a flat surface and the depth of indentation (the depth of 

the contact surface) hx = 0. But in reality, the area of contact usually is not a flat surface, but is a curvilinear 

surface.  In Hertz's theoretical models, it has been taken that the contacting surfaces deform together without any 

sliding, but in reality, each surface deforms independently. Therefore, to find the radius of the contact area r in 

reality, let us to consider the geometry of the contact between two spherical surfaces, as depicted in the 

illustration in Fig.1. 

 
Fig. 1. Illustration of the contact between two spherical surfaces. 

 

We know that a collision of freely moving bodies is a special state; it is the period of time when the 

colliding bodies are not affected by any external forces.  It is not a compression of two bodies under the influence 

of an external force when only certain parts of the bodies in the contact zone are deformed.  In the initial instant 

of time, during the freely moving collision of two bodies or two particles, the Newtonian force of inertia begins 

to act:  𝐹𝑥 = −𝑚𝑥̈ = −(∑ 𝑚𝑖
𝑛
𝑖=1 )𝑥̈,  where mi  is the elementary mass of the body. If the initial speed of impact is 

less than the speed of sound inside the volume of deformation, all elementary masses of a body will be involved 

in the movement together, in the same time, and all the space of a body will be deformed in the same time as well.  

If a body is elastic or viscoelastic, the position of the centre of mass of the body relative to the initial position of 

the main axes of inertia of the body  will  not be changed and the magnitudes of the moments of inertia of the 

body will not change during the time of a collision, because if they were to change, the continuity of the 

environment inside the body would be broken. Also, it is obvious that, in the time of indentation of a hard surface 

into a soft surface, the contact surface takes a curvilinear shape, where the point B (see Fig.1,) is a special point 

where the deformations always equal zero, and the border of the area of contact always passes through this point 

B. According to this statement, for example in the case of contact between two spherical bodies (see Fig.1), the 

distance O2B between this point and the centre of curvature O2 of the surface of the harder body will not be 

changed in the period of time of the contact. This distance always equals the radius of curvature R2. Also, the 

distance O1B between this point and the centre of curvature O1 of the surface of the less hard body will not be 

changed during the period of time of contact, either.  This distance always equals the radius of curvature R1. 

Hence, we can see that O2B = O2D = R2 and O1B = O1E = R1, and also we can write that 𝑂1𝐶 + 𝑂2𝐶 = (𝑅1 +
𝑅2) − 𝑥, and since as 𝑂1𝐶 = (𝑅1

2 − 𝑟2)1/2and 𝑂2𝐶 = (𝑅2
2 − 𝑟2)1/2, after a simple calculation, if we neglect the 

members of smallest order, we get the following equation for the radius of the contact area r = f(x):   

                 

                                                                          𝑟2 = 2𝑅𝑥 − 𝑥2,                                                                                (1)                                                                          

 

where 𝑅 =
𝑅1𝑅2

𝑅1+𝑅2
 is the effective radius of contact curvature. Now equation (1) is not in a convenient form, 

therefore let us rewrites it as 

 

                                                                             𝑟2 = 𝑘𝑝
2𝑅𝑥,                                                                                             (2) 
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where  𝑘𝑝 = √2 −
𝑥

𝑅
 is the correlation coefficient. If a deformation is small, when 𝑅 >> 𝑥, hence 𝑘𝑝 = √2.  

Practically, for the solution of the contact problems of mechanics, the correlation coefficient can be found using 

iterations and consecutive approximations.   

   Now let us to define 𝒉𝒙, which is the depth of the contact surface. The expression for the radius of contact area 

can be found also as follows (Fig.1): 

 

                                                               𝑟2 = 𝑅2
2 − (𝑅2

2 − (𝑥2 + ℎ𝑥))2                                                                    (3) 

 

After a simple geometric calculation, if we neglect by members the smallest order, we obtain the next equation 

for the radius of the contact area: 

 

                                                                      𝑟2 = 2𝑅2(𝑥2 + ℎ𝑥)                                                                               (4) 

 

Then, after comparing equations (1) and (4) we can state that 

 

                                                                    2𝑅2(𝑥2 + ℎ𝑥) ≈ 2𝑅𝑥                                                                          (5) 

 

Finally, since 𝑥2 = 𝐷2𝑥,  where  𝐷2 =
𝐸1

′

𝐸1
′ +𝐸2

′   is the coefficient of deformation of the harder body, and
1E   is the 

dynamic elasticity modulus of a semi-space; 
2E  is the dynamic elasticity modulus of a body, see [1,2,3], the 

formula for hx can be written as follows  

 

                                                                   ℎ𝑥 = (
𝑅−𝐷2𝑅2

𝑅2
) 𝑥 = 𝑘ℎ𝑥,                                                                       (6) 

 

where 𝑘ℎ = (
𝑅−𝐷2𝑅2

𝑅2
)  is the coefficient of the depth of the contact surface. Since in the case of contact between 

a spherical body and a semi-space, when R2 = R it follows that 𝑘ℎ = (1 − 𝐷2) = 𝐷1, and it is known that 𝑥1 =

𝐷1𝑥, see [1,2,3], where  𝐷1 =
𝐸2

′

𝐸1
′+𝐸2

′  is the coefficients of deformation of the softer body, hence we get 

 

                                                                          ℎ𝑥 = 𝑥1 = 𝐷1𝑥                                                                                      (7) 

 

Also, using the MSF and MDSF methods, [ 1,2,3], the  elastic force  Fcn  and viscous force  Fbn  can be  found as 

𝐹𝑐𝑛 = 2 ∫ 𝑥𝑑𝑎 and 𝐹𝑏𝑛 = 2𝜂′ ∫ 𝑑𝑥̇ ∫ 𝑑𝑎. Also, since the diameter of contact area is defined by 𝑎 = 2𝑟, and we 

know the contact radius from (2), we can find the derivative for a by x, as   𝑑𝑎 =
𝑘𝑝𝑅1/2

𝑥1/2 𝑑𝑥, and taking into account 

that the effective dynamic viscosity 𝜂′ =
𝐸′′

𝜔𝑥
, then after integration we get, respectively: 

 

                                                                    𝐹𝑐𝑛 =
4

3
𝑘𝑝𝐸′𝑅1/2𝑥3/2                                                                             (8) 

 and 

                                                                  𝐹𝑏𝑛 = 4𝑘𝑝𝑅1/2 𝐸′′

𝜔𝑥
𝑥̇𝑥1/2                                                                          (9) 

 

 where 𝐸′′ is the effective dynamic modulus of viscosity, 𝜔𝑥 is the frequency of a damping oscillation. 

 

III. Determination of the position of the contact area at impact between 

 a spherical body and a semi-space 
3.1         Varian 1. 

It is known, from a large number of theories of contact mechanics, that, in static conditions of loading, 

the mutual approach between a spherical body and a semi-space occurs according to the scheme, as shown in 

Figure 2.a, when the contact area displaces  relative to the initial point of contact at the size equals (x1 - hx).  

Therefore, let us assume here that, during the impact time, a similar approach between surfaces occurs, i.e. when 

the boundary of the contact area passing through point B it shifts relative to the surface of the semi-space, as 

shown in Figure 2.a. In this case, the volume of the semi-space 𝑉ℎ, which is in direct contact with the surface of 

the sphere, can be defined as 

                                                        𝑉ℎ = 𝑉𝑑1 + ∆𝑉𝑇  = 𝑉𝑥1 −  𝑉𝑐1 + ∆𝑉𝑇                                                                (10) 
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Where, respectively:  𝑉𝑐1 is the volume of compression of a semi-space,  𝑉𝑑1is  the volume of deformation of a 

semi-space, which is in contact with a body; 𝑉𝑥1 is the complete volume of deformation of  a semi-space and 

∆𝑉𝑇 is  the increase in the volume of the half-space as a result of heating. The volume of semi-space, as the result 

of heating, is defined as  ∆𝑉𝑇 = 𝑉𝑥1𝐾𝑇∆𝑇, where  КT is the coefficient of volume thermal expansion, and ∆T is 

the amount of heating,  which equals the difference of temperatures. 

Further, the volume of compression of a semi-space can be found from the balance of the strain energy   Wx1 and 

the work 𝐴𝑥1, namely: 

 

                                                             𝐴𝑐1= Wx1=∫ 𝐹𝑐𝑛
𝑥1

0
𝑑𝑥1 = 𝐾1

′𝑉𝑐1                                                                       (11) 

 

where 𝐾1
′ is the dynamic bulk modulus of elasticity of a semi-space and accordingly where 𝐹𝑐𝑛  is force of 

elasticity.  Here we do not need to take into account the work of the dissipative force 𝐹𝑏𝑛, as, during compression, 

it turns into heat. 

 
Fig. 2.a. The variant 1: Illustration of a viscoelastic indentation of a spherical body into a semi-space upon 

impact. 

 

And since, as a result of compression the surface of the contact takes the parabolic shape (see Figure 2.a), it is 

obvious that 

 

                                                                            𝑟𝑐
2 = 𝑘𝑐

2𝑅𝑥1                                                                                    (12) 

 and 

 

                                                                            𝑟ℎ
2 = 𝑘𝑐

2𝑅ℎ𝑥,                                                                                                 (13) 

 

where  𝑘𝑐 is the constant,  and since, 𝑥 =
𝑥1

𝐷1
, where 𝐷1 =

𝐸2
′

𝐸1
′+𝐸2

′, we get 

 

                                                                           𝑟𝑐
2 = 𝑘𝑐

2𝑅𝐷1𝑥                                                                                    (14) 
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Also, since the equations for the differential forces are known [1,2,3], the expression for the normal differential 

elastic force in the case of circular contact can be written as 𝑑𝐹𝑐𝑛 = 2𝐸′𝑑𝑥𝑑𝑎, and therefore  

 

                                                            𝐹𝑐𝑛 = 2𝐸′ ∫ 𝑑𝑥 ∫ 𝑑𝑎=2𝐸′ ∫ 𝑥𝑑𝑎                                                                    (15) 

 

Since, in this case 𝑑𝑎 = 2𝑑𝑟𝑐  and since, according to Eq. (14) 𝑟𝑐 = 𝑘𝑐𝑅1/2𝐷1
1/2

𝑥1/2, we can find the derivative 

for a by x 

                                                                       𝑑𝑎 =
𝑘𝑐𝑅1/2𝐷1

1/2

𝑥1/2 𝑑𝑥                                                                             (16) 

 

Then, after integrating (15) we get 

 

                                                                  𝐹𝑐𝑛 =
4

3
𝑘𝑐𝐸′𝑅1/2𝐷1

1/2
𝑥3/2                                                                            (16*) 

 

and since  𝑥 =
𝑥1

𝐷1
, 𝐸′ = 𝐸1

′𝐷1 ,  it follows that 𝐹𝑐𝑛 =
4

3
𝑘𝑐𝐸1

′𝑅1/2𝑥1
3/2

, and after integrating Eq. (11) it follows that 

 

                                               𝐴𝑐1 =
4

3
𝑘𝑐𝐸1

′𝑅1/2 ∫ 𝑥1
3/2

𝑑𝑥1
𝑥1

0
=  

8

15
𝑘𝑐𝐸1

′𝑅1/2𝑥1
5/2

                                                (17) 

 

and taking in account Eq. (11), finally we get 

 

                                                                    𝑉𝑐1 =  
8

15
𝑘𝑐

𝐸1
′

𝐾1
′ 𝑅1/2𝑥1

5/2
                                                                        (18) 

 

Note: Alternatively, the deformed volume of a semi-space can be found from the conditions of compression, as   

 

                                                                         𝑉𝑐1 =   
1

𝐾1
′ 𝑉𝑥1∆𝑃,                                                                                (19) 

 

where ∆𝑃 = 𝑃𝑡 − 𝑃0 =
𝐴𝑥1

𝑉𝑥1
 and where 𝑃𝑡, 𝑃0 are the current and the initial means pressures inside the volume of 

deformation. Further, since the area of the complete volume of deformation on the surface of the semi-space 𝑆𝑥 =
𝜋𝑟𝑐

2, we can determine the complete volume of deformation of a semi-space, as  

 

                                                               𝑉𝑥1 =  ∫ 𝑆𝑥
𝑥1

0
𝑑𝑥1 =

𝜋

2
𝑘𝑐

2𝑅𝑥1
2                                                                     (20) 

 

If the frequency of impacts on a surface is low, then the effect of heating can be neglected and then we get 

 

                                                                   𝑉ℎ = 𝑉𝑑1  = 𝑉𝑥1 −  𝑉𝑐1                                                                             (21)  

 

Substituting Eq. (20) and Eq. (18) into Eq. (21) gives                               

 

                                                           𝑉ℎ =
𝜋

2
𝑘𝑐

2𝑅𝑥1
2 −   

8

15
𝑘𝑐

𝐸1
′

𝐾1
′ 𝑅1/2𝑥1

5/2
                                                                (22) 

 

Alternatively, (See Fig. 2.a), this volume is defined as 

 

                                                                        𝑉ℎ =  ∫ 𝑆ℎ𝑥
ℎ𝑥

0
𝑑ℎ𝑥 ,                                                                              (23) 

 

where the contact area  𝑆ℎ𝑥 = 𝜋𝑟ℎ
2 and therefore 

 

                                                           𝑉ℎ =  𝜋𝑘𝑐
2𝑅 ∫ ℎ𝑥

ℎ𝑥

0
𝑑ℎ𝑥 = 𝜋𝑘𝑐

2 𝑅

2
ℎ𝑥

2                                                                 (24) 

 

And so,  according to  Equations (22) and (24), and taking into account that  
 𝐸1

′

 𝐾1
′ = 3(1 − 2𝜈1),  where 𝜈1 is a 

coefficient of Poisson of a semi-space, we finally  get  
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                                                       ℎ𝑥 = 𝑥1 [1 −
16

5𝜋𝑘𝑐
(

𝑥1

𝑅
)

1/2

× (1 − 2𝜈1)]
1/2

                                                              (25) 

 

 This expression can be written in the simplified form, as 

 

                                                                       ℎ𝑥 = 𝑥1[1 − 𝛼ℎ]1/2,                                                                                (26) 

 

where 

                                                              𝛼ℎ =
16

5𝜋𝑘𝑐
(

𝑥1

𝑅
)

1/2

× (1 − 2𝜈1)                                                                  (27) 

 

Also, alternatively, since we know that 𝑟2 = 𝑘𝑝
2𝑅𝑥,  it follows, see Figure 2.a, that 

 

                                                                     𝑟ℎ
2 = 𝑘𝑝

2𝑅(ℎ𝑥 + 𝑥2)                                                                                   (28) 

 

A comparison of Eq. (13) and Eq. (28) gives 

 

                                                                        𝑘𝑐
2 = 𝑘𝑝

2(1 +
𝑥2

ℎ𝑥
)                                                                                   (29) 

 

Here we are seeing that in the case where the body is much tougher than the semi-space and the deformation of 

the body is small compared to the deformation of a semi-space, we can take  kc= kp . We also see that if the Poisson 

coefficient is equal to or close in magnitude to 0.5, it follows that 𝛼ℎ = 0, accordingly, hx = x1. Or let, for example, 

the Poisson coefficient ν1 = 0.4,  D1 = 0.8,  and the ratio х/R = х1/D1R = 0.1  (this is a fairly large deformation), 

and also taking into account that 𝑘𝑐 ≈ 𝑘𝑝 = √2 −
𝑥

𝑅
  , we get  𝛼ℎ = 0.04186 ≈ 0.042! Hence, even in this case 

hx = 0.952x1.   So, for this option and for bodies that are not very compressible we can set hx = x1. 

 

3.2         Variant 2. 

Figure 2.b illustrates the dynamic viscoelastic contact at impact of a spherical body and a semi-space. 

 

 

 
Fig. 2.b. The variant 2: Illustration of the picture of a viscoelastic indentation of a spherical body into a semi-

space upon impact. 
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If in the Variant 1, the contact border is shifted, then in variant 2, the border of the contact area passing through 

point B is always located on the initial surface of the semi-plane, as in the case of dynamic contact between two 

spheres, given above in Figure 1. In this case, complete deformations are defined accordingly as: 𝑥1 = 𝑥𝑐1 + 𝑥𝑑1 

and 𝑥2 = 𝑥𝑐2 + 𝑥𝑑2,  where хc1 is the compression of a semi-space, xd1  is the  elastic deformation of a semi-space, 

xc2  is the compression of a body, xd2  is the  elastic deformation of a body. It must also be understood here, that 

the deformation of the compression of  a body and a semi-space (see Figure 2.b) does  not involve the penetration 

of the body into the semi-space, because hx = xd1, but these factors must be taken into account in moving the center 

of mass of the body, as   𝑥 = 𝑥1 + 𝑥2 = 𝑥𝑐1 + 𝑥𝑐2 + 𝑥𝑑1 + 𝑥𝑑2. Since the contact radius is general, see Figure 2.b, 

we can write that 

 

                                                            𝑟2 = 𝑘𝑝
2𝑅𝑥 = 𝑘ℎ

2𝑅ℎ𝑥 = 𝑘𝑥1
2 𝑅𝑥1                                                                        (30) 

 

Hence 

                                                                             𝑘ℎ
2 =

𝑥

ℎ𝑥
𝑘𝑝

2                                                                                      (31)  

 

and 

                                                                            𝑘𝑥1
2 =

𝑥

𝑥1
𝑘𝑝

2                                                                                    (32) 

 

Further, since the area of  the complete volume of deformation on the surface of a semi-space 𝑆𝑥 = 𝜋𝑟2 =
𝜋𝑘𝑥1

2 𝑅𝑥1, respectively we get   

 

                                                              𝑉𝑥1 =  ∫ 𝑆𝑥
𝑥1

0
𝑑𝑥1 =

𝜋

2
𝑘𝑥1

2 𝑅𝑥1
2                                                                       (33) 

 

Further, taking into account that in this variant 𝐹𝑐𝑛 =
4

3
𝑘𝑝𝐸′𝑅1/2𝑥3/2 and since 𝑥 =

𝑥1

𝐷1
, 𝐸′ = 𝐸1

′𝐷1, and 

hence  𝐹𝑐𝑛 =
4

3
𝑘𝑝𝐸′𝑅1/2 𝑥1

3/2

𝐷1
1/2,  and then the integrating Eq. (11) gives 

 

                                               𝐴𝑐1 =
4

3
𝑘𝑝𝐸1

′ 𝑅1
1/2

𝐷1
1/2 ∫ 𝑥1

3/2
𝑑𝑥1

𝑥1

0
=  

8

15
𝑘𝑝

𝑅1/2

𝐷1
1/2 𝑥1

5/2
                                                     (34) 

 

Now, the volume of compression of a semi-space can be found in a similar way, as has already been done using 

the expression in the equation (11), namely as  

 

                                                                   𝑉𝑐1 =  
8

15
𝑘𝑝

𝐸1
′

𝐾1
′

𝑅1/2

𝐷1
1/2 𝑥1

5/2
                                                                          (35) 

 

 

Substituting Eq. (35) and Eq. (33) into Eq. (21) gives                               

 

                                                          𝑉ℎ =
𝜋

2
𝑘𝑥1

2 𝑅𝑥1
2 −  

8

15
𝑘𝑝

𝐸1
′

𝐾1
′

𝑅1/2

𝐷1
1/2 𝑥1

5/2
                                                                   (36) 

 

Alternatively, taking into account that in the Variant 2,  𝑆𝑥 = 𝜋𝑟2 = 𝜋𝑘ℎ
2𝑅𝑥1, (see Figure 2.b) the volume 𝑉ℎ can 

be found in same way as in Eq. (23), 

 

                                                          𝑉ℎ =  𝜋𝑘ℎ
2𝑅 ∫ ℎ𝑥

ℎ𝑥

0
𝑑ℎ𝑥 = 𝜋𝑘ℎ

2 𝑅

2
ℎ𝑥

2                                                                      (37) 

 

Finally, in according with Eqs. (36), (37) and Eqs. (31), (32), since  
𝐸1

′

𝐾1
′ = 3(1 − 2𝜈1),  we get 

 

                                                     ℎ𝑥 = 𝑥1 [1 −
16𝐷1

1/2

5𝜋𝑘𝑝
(

𝑥1

𝑅
)

1/2

× (1 − 2𝜈1)]                                                            (38) 

 

This expression can also be written in the simplified form:  
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                                                                         ℎ𝑥 = 𝑥1[1 − 𝛼ℎ]                                                                                  (39) 

 

 where 

                                                            𝛼ℎ =
16𝐷1

1/2

5𝜋𝑘𝑝
(

𝑥1

𝑅
)

1/2

× (1 − 2𝜈1)                                                                    (40) 

 

Here, we also see that if the Poisson coefficient 𝜈1 equals to or closes to 0.5, it follows 𝛼ℎ = 0  and respectively 

hx = x1=D1 x 

Remark: If, for example, we take in Variant 1: ν1 = 0.4,  D1 = 0.8, the  attitude х/R = х1/D1R= 0.1 (this is enough 

big deformation), and  as well we consider that, 𝑘𝑝 = √2 −
𝑥

𝑅
 , we receive 𝛼ℎ = 0.03739 ≈ 0.047! Hence, in this 

case hx = 0.963 x1.  Thus, in Variant 1, for materials that are not very compressible we can set hx = x1. 

 

3.3.        Distribution of deformation velocities on the semi-space surface 

              According to Eq.2 the deformation (displacement) of  the contact surface along the axis X   has a parabolic 

shape  𝑥 =
1

𝑘𝑝
2𝑅

𝑟2, and taking into account that   𝑟2 = 𝑘𝑝
2𝑅𝑥,  and   𝑟𝑖

2 = 𝑘𝑝
2𝑅(𝑥 − 𝑥𝑖)  it follows that the velocity 

distribution function will also have a parabolic relationship, namely 

 

                                                                          𝑉𝑥𝑖 = 𝑥̇𝑖 = 𝑥̇𝑓𝑥,                                                                                           (41) 

 

 where 

                                                                       𝑓𝑥 = (
𝑟2−𝑟𝑖

2

𝑟2 ) = (
𝑥𝑖

𝑥
)                                                                      (41*)         

 

 and where ri  is a current radius of the contact area.  Also it can be seen that in the centre of contact the following 

is always true  𝑥 = 𝑥𝑖 , 𝑓𝑥 = (
𝑥𝑖

𝑥
) = 1,  but on the border of the contact area the following is always true 𝑥𝑖 =

0,  𝑓𝑥 = (
𝑥𝑖

𝑥
) = 0. Hence, the normal velocity on the contact area along the X axis, in the center of contact, 

equals 𝑥̇,  but  it always equals zero on the border of the contact area!  Similarly, we can find the tangential velocity 

of displacement of the contact surface along the Y axis, as  

 

                                                                              𝑉𝑟𝑖 = 𝑟̇𝑖𝑓𝑟 ,                                                                                     (42) 

 

 where 

 

                                                                         𝑓𝑟 = (
𝑟𝑖

2

𝑟2) = (
𝑥−𝑥𝑖

𝑥
)                                                                            (42*) 

 

 It's obvious here, that in the centre of contact it’s always true that 𝑥 = 𝑥𝑖 , 𝑓𝑟 = (
𝑥−𝑥𝑖

𝑥
) = 0,  but on the border of 

the contact it’s always true that 𝑥𝑖 = 0,  𝑓𝑟 = (
𝑥−𝑥𝑖

𝑥
) = 1.  

Thus, the tangential velocity of displacement in the center of the contact area always equals zero, but on the border 

of contact it always equals 𝑟̇𝑖. 
As we can see, the point of contact at t = 0   is an imaginary point, where the centre of contact and the border of 

contact area are coincident. Therefore, if we take x=xi  we get  fx=1 and  fr=0,  but if we take xi =0, we get fx=0 

and fr=1.  It is the paradox, because at the moment of time t = 0 it follows that x = xi =0. 

 

IV. Surface waves 
4.1         Size and velocity of the circular surface waves 

              The equation of the continuity of motion of a medium through the starting plane X of a semi-space can 

be written as 

                                                                            mx (t)= me(t)                                                                                   (43) 

 

where mx (t) is the mass of compressing volume of deformation and me(t) is the mass of expanding volume of 

deformation, see Figure 2.b. 

Pulse conservation law must also be complied with 

 

                                                                           mx Vx= meVw                                                                                                                                      (44) 
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where Vx (t) is the velocity of the compressing volume of deformation and  Vw(t) is the velocity  of the expanding 

volume of deformation.  

Only Variant 2 fully complies with these conditions. Obviously, Variant 2 can be used for dynamic contact on 

impact! Variant 1 can only be used for static loads if the contact area does not move at all!  

Taking into account the compression of the volume of deformation, equation (43) of the continuity of a solid 

medium can be written in the following form: 

 

                                                                            𝜌𝑐𝑉ℎ = 𝜌𝑒𝑉𝑒                                                                              (45) 

 

where 𝑉ℎ  is the compressing volume of deformation, 𝑉𝑒 is the expanding volume of deformation 𝜌𝑐 =

𝜌0 (1 +
1

𝐾′) is the density in the compressed state, 𝜌0 is thedensity in the free state,  𝐾′ is the dynamic bulk 

modulus. 

The continuity equation (45) can also be written as follows: 

 

                                                                       𝜌𝑐𝑉𝑥𝑆𝑥 = 𝜌𝑒𝑉𝑤𝑆𝑤                                                                                     (46) 

 

 where 𝑆𝑥 = 𝜋𝑟2 is the surface of area of compression and 𝑆𝑤 is the area of expanding, see Figure 2.b. But, since 

according to Eqs. (43) and (44), it follows that 𝑉𝑥 = 𝑉𝑤, it also follows that, 

 

                                                                           𝜌𝑐𝑆𝑥 = 𝜌𝑒𝑆𝑤                                                                                      (47)                                                         

 

Finally, we can write that, 

 

                                                                             𝑆𝑤 = 𝑎𝑘𝑆𝑥,                                                                                             (48)                                                         

 

where 𝑎𝑘 = (
𝐾′+1

𝐾′−1
).  Also, it is obvious (see Figure 2.b) that,  𝑆𝑤 = 𝜋(𝑟 + 2𝑟𝑤)2 − 𝑆𝑥, 

 

and then, we get this equation  

 

                                                                  4𝑟𝑤
2 + 4𝑟𝑟𝑤 − 𝑎𝑘𝑟2 = 0                                                                                  (49) 

 

The solution gives us the next positive root  

 

                                                                    𝑟𝑤 =
𝑟

2
(√1 + 𝑎𝑘  − 1)                                                                            (50) 

 

If the material of a semi-space is not very compressible, when the dynamic bulk modulus 𝐾′ ≫ 1, we can take 

𝑎𝑘 = 1, and it follows in this case that, 

 

                                                                        𝑟𝑤 =
𝑟

2
(√2  − 1)                                                                                        (51) 

 

Now, according to Figure 2.b, the radius of the front of the impact circular surface wave can be shown as  

 

                                                                𝑟𝐴𝑤 = 𝑟 + 𝑟𝑤 =
𝑟

2
(√2 + 1)                                                                          (52) 

 

Since 𝑟 =  (𝑘𝑝𝑥1/2𝑅1/2), we get 

 

                                                               𝑟𝐴𝑤 =  
1

2
𝑘𝑝𝑥1/2𝑅1/2(√2 + 1)                                                                     (53) 

 

It is known [1,2,3] that the differential equation of the displacement (movement) of the centre of mass of a body 

can be written as follows: 

 

                                                                     𝑚𝑥̈ + 𝑏𝑥𝑥̇ + 𝑐𝑥𝑥 = 0,                                                                                 (54) 

 

where the expressions for the variable viscoelasticity parameters, see [1,2,3], can be written respectively as 
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                                                    𝑏𝑥 =
4𝑘𝑝𝐸″𝑅1/2

𝜔𝑥
𝑥1/2,   𝑐𝑥 =

4

3
𝑘𝑝𝐸′𝑅1/2𝑥1/2                                                             (55) 

 

For practical application of the differential equation(54) with the variable viscoelasticity parameters, we can find 

their approximate solutions in the same manner as for the equations with the equivalent constant viscoelasticity 

parameters, if we choose the equivalent constant parameters Bx, Cx and By,  Cy  so that the work with the variable 

viscoelasticity parameters cx, bx will be equal to the work with  the constant viscoelasticity parameters. And, 

according to the results obtained in the papers [1,2,3], the expression for the equivalent constant viscoelasticity 

parameters, respectively have been obtained as: 

                                                  𝐵𝑥 =
16𝐸″𝑘𝑝𝑅1/2

5𝜔𝑥
𝑥𝑚

1/2
,   𝐶𝑥 =

16

15
𝑘𝑝𝐸′𝑅1/2𝑥𝑚

1/2
,                                                       (56) 

where xm is the maximum magnitude of the compression between a body and a semi-space (also it is the maximum 

displacement of the centre of mass of a body, which is equal to the maximum of mutual approach between a body 

and a semi-space).  

Thus, equation (54) with variable parameters can be rewritten as per the equation with constant parameters as 

follows: 

 

                                                                    𝑚𝑥̈ + 𝐵𝑥𝑥̇ + 𝐶𝑥𝑥 = 0                                                                                (57) 

 

Equation (57) is the equation of the damped oscillations and the solution to this equation is known, as 

 

                                                                   𝑥 =
𝜐0𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡 𝑠𝑖𝑛(𝜔𝑥𝑡)                                                                         (58) 

and respectively 

 

                                                   𝑥̇ =
𝑉0𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡[𝜔𝑥 𝑐𝑜𝑠(𝜔𝑥𝑡) − 𝛿𝑥 𝑠𝑖𝑛(𝜔𝑥𝑡)]                                                              (59) 

 

Where: 𝜔𝑥 = √𝜔0𝑥
2 − 𝛿𝑥

2 is the angular (circular) frequency of the free damped oscillations; 𝛿𝑥 =
𝐵𝑥

2𝑚
 is the normal 

damping  factor;  𝜔0𝑥 = √
𝐶𝑥

𝑚
  is the angular (circular) frequency of  the natural harmonic oscillations along the  X 

axis. It is clear that the period of time of the contact τx is equal to the semi-period of damped oscillations Tx/2 

along the X axis. 

 

                                                                           𝜏𝑥 =
𝑇𝑥

2
=

𝜋

𝜔𝑥
                                                                                 (60) 

 

Also, since 𝐴𝑥𝑚 = 𝑊0𝑥 =
𝑚𝑉0𝑥

2

2
, 𝐴𝑥𝑡 = 𝑊𝑡𝑥 =

𝑚𝑉𝑡𝑥
2

2
, where V0xis the initial velocity,  Vtx  is the velocity of rebound, 

see [1,2,3], we can define the energetic coefficient of restitution ex, which equals the square of the kinematic 

coefficient of restitution kx (this will be referred to simply as the coefficient of restitution), as the ratio between 

work of restitution Wtx and work of compression W0x: 

 

                                                             𝑒𝑥 = 𝑘𝑥
2 =

𝑉𝑡𝑥
2

𝑉0𝑥
2 = (

𝜔𝑥𝜏2−3𝑡𝑔𝛽

𝜔𝑥𝜏1+3𝑡𝑔𝛽
)

𝜏1

𝜏2
 ,                                                              (61)                                                                         

 

 where 𝑡𝑔𝛽 =
𝐸′′

𝐸′
 is the tangent of mechanical losses.  

Also, we can take that  

      

                                                                   𝑥𝑚 =
/𝑉0𝑥/

2
𝜏1 =

/𝑉𝑡𝑥/

2
𝜏2                                                                          (62)  

 

where 𝜏𝑥 = 𝜏1 + 𝜏2 is the period of time of the contact,  𝜏1 is the period of time of the compression,  𝜏2  is the 

period of time of the restitution. Thus, we get that            

                                          

                                                                                𝑘𝑥 =
𝜏1

𝜏2
                                                                                            (63)                                                                         

 

 and using (61) and (63) we get that 
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                                                                       𝑡𝑔𝛽 =
𝜔𝑥𝜏1

3
×

1−𝑘𝑥

𝑘𝑥
                                                                                     (64)  

 

Since  𝜏𝑥 = 𝜏1 + 𝜏2we get: 

 

                                                                        𝑡𝑔𝛽 =
𝜋

3
×

(1−𝑘𝑥)

(1+𝑘𝑥)
                                                                                      (65) 

 

The equation for the restitution coefficient we can now write as follows: 

 

                                                                           𝑘𝑥 =
(𝜋−3𝑡𝑔𝛽)

(𝜋+3𝑡𝑔𝛽)
                                                                                      (66) 

 

If tgβ = 0 (hence kx = 1) it is a totally elastic impact, but if tgβ = π/2 (hence kx = 0 and x = 0), it is a totally plastic 

impact.  Both of these two cases are not possible in nature. 

The expression for the maximum magnitude of the compression between a body and a semi-space has been 

obtained in [1,2,3], as  

 

                                                                    𝑥𝑚 = [
15𝑚𝑉0𝑥

2

16𝑘𝑝𝐸′𝑅1/2 𝑘𝑥]
2/5

                                                                          (67) 

 

Also, it is clear that 

 

                                                             𝑥𝑚 = [
15𝑚𝑉0𝑥

2

16𝑘𝑝𝐸′𝑅1/2 ×
(𝜋−3𝑡𝑔𝛽)

(𝜋+3𝑡𝑔𝛽)
]

2/5

                                                                   (68) 

 

Using Eq.(59) for the velocity, the duration time of the impact equals the period of time of the contact, which can 

be found now from the conditions 𝑥̇ = 𝑉𝑡𝑥 and  𝑡 = 𝜏𝑥, as  

 

                                                                             𝜏𝑥 = −
𝑙𝑛 𝑘𝑥

𝛿𝑥
,                                                                                        (69) 

 where 

 

                                               𝛿𝑥 =
𝐵𝑥

2𝑚
=

8𝑘𝑝𝐸″𝑅1/2

5𝑚𝜔𝑥
𝑥𝑚

1/2
=

8𝑘𝑝𝐸′𝑡𝑔𝛽

5𝜋𝑚
𝜏𝑥𝑅1/2𝑥𝑚

1/2
                                                         (70)     

 

Also, the equation for the time of impact was given in [1,2,3], as 

 

                                                        𝜏𝑥
2 = −

2(1+𝑘𝑥) 𝑙𝑛 𝑘𝑥

𝑉0𝑥
2/5

(1−𝑘𝑥)𝑘𝑥
1/5 × (

5𝑚

8𝑘𝑝𝐸′𝑅1/2)
4/5

                                                                  (71) 

 

Further, the equation of the circular viscoelastic surface waves, which arises on the surface of a semi-space of a 

solid body during the time of the excitation 𝑡𝑤 ≥ 𝜏1 can be written as 

 

                                                 𝜉(𝑦, 𝑡𝑤) = 𝑥𝑚𝑒−𝛿𝑥𝑡𝑤 𝑐𝑜𝑠(𝜔𝑥(𝑡𝑤 − 𝜏1) − 𝑘𝑟) ,                                                         (72) 

 

  where 𝑘 =
2𝜋

𝜆𝑤
  is the wave number and where 𝜆𝑤is the wave  length, and where  𝜔𝑥 is the frequency of the 

circular viscoelastic wave, which equals the angular (circular) frequency of the free damped oscillations. 

Since the length of the wave can be found from  Fig. 2.b, as 𝜆𝑤 = 4𝑟𝑚𝑤 , and since the maximum of 𝑟𝑚𝑤 =
𝑟𝑚

2
(√2  − 1) and    𝑟𝑚 =  (𝑘𝑝𝑥𝑚

1/2
𝑅1/2), we get     

 

                                                               𝜆𝑤 = 2𝑘𝑝𝑥𝑚
1/2

𝑅1/2(√2  − 1)                                                                  (73) 

 

Also, since, the phase velocity of this wave 𝑣𝑤 = 𝜆𝜔𝑥/2𝜋, we finally get 

 

                                                              𝑣𝑤 =  
𝜔𝑥

𝜋
𝑘𝑝𝑥𝑚

1/2
𝑅1/2(√2  − 1)                                                                      (74) 
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The velocity of the circular surface waves is, in many instances, lower than the velocity of the acoustic elastic 

waves! For example, since it obvious that 𝜔𝑥has to be equal to the frequency of the acoustic elastic waves as well 

and since the velocity of an elastic transverse acoustic wave 𝑉𝑠 = √
𝐺′

𝜌0
 , hence, the length of an elastic transverse 

acoustic wave can be calculated as 𝜆𝑤 = 2𝜋𝑉𝑠/𝜔𝑥. 

 

4.2         Micro impact surface waves  

              Since 𝑟 =  (𝑘𝑝𝑥1/2𝑅1/2), the tangential velocity of growth of the contact area can, consequently, can be 

found as 

 

                                                                  𝑉𝑟𝑖 =  𝑟̇𝑖 =
𝑘𝑝𝑅1/2𝑥̇

2𝑥1/2 (
𝑥−𝑥𝑖

𝑥
)                                                                         (75)          

 

Also, it obvious (see Fig. 2.b.) that, the tangential velocity on the border of contact, where   xi = 0, is given by 

 

                                                                       𝑉𝑟 =  𝑟̇ =
𝑘𝑝𝑅1/2𝑥̇

2𝑥1/2                                                                                    (76)           

 

Also, the limit function lim
𝑡→0+

𝑥→0+

𝑥̇

𝑥1/2 → ∞   Thus, Eq.(76) does not have a connotation in the case where t=0, x=0. 

Also, the velocity of the front of a micro impact wave, when 𝑡 ≪ 𝜏1 ,  can, consequently, be found as  

 

                                                             𝑉𝐴𝑤 =  𝑟̇𝐴𝑤 =
𝑘𝑝𝑅1/2𝑥̇

4𝑥1/2 (√2 + 1)                                                                      (77) 

 

The function 𝑉𝑟𝑖 =  𝑟̇𝑖 in Eq.(75) very quickly decreases and also, in the initial moment of the time  t = 0, 𝑉𝑟𝑖 = 0, 

because 𝑥 − 𝑥𝑖 = 0 , but, on the other hand, on the border of the contact, where xi = 0, in a very short period of 

time 𝑡 = ∆𝑡,  and when displacement 𝑥 = ∆𝑥 is also  very small, the tangential velocity of growth of  the contact 

area  can reach a very high value! We can write, for the velocity on the border of contact, when  𝑥 = ∆𝑥, 

 

                                                                    𝑉𝑟 =  𝑟̇ =
𝑘𝑝𝑅1/2𝑥̇𝑡=∆𝑡

2(∆𝑥)1/2                                                                                 (78)          

 

We should  understand, and it follows from Eq.(78) that, the velocity of the front of  the micro-impact surface 

waves in  the initial very short period  of the time ∆𝑡 can be higher than the velocity of an elastic transverse 

wave 𝑉𝑠 = √
𝐺′

𝜌0
, where 𝐺′is the dynamic shear modulus. 

The occurrence of micro impact waves in the initial stage of impact contact on the surface of a semi-space will 

lead to a non-equilibrium state of the deformed medium and its rapid heating under the influence of 

thermodynamic impulse, because the work of the dissipative force will fully convert to heat!!! The impact time 

of the pulse will be equal to the deceleration time of the shock wave until the moment of impact   t=ts, x=xs , when 

the propagation speed of the micro-impact wave becomes equal to the speed of sound, namely, when 

 

                                                  𝑉𝐴𝑤 = 𝑉𝑠 =  𝑟̇𝐴𝑤 =
𝑘𝑝𝑅1/2𝑥𝑠̇

4𝑥𝑠
1/2 (√2 + 1) = √

𝐺′

𝜌0
                                                                  (79) 

 

Taking in account   Eq. (58) and Eq. (59), we get  

 

                           𝑉𝐴𝑤 = 𝑉𝑠 = 𝑟̇𝐴𝑤 =
𝑘𝑝𝑅1/2𝑉0𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡𝑠[𝜔𝑥 𝑐𝑜𝑠(𝜔𝑥𝑡𝑠)−𝛿𝑥 𝑠𝑖𝑛(𝜔𝑥𝑡𝑠)]

4(
𝜐0𝑥
𝜔𝑥

𝑒−𝛿𝑥𝑡𝑠 𝑠𝑖𝑛(𝜔𝑥𝑡𝑠))
1/2 (√2 + 1) = √

𝐺′

𝜌0
                                   (80) 

 

The solution of this equation lets us define the time t=ts. It is obvious that 𝑡𝑠 ≪ 𝜏1 

 

V. Contact stresses 
5.1          Borders ofdistribution of the stresses on the surface of contact area 

               From Eq. (2) we can see that the surface of contact takes a parabolic shape 𝑥 =
1

𝑘𝑝
2𝑅

𝑟2, therefore, let us 

to assume that the radial distribution of contact stresses inside of this area changes analogically according to the 

parabolic function as 
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                                                                  𝜎𝑖 = 𝜎𝑐 (1 −
𝑟𝑖

2

𝑟2) = 𝜎𝑐 𝑓𝑥                                                                             (81)  

 

Further, since the square under this function and the square under the linear function of the mean stress 𝜎𝑚  in the 

contact area are equal, we get 

 

                                                                 𝜎𝑐 ∫ (1 −
𝑟𝑖

2

𝑟2) 𝑑𝑟𝑖
𝑟

0
= 𝜎𝑚𝑟                                                                             (82)  

 

then after an integration it follows that 

 

                                                                      𝜎𝑐 (𝑟 −
1

3
𝑟) = 𝜎𝑚𝑟                                                                                     (83) 

 

and finally, the ratio between the maximum and mean stress in the contact zone can be found as 

 

                                                                              𝜎𝑐 =
3

2
𝜎𝑚                                                                                        (84) 

 

Thus, we get the distribution of the normal stress inside the contact area as:  

 

                                                                      𝜎𝑖 =
3

2
𝜎𝑚 (1 −

𝑟𝑖
2

𝑟2)                                                                                (85) 

 

Or since  𝑓𝑥 = (
𝑟2−𝑟𝑖

2

𝑟2 ) = (
𝑥𝑖

𝑥
),  as well, we can write that 

 

                                                                           𝜎𝑖 =
3

2
𝜎𝑚 (

𝑥𝑖

𝑥
)                                                                                (85*) 

 

 

5.2         Normal contact stresses of elasticity   

              Since the mean stress in the contact area   𝜎𝑚 =
𝐹𝑐𝑛

𝑆𝑥
 ,  according to Eq. (84) the normal contact stress of 

elasticity in the centre of the contact area in the point A, which  equals the maximum of the contact stress,  can be 

defined  as 

 

                                                                             𝜎𝑐𝑛 =
3𝐹𝑐𝑛

2𝑆𝑥
                                                                                                (86) 

 

and since 𝑆𝑥 = 𝜋𝑟2 = 𝜋𝑘𝑝
2𝑅𝑥, we get  

 

                                                                           𝜎𝑐𝑛 =
2𝐸′𝑥1/2

𝜋𝑘𝑝𝑅1/2                                                                              (87)   

 

Here, at the initial contact moment t = 0, the normal elastic contact stresses will be zero! 

 

5.3           Normal contact stresses of viscosity  

  It is known that, in process of a viscoelastic hysteresis under a forced harmonic oscillation   in during 

the first phase of unloading, in the point when deformation equals zero, the   stress becomes delayed in the time 

from deformation by the  value of  the retardation time 𝜏𝐾𝐸. Also, it obvious analogy that, in process of  the 

viscoelastic impact between bodies  the retardation time in initial of moment of the time  (t=0) should be equal 

zero, but  in the  moment  of  restitution  𝜏𝑥 it  reaches its  maximal value 𝜏𝐾𝐸! This retardation process can be 

described by the retardation function, as 

 

                                                                            𝑓𝐾𝐸 = 𝑡
𝜏𝐾𝐸

𝜏𝑥
                                                                                     (87*) 

 

Since, the normal mean  stress of  viscosity 𝜎𝑚𝑏𝑛 =
𝐹𝑏𝑛

𝑆𝑥
,  and since 𝑆𝑥 = 𝜋𝑟2,  𝑟2 = 𝑘𝑝

2𝑅𝑥, and since Fbn  is known 

from Eq. (9) respectively, the  equation (85*) for the distribution of the normal stress of  viscosity inside the 

contact area can be written, as   



The position of the contact area, the contact stress distribution and the propagation of the .. 

DOI: 10.9790/4861-1305021133                                   www.iosrjournals.org                                          24 | Page 

 

                                                                𝜎𝑏𝑛𝑖 =
6𝐸″

𝜋𝜔𝑥𝑘𝑝𝑅1/2 ×
𝑥̇

𝑥1/2 (
𝑥𝑖

𝑥
)                                                                        (88)   

 

Here, taking in account the retardation function for stress in the expression (87*), the equations (58) and (59) can 

be respectively rewritten, as  

 

                                                        𝑥𝜎 =
𝜐0𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡 𝑠𝑖𝑛(𝜔𝑥𝑡(1 − 𝜏𝐾𝐸/𝜏𝑥))                                                               (88a) 

and respectively 

 

                           𝑥̇𝜎 =
𝑉0𝑥

𝜔𝑥
𝑒−𝛿𝑥𝑡[𝜔𝑥 𝑐𝑜𝑠(𝜔𝑥𝑡(1 − 𝜏𝐾𝐸/𝜏𝑥)) − 𝛿𝑥 𝑠𝑖𝑛(𝜔𝑥𝑡(1 − 𝜏𝐾𝐸/𝜏𝑥 ))]                                     (88b) 

 

But, again we get a problem! If  𝑥 = 𝑥𝑖 , it follows that  𝑓𝑥 = (
𝑥𝑖

𝑥
) = 1,   but on the border of the contact area  𝑥𝑖 =

0, and it  follows that  𝑓𝑥 = (
𝑥𝑖

𝑥
) = 0.  Hence,the normal contact stress of viscosity  in the centre of the contact 

area in the point A (see Fig.2b.) can be  defined, as 

 

                                                                   𝜎𝑏𝑛 =
6𝐸″

𝜋𝜔𝑥𝑘𝑝𝑅1/2 ×
𝑥̇𝜎

𝑥𝜎
1/2                                                                          (89) 

 

As we can see, the normal contact stress of viscosity at the center of the contact area in Eq. (89) at the moment of 

rebound 𝑡 = 𝜏𝑥, x = 0  does not tend to infinity. 

But, it seems that, the normal contact stress of viscosity  in the center of the contact area in Eq. (89) in the initial 

moment of the time, t = 0,  x = 0,  tends towards infinity, because lim
𝑡→0+

𝑥→0+

𝑥̇

𝑥1/2 → +∞.  But, on the another hand, the 

centre of the contact area and the border of the contact area are coincident in the initial time t =0, 𝑥̇ = 𝑉0𝑥 . Thus, 

in the initial time,  we get uncertainty 𝜎𝑏𝑛 = ∞0!    But, this is not true, these  are  wrong  points,  because in these 

points the  velocity𝑉0𝑥is the  real number and they cannot be divided by zero! Thus, thefunction in Eq.(89) does 

not have a connotation in the case  t = 0, x = 0.  

The point t=0, x =0  is  the point of indeterminacy, since in the initial moment of the time the volume of the 

deformations and the area of contact equal zero, and here, in the zero zone, can arise only imaginary stresses. But, 

on the other hand, in a very short period of time ∆𝑡, when displasement   𝑥 = ∆𝑥  is very small, the dissipative 

viscous contact stress in the microlayers of  the contact surface can reach a very high value, which usually  can be 

higher than the limit  of the strength!  Thus, this explains why usually in the initial micro time of contact under  

impact, there can be observed the damage, the recombination and the wear of the  top layers of the surface of  

contact zone! The cause of these processes is the high value of the dissipative viscous stresses and the density of 

absorbed energy in the dissipative structures of the medium!  Almost all the work of the dissipative viscous force 

in these conditions turns into heat! 

Remark: If the deformed medium is not moving and it is in the static condition, it follows that the speed of 

deformation always equals zero, and therefore the viscous dissipative stress is not arising! 

 

VI.   Stresses under oscillations 
To more properly understand the elastic and the viscous stresses, and to understand that they are have a completely 

different physical nature, it is simply necessary to consider the behaviour of viscoelastic media under an 

oscillation. Let the oscillation occur according to the sinusoidal harmonic law  

 

                                                              𝜎∗ = 𝜎0𝑒𝑖𝜔𝑡, 𝜀∗ = 𝜀0𝑒𝑖(𝜔𝑡−𝛽) ,                                                                        (90) 

 

where 𝜔  is the circular (angular) frequency of a forced oscillations,  𝜎∗ is the general viscoelastic stress, 𝜀∗ is the 

general viscoelastic deformation, 𝜎0 is the stress amplitude and  𝜀0 is the deformation amplitude. The relationship 

between them gives the expression for the complex modulus, as  

 

                                  
𝜎∗

𝜀∗ = 𝐸∗ =
𝜎0

𝜀0
𝑒𝑖𝛽 =  

𝜎0

𝜀0
(cos 𝛽 + 𝑖 sin 𝛽) =

𝜎0

𝜀0
cos 𝛽 +

𝜎0

𝜀0
𝑖 sin 𝛽,                                          (91) 

 



The position of the contact area, the contact stress distribution and the propagation of the .. 

DOI: 10.9790/4861-1305021133                                   www.iosrjournals.org                                          25 | Page 

 where 𝐸∗ is the complex modulus. Also here, we can designate that  𝐸′= 
𝜎0

𝜀0
cos 𝛽 is the  dynamic modulus of 

elasticity (it is also named as the storage modulus),  𝐸′′= 
𝜎0

𝜀0
sin 𝛽  is the dynamic modulus of viscosity (it is also 

named as the loss modulus),and hence  

 

                                                                           𝐸∗ = 𝐸′ + 𝑖𝐸′′                                                                                   (92) 

 

 Also, it is known that 

                                                                              𝑡𝑔𝛽 =
𝐸′′

𝐸′  ,                                                                                    (93) 

 

 where 𝛽 is the angle of mechanical losses.  Further, using Eqs. (92), (93) and since  𝜎∗ = 𝐸∗𝜀∗  we get 

 

            𝜎∗ = 𝜀0𝐸′[ cos(𝜔𝑡 − 𝛽) + tan 𝛽 sin(𝜔𝑡 − 𝛽)] + 𝑖𝜀0𝐸′′[cot 𝛽 sin(𝜔𝑡 − 𝛽) + cos(𝜔𝑡 − 𝛽)]                  (94) 

                                                                                                                                                        

Thus, it follows that the general viscoelastic stress  𝜎∗  is the complex stress, and it can be expressed as the sum 

of the elastic stress 𝜎′ and the viscous stress 𝜎′′, respectively as 

 

                                                                         𝜎∗ = 𝜎′ + 𝑖𝜎′′,                                                                                      (95) 

 

 where  

                                                𝜎′ = 𝜀0𝐸′[ cos(𝜔𝑡 − 𝛽) + tan 𝛽 sin(𝜔𝑡 − 𝛽)],                                                            (96) 

 

                                                𝜎′′ = 𝜀0𝐸′′[cot 𝛽 sin(𝜔𝑡 − 𝛽) + cos(𝜔𝑡 − 𝛽)]                                                          (97) 

 

On the hand, since 𝐸′= 
𝜎0

𝜀0
cos 𝛽 and 𝐸′′= 

𝜎0

𝜀0
sin 𝛽, we can express Eq.(96) and Eq. (97) in another form, as 

 

                                               𝜎′ = 𝜎0[cos 𝛽 cos(𝜔𝑡 − 𝛽) + sin 𝛽 sin(𝜔𝑡 − 𝛽)],                                                   (98) 

 

                                               𝜎′′ = 𝜎0[cos 𝛽 sin(𝜔𝑡 − 𝛽) + sin 𝛽 cos(𝜔𝑡 − 𝛽)]                                                            (99) 

 

 Here we can designate that 

 

                                                 𝜀′ = [cos 𝛽 cos(𝜔𝑡 − 𝛽) + sin 𝛽 sin(𝜔𝑡 − 𝛽)],                                                      (100) 

 

                                                 𝜀′′ = [cos 𝛽 sin(𝜔𝑡 − 𝛽) + sin 𝛽 cos(𝜔𝑡 − 𝛽)]                                                    (101) 

 

Hence, we get 

 

                                                                 𝜎∗ = 𝜎0(𝜀′ + 𝑖𝜀′′) = 𝜎0𝜀∗                                                                                (102)      

 

Now, we can see that the viscous stress is the dissipative imaginary value, that arises in the process of impact 

inside dissipative structures of a deformed medium!  

Since the impact between two bodies is a cyclic process, we can write that 𝜎𝑏𝑛=𝜎′, 𝜎𝑏𝑛 = 𝜎′′, and  𝜎∗ = 𝜎𝑛, and 

using this statement, the general viscoelastic stresses can be found, analogically as it was in the paper [1], namely 

as 

                                                                      |𝜎𝑛| = √𝜎𝑐𝑛
2 + 𝜎𝑏𝑛

2                                                                              (103) 

 

 

VII. Experimental techniques for definition  
of viscoelastic properties of materials of the contacting surfaces at impact. 

We need to ask the question, what is the process of friction between contacting surfaces?  The   friction between 

moving surfaces is the dynamic contact at impact (a hit) between asperities, or if the contacting surfaces are 

smooth it is the cyclic jumps similar to frequently repeating dynamic impacts!  See the "Tribocyclicity" section 

of the book [3].  Hence, for tribology problem solving, we should use the dynamic mechanical properties of 

materials of contacting surfaces, from testing! For example, we can use Dynamic Mechanical Analysis (DMA). 

But, as we already know, the dynamics behaviour of a medium at impact is so specific that, it is better to use the 
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experimental techniques for a definition of the viscoelastic parameters, which have been described in the book 

“Contact dynamics” [3].  

For example, nobody is surprised when we use thermodynamics parameters such as thermal capacities, enthalpies, 

entropies and others thermodynamic properties of a medium from graphs or tables. It has been proposed that, for 

the definition of viscoelastic properties of materials of the contacting surfaces at impact, we can use the electro-

mechanical device, the schema of which is depicted in Figure 3.  

 

 
Fig. 3. The schema of the electro-mechanical device for the definition of the dynamic mechanical properties of 

materials at impact.  

 

This device allows for the definition of the coefficient of restitution kx and the time of impact τxdepending on the 

temperature of the sample. The initial velocity of impact can be in the range 0 − 2.0 𝑚/𝑠. The device works as 

follows: the standard sample (9) is placed in a clip of the elasticity-meter The volume temperature of the sample 

is measured by means of the thermocouple (2) and digital milli-voltmeter (7) to within 0,05 0C with a milli-

voltmeter resolution of 10-6V.  An electric signal is generated in the piezo-sensor (5), during the impact by the 

indenter (4) of the hammer (3) at the surface of the sample (9). The form of the signal (see Fig. 9) is registered by 

the oscilloscope (6). Elasticity on a rebound is defined mechanically by the size of the rebound of the hammer (3) 

and is fixed on a scale elasticity meter.  A time of impact τx is measured at the same time by the oscilloscope and 

an electronic frequency meter in a mode of measurement of current’s impulse time, arising at impact in a piezo-

element chain, and also in an electric chain the indenter-sample at contact of the hammer’s indenter with the 

sample. Heating of the sample is carried out by hot air, cooling by streams of nitrogen using a heater and a 

cryogenic refrigerator (8). The thermocouple (2) is entered in the sample directly ahead of the beginning of tests. 

The thermocouple practically has no heat exchange with the outside environment. The temperature of the sample 

was registered at the moment of when the indenter (4) started to penetrate into the sample (9). 

The example of the theoretical obtained curves for the viscoelastic forces are depicted in Figure 4. By comparison, 

Figure 5 shows a photo of the experimental oscilloscopic curve of the piezo-electric signal, which has been 

obtained as a result of the collision of a spherical steel indenter and a rubber sample.  The power of the signal, 

which is generated by the piezo-detector placed inside the indenter, is directly proportional to the viscoelastic 

force.   In the graphical comparison of these curves, which are presented in Figure 4 and Figure 5, we can see that 

the curves have very similar forms and hence this, once more, confirms that the theoretical solutions were made 

in the correct manner.  Since, according to equations (62), (63) and (67), 𝜏𝑥 = 𝜏1 + 𝜏2  we get the next expression, 

which allows us to find the instant dynamic modulus of elasticity  

 

                                                              𝐸′ =
(5.03)𝑚

𝑘𝑝𝑉0𝑥
1/2

𝑅1/2𝜏𝑥
5/2 ×

(1+𝑘𝑥)5/2

𝑘𝑥
3/2                                                                       (104) 
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And since the tangent of mechanical losses  𝑡𝑔𝛽 =
𝐸′′

𝐸′
 =

𝜋

3
×

(1−𝑘𝑥)

(1+𝑘𝑥)
 ,  see Eq.(65), we also get the expression for 

the instant dynamic modulus of viscosity as 

 

                                                   𝐸′′ =
𝜋(5.03)𝑚

3𝑘𝑝𝑉0𝑥
1/2

𝑅1/2𝜏𝑥
5/2 × (1 − 𝑘𝑥) (

1+𝑘𝑥

𝑘𝑥
)

3/2

                                                      (105)   

 

 

 

 

 
Fig.4.  Graphical illustration of the results and the forms of curves obtained theoretically for viscoelastic forces. 

 

 
Fig. 5.  Photo of the experimental oscilloscopic curve of the piezoelectric signal 
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Hence, using the obtained experimental values for the coefficient of  restitution  kx and the time of impact 

τx depending on the temperature of the sample respectively, we can calculate the temperature-velocity 

dependencies for the instant dynamic modules of elasticity and viscosity! 

Also, the dynamic elasticity and viscosity modules for high velocities of collision can be found, if we 

follow the principles of the “Time-temperature superposition” according to the equation of “WLF” Williams - 

Landel - Ferry or Arrhenius [4, 5, 6,7]. First of all, we have to define experimentally the effect of temperature for 

the period of the contact time τx, and for the coefficient of restitution kx at the fixed initial velocity of impact. For 

example, if we define these parameters for velocity at 2 m/s, then using the principles of the “Time-temperature 

superposition” we can determine their values for any velocities of interest, for example for velocity 100 m/c and 

for temperature 1000𝐶.  After this, when τx and kx are known, we can find the value of tgβ and the dynamic 

modules E′′ and E′. 

According to the principle Temperature-Time (Velocity or Frequency) superposition, increasing the 

velocity or the frequency of loading is equivalent to decreasing the temperature of testing. For a description of the 

behaviour of amorphous polymers and elastomers the WLF equation is usually used, which has been proposed by 

Williams, Landel and  Ferry 

 

                                                                    𝑙𝑔 𝑎𝑇 = −
𝐶1(𝑇𝑀.𝑖−𝑇𝑔)

𝐶2+(𝑇𝑀.𝑖−𝑇𝑔)
                                                                          (106) 

 

where  𝑇𝑀.𝑖 denotes the temperature of mechanical glazing, 𝑇𝑔 is the temperature of structural glazing, which is 

the constant of the material being examined, constant  𝐶1=17.44, constant  𝐶2=51.6  , and 𝑙𝑔 𝑎𝑇 = 𝑙𝑔
𝑉𝑔

𝑉𝑖
, where 

𝑉𝑔 is the velocity of structural glazing when processes of the mechanical and the structural glazing coincidence, 

𝑉𝑖  denotes the initial velocity of impact under test. Index i=1,2,3,..  for any 𝑉𝑖 ≥ 𝑉𝑔. 

On the other hand, for description of behaviour of amorphous polymers and elastomers the Arrhenius equation is 

usually used  

 

                                                                   𝑙𝑔 𝑎𝑇 =
𝑈𝑎

2.3𝑅𝑔
(

1

𝑇𝑀.𝑖
−

1

𝑇𝑔
)                                                                      (107) 

 

where 𝑈𝑎is the energy of activation of process of mechanical glazing, 𝑅𝑔 is the universal gas constant. 

 

VIII. Discussion and conclusion 
The comparison of the two variants of the position of the contact area at impact, (Fig. 2a and Fig. 2b)leads us to 

the conclusion that,  the Variant 1does not match the true picture of the dynamic contact in the process of impact, 

because in this variant the velocity of deformation along the X axis, at the contact boundary, will not be zero, and 

accordingly the contact stresses will not be zero at the boundary! Also, in Variant 1, the continuous conditions of 

the continuous medium and the impulse conservation law are not satisfied! Variant 1 can only be used for dead 

loads if the contact area does not move at all! Probably it is suitable for static deformation, when thevelocity 𝑥̇ =
0! 

Therefore, the comparison of these two variants brings us to the conclusion that the Variant  2  is  more  

realistic  in the case of impact between curvilinear surfaces! 

Now, you might say that all issues regarding axisymmetric static and  quasi-static viscoelastic contact 

problems, including the relationship between indentation depth, contact radius and normal force, have already 

been solved in a rigorous way by Lee and Radok [8,9], Hunter [10], Graham [11], and Ting [12]et. al  in the last 

century. They used a linear viscoelasticity theory in their research work.  But, in those times, the classical theory 

of a viscoelastic contact mechanics still has not been properly developed, particularly for conditions of a dynamics 

contact between solids! They were pioneers in this area of research. But if someone invented a carriage and 

someone else invented a steam locomotive after, it can't be a ban on inventing a car or an airplane, can it? We 

can't stop the development of science, can we? Some people, if they do not see the profit for themselves, can make 

temporary barriers for innovative decisions, but they cannot completely stop them. It is not possible!  

 It is  known that,  Radok [8] and subsequently, Lee and Radok [9] have  suggested to defined the time-

dependent stresses and shear strains deformations for a quasi-static indentation between an  axisymmetric indenter 

and a semi space for isotropic materials by using a linear viscoelasticity theory. They respectively have suggested 

to use the ‘Boltzmann superposition principal’, which is known, for example, in the form of  an integral equation 

of Boltzmann-Volterra [13,14], (it is known elsewhere as a hereditary integral), as shown below 

 

                                                               𝜀(𝑡′) = ∫ 𝐽(𝑡 − 𝑡′)
𝜕𝜎(𝑡′)

𝜕𝑡′

𝑡

0
𝑑𝑡′,                                                                  (108) 
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where J(t) is the function of creep (compliance) of a viscoelastic medium under shear and tʹ is the variable of 

integration.  

Than, they have used  so called “Elastic-Viscoelastic Correspondence Principle” to   provide a resolution of   the 

viscoelastic problems by  using existing an elastic solutions. It is known that, according to the Hertzian contact 

solution, the connection between displacement x and normal elastic force can be written as 

 

                                                                         𝑥3/2 =
3

4

𝐹𝑛

𝐸𝑅1/2                                                                                    (109) 

 

where E is known as the reduced Young’s modulus of elasticity since it is less than the combined elasticity of the 

two contacting solids   
1

𝐸
=

1−𝜈1
2

𝐸1
+

1−𝜈2
2

𝐸2
 ,  where 𝐸1,𝐸2 are Young’s modulus of the contacting surfaces at the initial 

moment of the time, when t = 0 and 𝜈1, 𝜈2 are the Poisson’s coefficients of the contacting surfaces. 

Lee and Radok have used Equation (109) for contact between a rigid sphere and viscoelastic semi-space of 

elastomer (rubber). Since a rigid body is many times harder than a soft semi-space of rubber, and since obviously 

𝐸1 << 𝐸2 (where 𝐸1 is modulus for elastomer (rubber) and 𝐸2 is the modulus for material of rigid sphere), they 

took   
1

𝐸
=

1−𝜈1
2

𝐸1
, and since 𝐸1 = 2(1 + 𝜈)𝐺1, where 𝐺1 is the shear modulus in the initial moment of the time, 

when t = 0, they deduced that 

 

                                                                         𝑥3/2 =
3

8

𝐹𝑛(1−𝜈1)

𝐺1𝑅1/2                                                                               (110) 

 

Then, if considering the relation between the stress and the strain as a pure shear 𝜎 = 2𝐺1𝜀, and according to Eq. 

(110), then Eq.(108) transforms into the next expression 

 

                                                    𝑥(𝑡)3/2 =
3(1−𝜈1)𝐹𝑛

4𝑅1/2𝜎
∫ 𝐽(𝑡 − 𝑡′)

𝜕𝜎(𝑡′)

𝜕𝑡′

𝑡

0
𝑑𝑡′                                                           (111) 

 

Then after the recombination 𝐹𝑛 = ∫  𝜕
𝑡

0
𝐹𝑛(𝑡′) and ∫  𝜕𝜎(𝑡′)

𝑡

0
= 𝜎  in the Eq. (108), it follows consequently that 

 

                                                     𝑥(𝑡)3/2 =
3(1−𝜈1)

4𝑅1/2 ∫ 𝐽(𝑡 − 𝑡′)
𝑑𝐹𝑛(𝑡)

𝑑𝑡′

𝑡

0
𝑑𝑡′                                                                 (112) 

 

Thus, we can see that, according to Radok and Lee  theory,  
𝐹𝑛

2𝐺1
 in Eq. (110)  can be replaced using  the integral  

equation of Boltzmann- Volterra (108), which also is named as the   integral operator, as follows: 

 

                                                              [
𝐹𝑛

2𝐺1
] → ∫ 𝐽(𝑡 − 𝑡′)

𝑑𝐹𝑛(𝑡)

𝑑𝑡′

𝑡

0
𝑑𝑡′                                                                      (113) 

 

Remark: The solutions of Volterra equations can be found by using well known Laplace transforms [13,14].  

               Also, Radok and Lee [9] also pointed out that the contact solution in Eqs. (112) is only valid when the 

contact area increases monotonically. It means that velocity of deformation should be equal to a constant value! 

But it is not possible, indeed the velocity always  varies during the contact process, because the contact forces and   

accelerations never could be  constants! Therefore, and in the process of friction under colliding of asperities of 

the contacting surfaces, velocities and accelerations do not constants too!  Hence, it is incorrect way  to apply  

their  theory in these cases! 

Moreover, it is necessary to say here that, different choices for the load function 𝐹𝑛(𝑡) and the creep 

compliance J(t) can be made here, for example some research uses the Maxwell model, where 𝐽(𝑡) =
1

𝐺1
+

𝑡

𝜂1
; 𝜂1 

is the viscosity of the material of the soft contacting surface; and some use the Kelvin–Voigt model, where 𝐽(𝑡) =
1

𝐺1
[1 − 𝑒𝑥𝑝( − 𝑡/𝜏)]; 𝜏 is the retardation time. These two models are the basic models, which are already used as 

elements for many complicated theoretical models in much research. The Kelvin–Voigt model is usually used for 

the description of the creep compliance, and the Maxwell model usually is used for the description the stresses 

relaxation.  

But nevertheless, a lot of problems still exist: The first is that, a  linear viscoelasticity can be applicable 

only when a material is submitted to deformations or stresses small enough (as in a  quasi-static state), so that its 

rheological functions do not depend on the value of the deformation or stress, and the material response is in the 

linear  zone of  viscoelasticity. The second is that the viscoelastic force Fn(t) and the creep compliance J(t) are not 

independent linear functions, but they are dependent on each other. 



The position of the contact area, the contact stress distribution and the propagation of the .. 

DOI: 10.9790/4861-1305021133                                   www.iosrjournals.org                                          30 | Page 

Also, Lee & Radok’s method is based on the  assumption  that an  elastic solution to a problem is 

instantaneously a viscoelastic solution too,  and the compatibility and internal equilibrium equations are satisfied 

regarding the stress–strain–time relationships!  But, the catch is that at impact or dynamic loading, boundaries of 

contact are moving so fast, that the boundary conditions may not be satisfied. 

The problem is how to find the J(t), specifically in relation to contact dynamics, because the creep 

compliance depends on the time of relaxation or the time of retardation, but on the other hand, the time of 

relaxation and the time of retardation depend on the times of loading and unloading.  Also, at the initial moment 

of time of the dynamic viscoelastic contact, at impact t = 0, the normal and tangential contact forces are equal to 

zero, and therefore the contact stresses of elasticity and deformations do not increase instantly, but on the other 

hand, as we already know, in a very small period of time the dissipative stresses of viscosity can reach a very high 

magnitude, which can be higher than the limit value! 

Furthermore, there are many problems in the application of this theory for high speeds and frequencies 

of dynamic contact, because, as a rule, the creep is a process of slow deformation under static load, which takes a 

long period of time, but if the time of loading is reduced the time of relaxation (or the retardation time) is reduced, 

too. Theoretical expressions and equations obtained for these are usually difficult to use in a practical application 

because they are very complicated, and there do not exist simple, convenient methods, which allow the finding of 

dynamic-mechanical parameters at impact, which are contained in these expressions and equations. Moreover, 

there is a problem in applying them in the case of a high-speed dynamic contact at impact, using the loss modulus 

and the storage modulus, obtained by  the dynamic mechanical analysis (DMA) which uses excitation to create  

oscillation.  And also, the Poisson’s ratio (it is usually taken as ν = 0.5 for rubber surfaces), which is obtained for 

the static  or quasi-static loads but gives wrong results. Poisson’s coefficient never reaches the value 0.5 and it is 

not a constant!  

In the finding of solutions by using the linear viscoelastic stress-strain relationships, we have problems 

in the definition of the relaxation modulus in realistic temperature/time/speed/frequency conditions of dynamic 

viscoelastic contact. 

We have to understand that, the time of a physical relaxation is the time of transition of a system of 

particles or elements in some volume of substance from the one equilibrium state into the next equilibrium state. 

It obvious that some molecular, sub-molecular or sub-atomic structures have their own times of relaxation, but 

the total relaxation time or the effective relaxation time is the time of relaxation, which matches the time when all 

relaxation processes inside a substance have completely finished. Therefore, this total time of relaxation has to be 

taken into account both when a volume of contact is an isotropic or an anisotropic medium. 

 But, on the other hand, the time period of the stress relaxation 𝜏𝑀𝐸   in the Maxwell Model, is the time 

during which the stresses decrease in e times. It is not a physical relaxation, and in contact dynamics or under a 

cycling loading, it is calculated by the following formula  

 

                                                                          𝜏𝑀𝐸 =
1

𝜔 tan 𝛽
                                                                                         (114) 

 

The Maxwell Model can be used only for the description of the elastoplastic behaviour of contacting surfaces 

because, at the end of the phase of restitution, we always observe a plastic deformation! But others models, which 

include Maxwell Element, can be used for elastoplastic contact, but not for viscoelastic!  

For the description of the viscoelastic impact between bodies we have to use the Kelvin- Voigt model! The 

retardation time 𝜏𝐾𝐸  in this model is calculated as 

 

                                                                            𝜏𝐾𝐸 =
tan 𝛽

𝜔𝑥
                                                                                       (115) 

 

Since 𝜔𝑥 =
𝜋

𝜏𝑥
 , the dependency between the retardation time and the time at impact can be expressed as 

 

                                                                           𝜏𝐾𝐸 =
𝜏𝑥 tan 𝛽

𝜋
                                                                                          (116) 

 

As we can see, the retardation time is always many times less than the time of impact and it is always less than 

the time of the phase of compression 𝜏1. Here, it is important to reiterate that the period of the time of the 

compression is the period of excitation, when all the parameters of the medium are transferred into a specifically 

unstable state! But it is not an instantaneous process! 

It is known that the time of relaxation of mechanical oscillations  𝜏𝜔 is the time during of which the amplitude 

decreases in e times, and it can be calculated as 
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                                                                                𝜏𝜔 =
1

𝛿𝑥
                                                                                       (117) 

 

Thus, the relations between the retardation time and the time of relaxation of mechanical oscillations can be 

expressed as 

                                                                    𝜏𝐾𝐸 = 𝜏𝜔 tan 𝛽 √
1

1+𝜔0𝑥
2                                                                             (118) 

 

In contact dynamics, it is very important to know the time period of the phase of viscoelastic compression 

between two surfaces, because at the point of maximum compression the velocity of mutual approach between 

surfaces equals zero, and  part of the kinetic energy transforms into potential energy of deformations, and part of 

the kinetic energy dissipates as a result of internal friction and transforms into a heat. This is similar to the new 

equilibrium state. Thus, the time of the phase of compression (or time the maximum mutual approach) and the 

effective time of a physical relaxation in this phase have a common physical nature; and they are dependent on 

each other. Very often, when studying the phenomena of creep and stress relaxation, it is assumed that the initial 

stress or strain is applied suddenly, almost instantly! A natural question arises as to what will happen to the 

substance under conditions where force and, accordingly, strain or stress are applied suddenly or instantaneously. 

The result will be completely catastrophic, since acceleration in this case will tend towards infinity! But, such a 

development is not possible in reality! It is simply a theoretical trick! Moreover,  it is such an obscure supposition 

that we can consider such a state to be a static or a so-called quasi-static state of a mechanical system or substance! 

Even if we were to load a sample of any material slowly, we would bring it into an unstable state and, of course, 

then we would still be able to observe the processes of a stress relaxation and a creep, like the transition of the 

sample material from a non-equilibrium into an equilibrium state. Here it is quite obvious that, when the loading 

of the sample occurs quickly, and the speed changes quickly, this is similar to what we observe at impact! Under 

such conditions, all thermodynamic and mechanical dynamic parameters in all solids and liquids, among other 

things, will be dependent on the time of exposure, and not only for rubbers, elastomers and polymers. All 

substances, without exception, depend on the time, because dissipative processes occur in them! But, at the same 

time, dissipative viscous stresses quickly disappear while the medium continues to move and the work of 

dissipative forces turns to heat! The forces of elasticity and viscosity act independently, because the viscous 

dissipation structures of the media and the bearing elastic structures of the media work independently too!   

Also, it is usually taken by many researchers that, the cause of dissipation is only the internal friction in 

the materials and particularly inside elastomers (or rubbers) and it is primitively considered as pure shear between 

layers of material inside the block of elastomer or between layers of medium. Therefore, the modulus and viscosity 

at shear are used for the description of viscous deformations problems. But it is very difficult to agree with this 

statement that only pure shear is observed, because it is compression and because the contact stress is the stress 

of compression! And the dissipation also goes in the process of compression and as a result, the moving of 

molecular and sub-molecular structures take place! Also, the dissipation depends on many different causes, such 

as:  the molecular or atomic structure of the medium, the entropy, the velocity of deformation and the temperature! 

Also, as we know, in reality, the viscosity is a dissipative process of the changing of space-conformations 

between macro-molecules or between atoms (ions) in crystal grids. In a dependency of the type of deformation 

(extension or tension/compression, bulk compression and shear), there are six kinds of modulus and of viscosities 

in the descriptive dynamic mechanical properties of materials [4,5,6, 7]. For example, the main constitutive 

relations between them are known as: 

  

                                                            𝐸′ = 3𝐾′(1 − 2𝜈) = 2𝐺′(1 + 𝜈) ,                                                                (119) 

 

 

                                                            𝐸″ = 3𝐾″(1 − 2𝜈) = 2𝐺″(1 + 𝜈)                                                                         (120) 

 

and  

 

                             𝐸′ = 𝜔𝜂𝐸
″  ,  𝐾′ = 𝜔𝜂𝐾

″  , 𝐺′ = 𝜔𝜂𝐺
″  , 𝐸″ = 𝜔𝜂𝐸

′  , 𝐾″ = 𝜔𝜂𝐾
′ , 𝐺″ = 𝜔𝜂𝐺

′                              (121) 

 

where E′ is the dynamic elasticity modulus (or the storage modulus), which is equal to Young’s modulus of 

elasticity in the Kelvin–Voigt model; 𝜂𝐸
′ is the dynamic viscosity; 𝐺′ is effective dynamic elasticity modulus at 

the shear (or it is the effective storage modulus at the shear); 𝜂𝐺
′  is the effective dynamic viscosity at the shear. 

Then, according to Equations (119), (120) and (121), respectively we get 

 

                                                            𝜂𝐸
′ = 3𝜂𝐾

′ (1 − 2𝜈) = 2𝜂𝐺
′ (1 + 𝜈)                                                                     (122) 
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                                                           𝜂𝐸
″ = 3𝜂𝐾

″ (1 − 2𝜈) = 2𝜂𝐺
″ (1 + 𝜈)                                                            (123) 

 

Remark: If we exclude the Poisson coefficient, the resulting equation for the relationship between static elasticity 

constants is as follows 𝐸 =
9𝐺𝐾

𝐺+3𝐾
, where K is the bulk modulus!  

              Also, what is indeed the correspondence principle in reality? If we look closely, the correspondence 

principle is like clothes of a naked king! Because in the Laplace or Fourier transform area, viscoelastic constitutive 

equations are equivalent to their corresponding elastic ones. It is often similar to Hooke's Law: σ = εE. Also, for 

example, according to this principal, the viscoelastic constitutive equations can be found by using the operators  

method   in form of   the next equation, as  

 

                                                                         𝑃(𝑡)𝜎 = 𝑄(𝑡)𝜀                                                                            (124) 

 

 where P(t), and Q(t) are linear operators, which usually can be represented as the sums of linear differential 

functions: 𝑃(𝑡) = ∑
𝑑𝑛

𝑑𝑡𝑛 𝑝𝑛
𝑛
0  and𝑄(𝑡) = ∑

𝑑𝑛

𝑑𝑡𝑛
𝑛
0 𝑞𝑛. But, for simple models n = 0, and it follows that  

𝑄(𝑡)

𝑃(𝑡)
= 𝐶𝜎𝜀, 

and therefore 

 

                                                                              𝜎 = 𝐶𝜎𝜀𝜀                                                                                          (125)             

 

  where 𝐶𝜎𝜀  is the constant value!  Thus, the correspondence principle also is applicable only for a small static or 

quasi-static deformation! Also, the main inconvenience of both the operator method and the Laplace transforms 

is the fact that for its use we should have an exact dependence of the elastic solution with including elastic 

constants. 

              Also, according to above-considered problems and solutions, we can allocate several main types of 

frictional contact as follows: 

Purely elastic contact (which, in nature, practically does not exist): When only the elastic forces act between 

contacting surfaces. This does not exist in nature, but in some cases, if the mechanical losses are very small, we 

can consider the process of deformation as pure elastic! 

Viscoelastic contact: When, between the contact surfaces, the dissipative forces of viscosity (also referred to as 

the forces of internal friction) also begin to act, but where there is no plastic deformation during the time of 

unloading! This is very often seen in nature and in solids and in liquids!  

Elastic-plastic contact: When the forces of viscosity are considerable and the contacting surfaces pass into a plastic 

state!    

Adhesive contact: When a significant adhesive force, which cannot be neglected, acts between the contact 

surfaces. 

It is also important here to stress that all known models, such as Maxwell model, Standard Model and 

Zener model, and others, which  build  by joint an elastic  element with  the Maxwell element or the Kelvin 

element, are no match to viscoelastic behaviour, because in the moment of unloading, in the complete restitution 

of  the main spring, the others elements are still in a deformed state! This is matched completely only by elastic-

plastic behaviour!    

In conclusion, it should be noted that the theory of Lee and Radok [8,9] is very problematic to use for 

viscoelastic materials at high deformation rates and especially at impact dynamic loads. The correspondence 

principle and Hooke's law are applicable only to static deformations and cannot be used for the dissipative force 

of viscosity and dissipative stresses, since for the occurrence of dissipative force there must be movement with 

some speed. There is a problem whereby, if the initial velocity is zero, the deformation will be delayed, as when 

the sample is stretched, and we observe viscoelastic hysteresis, but when impact occurs between bodies, the initial 

deformation velocity is not zero!!! 

Yes, it can be assumed, for example, that when a sample with a flat section is stretched in an infinitely 

short period of time, the stress will be equal to the ratio between of the instantaneous force and  the cross-sectional 

area. But, it is an impact too! Thus, in fact, we observe a creep and a stress relaxation like the result of an impact 

after sudden, very fast or instantaneous loading! Of course, after such a catastrophic impact, all the physical 

properties and parameters of matter will be very different from the equilibrium state. Therefore, the natural 

problem has arisen: How do I apply the theory of linear viscoelasticity in the event of an impact between curved 

surfaces? This is only possible if we consider infinitely small deformations in an infinitely small period of time, 

which was done using the "Method of specific forces" and the “Method of differential specific forces”, which are 

described in detail in articles [1,2] and in the book “Contact dynamics” [3]. 
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Also, the term “Quasi-static” is so obscure for application, but it is  often use by some scholars.   The 

question arises:  What is the difference between  a  quasi-static and  a quasi-dynamic behaviour of materials!?  

Where is the border between them? 

Now, let us imagine a high-rise building with no windows, just one entrance at the bottom!  If you enter 

this building, you can see, in the low light, the carcass of an empty tower in which the old lower part has already 

become rusty, but the upper part is still being built. This carcass is for only one building and it still has not yet 

been fully completed! Installers continue to complete it and they have already reached the ceiling in which there 

is one single dark hatch through which you can go out onto the top of the roof! All the installers are at different 

levels, but everyone is very well equipped: they are all dressed in very good construction attire and all have safety 

harnesses that are secured to structural elements for safety! Installers can leave the building only back through the 

entrance or through an unknown dark hatch in the ceiling! But the problem is that in order to get out of the building, 

you need to take off the safety harness!  Let me tell you a secret, if you go upstairs through the hatch, you can get 

to a beautiful city of physics and condensed matter physics in which there are a lot of large and beautiful science 

buildings with many doors and windows! Who do you think founded this carcass of an empty tower and who 

keeps building it!?  Yes, your supposition is right, the base of this tower carcass which is still being built is the 

Radok & Lee’s theory of a quasi-static viscoelastic contact indentation. 

The author hopes that the fundamental approach to existing problems set forth here and the solutions 

proposed here will be useful to all those who seek to use the physical essence of phenomena in their scientific 

research, and to use mathematics as a tool! Good luck! 
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