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Abstract: Hyperspherical three body calculations are performed to study and review the various properties of 

the exotic double  hyper nucleus 
6He. The 

6He  hyper nucleus is considered as a three body system 

consisting of  two   hyperons coupled to  an  core. Different -  and  -  realistic and phenomenological 
potentials are used in the calculations. Using the hyperspherical formalism, a complete symmetric and mixed 

symmetric wave functions are introduced. Contributions from partial waves are also taken into account in the 

calculations. The Fabre optimal subset is adopted to obtain fast and  good convergence for the calculated 

binding energy using the renormalized Numerov method. The obtained results are then compared with recent 

experimental value as well as those calculated using other methods. The calculated  
6He binding energies are 

in good agreement with the new experimental one reported by Nagara event. 
PACS numbers: 21.30. + y, 21.10.+dr,27.20.+n 

Keywords: Hyper spherical three body calculations.-  and  -   realistic and phenomenological potentials, 

Double  hyper nucleus 
6He. 

 

I. Introduction 
The study of the structure and properties of  light exotic hyper nuclei has become an area of special and 

particular interest to nuclear physists due to its important role in providing information about hyper- nucleon 

and hyper- hyper interactions. Such information is crucial for understanding the properties of multi strange 

hyper nuclei .The single  hyper nuclei ( which consists of  hyperons coupled to a core nucleus) have been 

extensively studied and investigated due to the existence of many experimental data for various single  hyper 

nuclei over almost the whole mass table  [1]-[3]. However the situation is different in the case of double  hyper 

nuclei where  only three spices of double    hyper nuclei  
6He and  

10Be,  
13B  have been  experimentally 

discovered and identified [4]-[8]. The most interesting recent event ,Nagara event [9], that reported  a new 

unambiguous value  ( B=  7.25 0.19   MeV) for  the  binding  energy of  the double  
6He  hyper 

nucleus has triggered renewed interest in the physics of double  hyper nuclei especially for those light species. 

This  Nagara event[9] suggested a fairly weak -  interaction which is compatible with and supported by the 

scattering length  a   - 0.8  fm [10],[11] and smaller in magnitude than        the -N interaction  [12]. The 

previous old value ( B=  10.80 0.6  MeV)  for the double  hyper nucleus 
6He  implied a fairly strong  - 

 interaction which is stronger than the -N one (aN  - 2.0 fm) deduced from studying the single  hyper 

nuclei and odds with  the one Boson exchange model [13]. This old value of the 
6He binding energy was  

considered as dubious one by the hyper nuclear physics community. The weak -  interaction suggested by 

Nagara event has triggered the interest of the hyper nuclear  physists to theoretically investigate the double  

hyper nucleus 
6He   and explore the new B binding energy in the 

6He hyper nucleus.  

Since the 
6He serves  in most applications as the primary normalizing datum for extracting the  

phenomenological -  interactions it is desirable to improve as much as possible the calculation  aspects  of 

the 
6He  binding energy evaluation in order to gain confidence in such extractions. We therefore compare our  

hyperspherical harmonics method (HH) calculations of the 
6He hyper nucleus with other approaches such as 

the cluster models Faddeev  calculations, coupled channel and variational methods [14]-[20] . The observed 

separation energy of a  hyperons in  
6He is 7.6 MeV [2] ,which is evidently smaller than that for nucleon  

20 MeV in 
6He . Consequently the 

6He hyper nucleus falls behind the  particle in energetic stability and no 

  bound state has been reported. The 
6He hyper nucleus is composed of an  particle and two  hyperons . 

The structure of the  particle in the hyper nucleus assumed to be not distributed by the existence  of other 

particles ,so the distributions of the  particle inside  the 
6He hyper nucleus still keeps the mass form of the 

high energy electron scattering with the  particle.     

  It is the aim of our work to investigate and review the different properties of the exotic 
6He hyper 

nucleus using hyperspherical harmonics (HH) three body calculations. The 
6
He  hyper nucleus is considered 

as a three body system consisting of two  hyperons coupled to an  core assuming internal structure, stability 
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and compactness of the 
6He  hyper nucleus . Different realistic and  phenomenological - and - 

interactions are  used in the calculations. The Fabre optimal subset [28],[29] is adopted to obtain fast and  good 

convergence for the calculated binding energy using the renormalized Numerov method. [35],[36].The obtained 

results are then compared with those obtained using other methods of calculations as well as the recent 

experimental one reported by  Nagara event [9],[21]. We employ the hyperspherical harmonics expansion (HH) 
method to solve  such a three-body system. This method is a powerful tool for the ab initio solution  of the few-

body Schrodinger equation for a given set of interaction potentials among  the constituent particles. This method 

has been used for bound states in atomic [22],[23], nuclear [24]-[33] and particle physics [25]. Attempts have 

been made to use it in scattering problems as well [34]. In the (HH) method, the wave function describing a 

system of N particles (in the center of mass system) is expanded in terms of a complete set of orthonormal 

functions of 3N-4 variables. The expansion coefficients are functions of a single variable that represents the 

length of 3N-3 dimensional vector. By substituting the wave function expansion into the Schroedinger equation 

describing the system, one obtains an infinite set of coupled differential equations for the expansion coefficients. 

The resulting set of coupled differential equations can be solved numerically by the renormalized Numerov 

method [35],[36] or the hyperspherical adiabatic approximation [27]. A multi pole potential is also obtained by 

expanding the two body interaction on a complete set of hyperspherical harmonics. This multi pole potential is 
very helpful and useful when used in the Schroedinger equation.  As for the three-body system, the angular 

harmonics are functions of five angular variables. In order to determine the potential matrix of the three-body 

Schroedinger equation, the matrix elements of the multi pole potentials between a pair of such hyperspherical 

harmonics were calculated. The symmetry of the system under study rules out some harmonics from appearing 

in the set of coupled equations. Further, the centrifugal barrier terms occurring in the set of coupled equations 

grow considerably with higher harmonics. One can therefore, truncate this infinite set [28]-[29] and work with a 

finite set (Fabre optimal subset ) of coupled differential equations or a corresponding one dimensional integral 

equation. The (HH) method is essentially an exact one and more reliable than  other methods. It involves no 

approximation except for a possible truncation of the expansion basis. By gradually expanding the expansion 

basis and checking the rate of convergence, any desired precision in the binding energy can, in principle, be 

achieved. However, the number of coupled differential equations and, therefore, the complexity in the numerical 

solution increases rapidly as the expansion basis is increased by including larger hyper-angular-momentum 
quantum number. The numbers of equations that have to be retained in any calculation using the (HH) method 

will, of course, depend on the nature of the potential used. 
In the present work, the Fabre optimal subset [28],[29] was used to obtain a converged set of coupled 

differential equations in a single variable, namely, the hyper-radius. By numerically solving these equations, the 

eigenvalues and eigenfunctions of the hyper-nucleus 
6He wave function were determined. In section 2 the 

(HH) method is presented including the different equations used in our calculation. In section 3 the numerical 

work and results are presented while the discussion and conclusion are given in section 4.Section 5 is devoted 

for references. 

 

II. Theoretical Work 

Let the position vectors of the two  particles denoted by r1 and r2, respectively, and their 

masses by m.The position vector of the  particle is denoted  by r3 and its mass by m.The total mass 

of the hyper-nucleus 
6
He is M=2m + m and the mass of  particle is taken to be m = 4m and that 

for the lambda  particle is taken to be m = 6/5m, where m is the nucleon (proton or neutron) mass. 
The Jacobi coordinates set used by Clare and Levinger [37] was chosen here:      
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  Now, the hyper-spherical coordinates ρ and θ are introduced, where ρ is the hyper-radius and θ is the 
hyper-spherical angle. As a result, the following relations are obtained  
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The non relativistic Schroedinger equation for the hyper-nucleus 
6
He, after separating out the 

motion of the center of mass, can be written as :   
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where μ is chosen to be μ = M/3 and V(rij) is the two-body central potential. Therefore, the 

Schroedinger equation for the hyper-nucleus 
6
He system expressed in terms of the hyper-spherical 

coordinates becomes:                            
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    Expanding the wave function Ψ(ρ) on the HH basis, Y [L] (Ω), gives 
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where Ω is a set of 5 angular coordinates describing the position of a point at the surface of the unit 

hypersphere. U[L]() are the renormalized hyper radial partial wave functions, [L] stands for the set of 
quantum numbers including spin and isospin defining the state of grand orbital L. Substituting the 

expansion (8) into Eq.(7), yields an infinite set of second order coupled differential equations written 
as: 

             )9(0)()()()(}]4

1
)2(

[{ ][][

][

][][2

2

2

22








 


LL

L

LL UYVYUE

L

d

d
 

which is subsequently truncated in order to be treated numerically. This can be done by using the 

Fabre optimal subset [28],[29]. As a result, the infinite set of coupled equations is transformed into a 
finite set of coupled ones to be solved numerically. For the case of central potential, the ground state 

of the hyper-nucleus 
6
He nucleus is described by even number of the grand orbital momentum L= 

2K+l, due to the parity conservation. Then, the finite set of coupled equations, for orbital momentum l 
= 0, becomes: 
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with the kinetic energy operator and the potential matrix elements being expressed as:  
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respectively. The geometrical coefficients, ),0,(2

2 CKC K

K


 , appearing in Eq.(12) couple the set of 

equations with the main equation for which K = 0 for each component of the central components of 
the two-body potentials. Explicit expressions for these coefficients are given in Ref. [28]. The multi-

pole potentials, V2K′′(ρ), given in Eq.(12) introduce the multi-poles of the central parts of the two-body 

potential and are expressed as : 
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where V(x) = V(rij) is the two-body potential. In the hyper-nucleus 
6
He the two body potentials 

refers to the – and the -α interactions. Equation (14) may be written as:  
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with V(ρu) = V(rij) , which is more useful in our numerical calculations 
 

III.      Numerical   Calculations and Results 
In order to carry out the numerical calculations, the set of coupled differential equations 

represented by Eq. (10) were written in matrix form as: 
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where [I] is the unit matrix and the column vector U(ρ) contains the partial waves U2K(ρ) as its 

components. Also the matrix element [Q] is given by: 
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The components of the effective potential matrix is given by: 
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where )(
K2

K2V is given by Eq.(12). 

    The renormalized Numerov method
 
[35],[36] was then used to solve [28]- [33] the set of coupled 

equations (16). In order to study the convergence of the hyper-nucleus 
6
He  energy eigenvalue the 

Fabre optimal subset [28],[29] have been used, using a different Gaussian forms of the realistic and  

phenomenological - and - interactions. The convergence of 
6
He  eigenvalue have been 

attained by  including terms up to K=18. Therefore in studying the convergence of the hyper-nucleus 


6
He  binding energy we have solved K coupled equations for K=1,2,......,K{max}. Also the decrease in 

hyper-nucleus 
6
He  binding energy was noted by increasing the number of terms in the HH 

expansion of the wave function. We have solved K=18 coupled equations in order to obtain the hyper-

nucleus 
6
He  binding energy values for the considered  realistic  - and - interactions. 

     In calculating the binding energy of the 
6
He hyper nucleus we have used different types of  

realistic and phenomenological two body potential of Gaussian form for Λ- Λ as well as the Λ -α 

interactions.  
 

For the  Λ- α  interactions: We have used four forms of Λ -α interactions Dalitz and Downs 

DI(DG), and DII(DG) ,Gibson et al. GI(DG) and GII. (DG) which are obtained by folding the Λ 

–N potential into the double Gaussian form nucleon density distribution of an α particle (DG ) and are 
given in table II of Reference [38]. 
 

For the Λ- Λ interactions: It is well known that experimental information concerning the two body 

Λ- Λ potentials could be obtained only from the Λ- Λ  binding energy BΛ Λ  in the observed double Λ 

hyper nuclei, 
6
He,  for example. On the other hand the importance for the theoretical indication for 

the OBE part of the Λ- Λ interactions is given by using the SU(3) invariance of the coupling 

constants. Therefore we have considered three different type [39]-[41] of two body  Λ- Λ interactions 

to study the effect of these of interactions on the  
6
He   binding energy . The first is a realistic one 

introduced by Singnan et al.[39] contains only attractive and repulsive parts with parameters 

determined by fitting the experimental value of the binding energy of the two ’s hyperons in the  
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
6
He  hyper nucleus. The second one is phenomenological one proposed by Nijmegen group [41]. 

For the third - interaction we have considered the soft core one suggested by Hiyama et al.[40]. All 

the considered types of - interactions 
6
He  are of Gaussian shape and given by the following 

relation: 

                                                      

 




 
6

1
2

2

)exp()(
i i

i
d

r
VrV  

where the parameters Vi and di are given in table (1). 

Table (1) 

Potn. i 1 2 3 4 5 6 

Ref[39] Vi  MeV -69.6 165 - - - - 

di    Fm 1.04 0.6 - - - - 

Ref[40] Vi  MeV -8.967 -226.8 880.7 - - - 

di    Fm 1.5 0.9 0.5 - - - 

Ref[41] Vi  MeV -21.34 -187.0 10850 0.1932 32.17 2035 

di    Fm 1.342 0777 035 1.342 0777 035 

                Table (1). Parameters for the different types of Gaussian shape - interactions 

       In our study we have  calculated  Λ- Λ  binding energy BΛ Λ  in double Λ hyper nuclei, 
6
He for 

the different types of the - and - interactions . In order to get confidence in our calculations we 
compare our obtained results with those calculated using other methods of calculations such as 

Faddeev, variational calculations. In table (2) we present the calculated binding energy BΛ Λ  in double 

Λ hyper nucleus, 
6
He for the different types of the - and - interactions considered. In table (3) 

a comparison is presented between our results and other methods of calculations. 

 
 

 

 
. Table (2) 

- [38] 

- 
DI(DG) DII(DG) GI(DG) GII(DG) Exp.[9] 

Singnan [40] 7.790 7.063 7.791 6.852 

7.620 Hiyama  [41] 7.636 7.635 7.636 7.638 

 Nijmeg. [42] 7.264 8.081 7.264 7.225 

                    Table (2) Calculated binding energy BΛ Λ (MeV)  in double Λ hyper nucleus, 
6
He for 

different types of the - and - interactions 
Table (3) 

BΛ Λ (MeV) Methods BΛ Λ (MeV) Methods 

9.500 G Matrix[ 43] 10.894 HH [ 27] 

7.636 Present 11.123 Faddeev [11] 

7.620 Experiment.[9] 9,800 Variational[41] 

                     Table (3) The  BΛ Λ (MeV)  in double Λ hyper nucleus, 
6
He  calculated with different 

methods is listed and compared with the present as experimental one 
 

IV. Discussion and Conclusions 
In calculating the binding energy BΛ Λ

  
of the double Λ hyper nucleus, 

6
He we have applied 

the exact hyperspherical (HH) method  which is a powerful and reliable method of three and many 

body calculations. In order to get a good and fast convergence of the binding energy ,Fabre optimal 

subset [28],[29] has been used in solving a finite set of coupled differential equations. Different types 

of realistic and phenomenological the - and - interactions have been considered to study the 

properties of the   
6
He  hyper nucleus and the effect of using various interactions on these 

properties. Solving up to Kmax = 18 coupled equations we have obtained for the binding energy  BΛ Λ 
values which are in good agreement with the recent experimental one (7.62 MeV ) reported by Nagara 
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[9].Our calculated binding energy BΛ Λ for the   
6
He  hyper nucleus are presented in table (1) for the 

considered types of realistic and phenomenological the - and - interactions. It is shown form 

table (1) that our results are in good agreement with the experiment for all types of - interactions 

considered , specially for those calculated using  soft core - interactions suggested by Hiyama et 

al.[40]. It is also shown from table (1) that the binding energy BΛ Λ for the   
6
He  hyper nucleus are 

not affected by using various types of - interactions [39]. In order to get confidence in our method 
of calculations we present in table (2) a comparison of our results with those calculated with other 
methods such as Faddeev  [11 ], variational [ 40 ], G matrix [41], and even HH [ 27 ] methods .It is 

shown form table (2) that our results are more accurate and in good agreement with the recent 

experiment than those calculated with these methods. The first four partial hyperradial waves of the  


6
He  hyper nucleus are given in Fig.(1),Fig(2),and Fig(3) for the different types of  - interactions 

considered. As a matter of fact the figures indicate the fairly weak strength of the  - potentials 

compared with the  -N interaction and agree with the new report about the fairly weak binding  

value of the  
6
He  hyper nucleus and also the suggestion that no - bound state is found. 

     Finally we conclude that in reviewing the current status of the 
6
He  hyper nucleus we have 

obtained B binding energy values (B= 7.636 MeV ) in good agreement with the recent reported 

experimental one ( B= 7.620 MeV ).We also conclude that the 
6
He  hyper nucleus is loosely 

bound nucleus due to the weak  strength of the - potentials compared with the  -N one, a result 
which is confirmed and supported by the recent Nagara report [9]. 
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Fig.1. First four hyperradial partial waves U(2K) (with K = 0,,2,3,4) for the hypernucleus 

6He generated by 

Singnan et al [39]  - interaction. 

 
Fig.2. First four hyperradial partial waves U(2K) (with K = 0,,2,3,4) for the hypernucleus 

6He generated by soft 

core Hiyama et al. [40] -interaction 

 
Fig.3. First four hyperradial partial waves U(2K) (with K = 0,,2,3,4) for the hypernucleus 

6He generated by 

double folded Nijmegen group [41] -interaction.  
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