Thermal and spectroscopy studies of Ag₂SO₄ and LiAgSO₄

S. Rama Rao¹, Ch. Bheema Lingam^{2, 3}, D. Rajesh², R.P.Vijayalakshmi1, C. S. Sunandana²

¹Departmet of Physics, College of Sciences, Sri Venkateswara University, Tirupati 517502, ²School of Physics and 3ACRHEM, University of Hyderabad, Hyderabad 500 046, INDIA.

Abstract: A comparative study is conducted on the structure, electronic and spectroscopic properties of Ag₂SO₄ and LiAgSO₄. Both the sulphates crystallise in an orthorhombic structure with the same space group of Fddd (70). A red shift in Raman modes indicates the stiffness of the crystal Ag₂SO₄ over LiAgSO₄. From ESR, it is observed that these sulphates has Mn²⁺ impurities leading to the g_{av} = 2.1040 at a field of 3255 G. This indicates that the Mn²⁺ ions have an environment close to octahedral symmetry. The g value corresponding to Ag₂SO₄ is 2.3005. The endothermic peaks in LiAgSO₄ at 388.8 and 420⁰C are due to the formation of BCC structure of LiAgSO₄. The peak at 420.9⁰C in Ag₂SO₄ may be due to the phase transition of β -Ag₂SO₄ particles to α -Ag₂SO₄ on heating.

Submitted Date 27 June 2013

Accepted Date: 02 July 2013

I. Introduction

Due to the single or successive reversible structural transitions for piezoelectric properties and high ionic conductivity of Alkali metal sulphates (Li₂SO₄, Na₂SO₄, K₂SO₄, Rb₂SO₄ and Cs₂SO₄) have attracted contemporary researchers [1-7]. The sliver and thallium based sulphate crystals are attractive due to the distinct conductivity behaviour of Ag+ and Tl+ [8-12]. The mixed sulphates such as AgLiSO₄, NaLiSO₄, RbAgSO₄, KLiSO₄ and TlAgSO₄ with two monovalent cations are known to be good solid electrolytes [11]. The fast-ion conduction in solids is a paradigm for structure-property relation. The structure factor can involve coordination geometry number, face-sharing sites in the structure and lattice disorder [13]. The structure of high conducting phase α - Ag₂SO₄ is isomorphous with that of the conducting phase Na₂SO₄ –I space group p63/mnc and both possess parallel properties linked to fast cation conductivity. The thermal properties are primarily interest due to their potential applications in electrochemical devices such as sensors [14]. A measurement of temperature depending on the electrical and thermal conductivities can serve as a useful tool in the study of ion transport in ionic crystals. Silver sulphate, a non-alkali metal sulphate, is an exception which shows high cationic conductivity inspite of the bigger size of Ag+. It undergoes a structural phase transition from the high temperature highly conducting hexagonal α -phase to the low temperature moderately conducting orthorhombic β -phase at 416^oC. It attracted scant attention until its application potential in SO_x(x=2, 3) galvanic sensors was proved [15]. Study on the role of electronic structure and the influence of lattice distortion caused by iso-valent cations on the mobility of Ag+ in orthorhombic β -Ag₂SO₄ is necessary to understand the fundamental conduction mechanism and simultaneously to obtain an apt silver sulphate based material for SO_2 gas sensor [16]. If silver sulphate diffuses into the battery electrolyte, metallic silver could get deposited on the negative plates. Fortunately, metallic silver has a relatively high hydrogen over-voltage, and contamination of the negative electrodes with small quantities of metallic silver should have only a minor effect on their selfdischarge. Diffusion of silver sulphate into the battery electrolyte can be restricted by decreasing the diameter of the micro-fiber glass plug separator, by increasing its length and its density (compactness), and adding a gelling agent. On the basis of Fick's law, one can estimate that it should be possible to limit the diffusion into the battery electrolyte (at 258°C) to less than 0.1 mg of metallic silver per year [17]. New solid-state electrochemical sensors using Li₂SO₄-Ag₂SO₄ solid electrolytes have been recently developed to measure SO₂ and/or SO₃ in gas mixtures. The sensors which consist of a two-phase electrolyte and a solid Ag-(Ag₂SO₄) reference electrode exhibit excellent behaviour. For example, they have long-term electrochemical stability and accurate potentiometric responses are obtained over a six month period. The presence of significant concentrations of CO₂ and H₂0 in the gas mixture has no effect on the sensor response. Thus these sensors have potential applications as reliable detectors and monitors of SO₂ and/or SO_3 concentrations in various gaseous atmospheres [18-20]. For the equimolar compositions of the two phases the electrical conductivity and the diffusion coefficients of Li+, Ag+ and Na+ at 823K are nearly the same for the two abundant cations, while they are considerably smaller for the cation that is present at low concentration. Additional evidence that the two abundant cations have nearly the same mobility in the bcc phase is obtained from a trans- port number study for (Li, Ag)₂SO₄ [21-24].

II. Experimental

2.1 Synthesis

The materials used in this experiment $Li_2SO_4.H_2O$ (Alfa) and Ag_2SO_4 (AR) were been mixed in 1:1 ratio and grinded for one hour in a agate mortor and then transferred to heater. The powder is heated at 200°C for 10 hours, and subsequently cooled to room temperature. $LiAgSO_4$ was again thoroughly grinded and used for further characterization.

2.2 Instrumentation

The crystal structure of the samples was characterized by X-ray powder diffractometer using Co K α radiation ($\lambda = 1.7889$ Å). The morphologies and chemical composition of these samples were obtained by Field emission scanning microscopy (FESEM) and for chemical composition using energy dispersive X- ray scattering (EDS) analysis (a model no ULTRA- 55, ZEISS, Japan).Raman spectra were recorded at 300K in a backscattering geometry with Horiba JobinYvon, LabRAM- HR800 micro-Raman system using 514.5 nm excitation from Ar+ gas laser. The differential scanning calorimetry (DSC) was done using DuPont 9900 model DSC instrument. Finally, the electron spin resonance spectra (EPR) were recorded on a JEOL9FE-3X) X-Band spectrometer under optimized conditioned of modulation amplitude, receiver gain, time constant and scan time.

III. Results And Discussion

3.1 Structure and morphology The structure and morphology of Ag₂SO₄ and LiAgSO₄ are studied using XRD and FESEM-EDS, the corresponding XRD pattern is given in Figs.1 and 2. From Fig.1A, the XRD pattern of Ag₂SO₄ is identified as orthorhombic (a= 5.817, b=12.70 and c=10.269) with the space group of Fddd (70). The diffraction peaks observed from XRD are (040), (202), (331), (151), (511), (260), (602), (642), (800), and (084). The peaks (602) and (800) are found to be high intensive. The obtained XRD pattern matches well with the standard data (JCPDS card no. 07-0203) as reported here in. Whereas, the XRD pattern (see Fig.2A) of LiAgSO₄ is also identified as orthorhombic (a=10.25, b=12.69 and c=5.843). The diffraction peaks from XRD are observed as (200), (040), (311), (022), (202), (331), (151), (351), (062), (080), (333), (371), and (602). The peak (220) is found to be high intensive. The obtained XRD pattern matches well with the standard data (JCPDS card no. 52-1211). The structure details of Ag_2SO_4 and $LiAgSO_4$ are in good agreement with the previous studies. Then the morphology and surface characteristics of Ag₂SO₄ and LiAgSO₄ are understood from the FEMSEM. LiAgSO₄ samples have nano particles with the average size of 100-120 nm which is shown in Fig.2B. In the case of Ag2SO4, the average particle size is found to be 10-20 nm (see Fig.1B). The elemental analysis of LiAgSO4 and Ag₂SO₄ samples was determined by using EDS technique. The EDS clearly shows the formation of Ag, O and S elements, formation of $LiAgSO_4$ and Ag_2SO_4 and the EDS analysis confirms that the chemical composition of LiAgSO₄ and Ag₂SO₄ is almost in stoichiometric ratios.

3.2 Raman Spectroscopy and phase transition

The obtained Raman spectra of LiAgSO₄ and Ag₂SO₄ are shown in Fig.3A. One external mode is observed in both the spectra, in accordance with the model that the high- conducting solid phases with reorienting sulphate ions. The spectra look similar to those of the melts, which is a general finding for superionic materials. The observed mode frequencies for LiAgSO₄ and Ag₂SO₄ are v₁, v₂, v₃ and v₄ which are basically from sulphate –ion intermolecular vibrations. Furthermore, the mode frequencies of solid phases agree with previous calculations [18-25]. This confirms our synthesis and structure of the LiAgSO₄ and Ag₂SO₄. We observed 91.6 cm⁻¹ as v_{ext}. The intense peak at 970 cm⁻¹ is denoted as v₁, whereas 427 and 457 cm⁻¹ are under the v₂ band. The peaks 1007 cm⁻¹ and 1045 cm⁻¹ are v₃ band. The v₄ consists of 623 cm⁻¹ mode. v₁ and v₄ modes decreases with increasing size of the alkali metal cations. By comparing with Raman spectra of Ag₂SO₄, it is observed that the intensity of v₂ and v₄ bands decreases i.e they are inactive. Whereas the intensity of v₃ band increases i.e it is active. The intensity of v₁ band remains same.

3.3 Differential Scanning calorimetry

A typical DSC curve of heat flow vs sample temperature consists of a series of peaks measured against a standard sample (Iridium) in upward as well as downward direction. The position, shape and the number of peaks will help in identifying the thermal events occurring in the substance. More importantly, since the areas under the peaks are related to the enthalpy of transmission, these facts are used for quantitative determination of thermodynamic quantities. Any phenomenon that produces enthalpy changes or change of heat capacity is denoted by DSC. Physical changes in solids may involve evolution or absorption of heat. This is viewed in DSC as an exothermic or endothermic peak. A transition such as melting or a structural phase transition yields an endothermic, while an amorphous to crystalline transition gives an exothermic. DSC analysis of the Ag_2SO_4 and LiAgSO₄ is carried out at the heating rate 10C/min up to $600^{0}C$ as shown in Fig.3B. A strong H₂O peak present at 141.13 in LiAgSO₄, interestingly it is not found in Ag₂SO₄. The small endothermic peaks in LiAgSO₄ at 388.8 and 420^oC are due to the formation of BCC structure of LiAgSO₄. Knowing that a mechanical mixture cannot be absolutely homogenous, the small endothermic peak at 515.9^oC is observed in LiAgSO₄. And the thermal effect starting at 542.8^oC is purely from the melting point of the BCC LiAgSO₄. The peak at 420.9^oC in Ag₂SO₄ may due to the phase transition of β -Ag₂SO₄ particles to α -Ag₂SO₄ on heating. On heating, the excess heat flow at the structural transition was recorded as DSC signal by S.W.Tao et al noticed two small anomalies at 427.7C and 567.9^oC. It was found that the anomaly depended on the turning temperature at which a cooling run was changed to a heating run [22].

3.4 Electron spin resonance

Electron spin resonance is a specific microscopic probe to examine molecular environments in crystalline and disordered systems. Under favourable circumstances, it is possible to create and stabilize paramagnetic radicles which may reflect certain aspects of dynamics- which may be characteristic of the system itself. Presently we describe our efforts to stabilize and identify molecular paramagnetic radicles in Ag_2SO_4 and $LiAgSO_4$. The ESR spectra of Ag_2SO_4 and $LiAgSO_4$ are shown in Figs.3C and D. The ESR signals suggesting a common origin for the paramagnetic centres are involved. In the spectra of $LiAgSO_4$, we observed six sharp peaks almost with equal spacing 98 G. These are due to Mn^{2+} impurity present in $LiAgSO_4$. The $g_{av} = 2.1040$ at a field of 3255G and g _{cen} = 2.1238 at a field 3219.9 G. This is due to the presence of Mn^{2+} ions in an environment close to octahedral symmetry. The g value corresponding to Ag_2SO_4 is 2.3005.

3.5 Fourier Transform Infrared Spectroscopy

In order to get some structural information of Ag_2SO_4 and $LiAgSO_4$ solid solution, IR absorption spectra of a mechanically mixed powder are shown in Figs.4A and B. The free sulphate SO_4^{2-} ion belongs to the high symmetry point group. For $LiAgSO_4$, four fundamental internal vibration modes are observed; the symmetric stretching mode v_1 and the doubly degenerate symmetric bending mode v_2 are IR inactive. The asymmetric stretching mode v_3 and v_4 are both triply degenerate and IR active. The spectra show an increase of IR transmission, inactive absorption v_1 around 619.18 cm⁻¹ and v_2 is around 997.26 cm⁻¹. More over the broadening of the IR active absorption v_3 around 1112.33 cm⁻¹ and v_4 around 646.58 cm⁻¹ indicates the decrease in symmetry of the SO_4^{2-} ions due to the incorporation of Li^+ ions in to the interstitial positions and/or Ag^+ lattice sites, resulting in the change of structural environment. That is, IR spectra indirectly demonstrate the formation of $LiAgSO_4$ phase. The higher order modes are due to the presence of H₂O, which are belongs to O-H vibrations. For Ag_2SO_4 , only two modes are observed at 991.78 and 1128.77 cm⁻¹.

IV. Conclusions

A comparative study conducted on the structure, electronic and spectroscopic properties of Ag_2SO_4 and $LiAgSO_4$ is reported. Both the sulphates crystallised in orthorhombic structure with the same space group of Fddd (70). A red shift in Raman modes indicates the stiffness of the crystal Ag_2SO_4 over $LiAgSO_4$. From ESR, it is observed that these sulphates have Mn^{2+} impurities leading to the g_{av} = 2.1040 at a field 3255 G. This is due to Mn^{2+} ions in an environment close to octahedral symmetry. The g value corresponding to Ag_2SO_4 is 2.3005. The endothermic peaks in $LiAgSO_4$ at 388.8 and 420^oC are due to the formation of BCC structure of $LiAgSO_4$. The peak at 420.9^oC in Ag_2SO_4 may due to the phase transition of β - Ag_2SO_4 particles to α - Ag_2SO_4 on heating.

References

- Zengcai, L.; Wujun, Fu.; Andrew Payzant E.; Xiang, Y.; Zili, Wu.; Nancy J. D.; Jim, K.; Kunlun, H.; Adam J. R.; Chengdu, L.; J. Am. Chem. Soc., 2013, 135, 975–978.
- [2]. Yusheng, Z.; Luke L. D.; J. Am. Chem. Soc., 2012, 134, 15042–15047.
- [3]. Hisashi, K.; Kazushige, O.; Kunihito, K.; Inorg. Chem., 2012, 51, 9259–9264.
- [4]. Radhakrishnan A. N.; Prabhakar Rao, P.; Mahesh, S. K.; Vaisakhan Thampi D. S.; Peter, K.; Inorg. Chem., 2012, 51, 2409–2419.
- [5]. Molenda, J.; Func. Mat. Lett, **2011**, *4*, 107-112.
- [6]. Xin-Xing, Z.; Min L.; J. Phys. Chem. Lett., 2013, 4, 1205–1210.
- [7]. Singh, K.; Bhoga, S. S.; Bull. Elctrochem. 1996, 12, 633-642.
- [8]. H. Kasano, S. Tsuchiyama, Y. Kawamura, H. Mashiyama, Ferroelectrics, 1998, 217, 121-128.
- [9]. H. Mashiyama, J. Wu, F. Shimizu and M. Takashige, Physical society of Japan 1998, 67, 359-360.
- [10]. C. Ramasastry, C.S. Sunandana, B.S.V.S.R. Acharyulu, J Nonmetals, 1972, 1, 283-290.
- [11]. Y. Lu, E.A. Secco Solid State Ionics 53-56,223 (1992).
- [12]. A. Elfakir, J. Souron, G. Wallez, M. Quarton, M. Touboul, Solid State Ionics, 1998, 110, 145-151.
- [13]. R. A. Secco, E. A. Secco, J. Phys. Chem. Solids, 1995, 56, 1045-1051.
- [14]. HirotoTomica and Sadao Adachi J. of Solid State Science and Technology 2(6) 253-258 (2013).
- [15]. S.W. Anwane ADV. Mat Letters 3(3). 204-212 (2012).
- [16]. Singh, AnwaneS.W,Bhoga.S, Solid State Ionics 187,86-87 (1996).
- [17]. PaulRuetschi J. Power Sources 116, 53-60 (2003).
- [18]. L. Borjessand L.M. TorellPhysica Rev B 32,4 (1985).
- [19]. Q.G. LIU and W.L. WORRELLSolid Statelonics 18 & I9 (1986) 524-528 524.

- [20]. Tiwari, A.; Mishra, A.K.; Kobayashi, H; Turner, P F; IntelligentNanomaterials Wiley-Scrivener Publishing LLC, USA, 2012 ISBN 978-04-709387-99(2012).
- [21]. S. W. AnwaneAdv. Mat. Lett.4(4), 300-309 (2013).
- [22]. S.W. Tao, X.Q. Liu, D.K. Peng, G.Y.Meng Material Letters 34, 30-35 ((1998).
- [23]. Irene Martina, Rita Weisinger, DubravkaJembrih- Simburger Manfred Schreiner Micro- RamanSpectroscopy of Silver Corrosion products e-ps 9, 1-8 (2012).
- [24]. Leif NILSSON and N.Hessel ANDERSENSolid State lonics 34, 111-119(1989).
- [25]. Roy Theberg, Arnold LundenSolid State Ionics 90, 209-220(1996).

Figure captions

- Fig.1. The (A) X-ray diffraction, (B) FESEM and (C) EDS of Ag₂SO₄.
- Fig.2. The (A) X-ray diffraction, (B) FESEM and (C) EDS of LiAgSO₄
- Fig.3. (A) Raman spectroscopy, (B) DSC and (C), (D) ESR of Ag₂SO₄ and LiAgSO₄
- Fig.5. FTIR of (A) Ag₂SO₄ and (B) LiAgSO₄.

Figure 3: S. Rama Rao et al

Figure 4: S. Rama Rao et al

