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Abstract: The physical property of strongly correlated electrons on a three-dimensional (3D) 3 x 3 x 3 cluster 

of the simple cubic lattice is here presented.In the work we developed the unit step Hamiltonian as a solution to 

the single band Hubbard Hamiltonian for the case of two electrons interaction in a finite three dimensional 

lattice. The approximation to the Hubbard Hamiltonian study is actually necessary because of the strong 

limitation and difficulty pose by the Hubbard Hamiltonian as we move away from finite - size lattices to larger 

N - dimensional lattices. Thus this work has provided a means of overcoming the finite - size lattice defects as 

we pass on to a higher dimension. We have shown in this study, that the repulsive Coulomb interaction which in 

part leads to the strong electronic correlations, would indicate that the two electron system prefer not to 

condense into s-wave superconducting singlet state (s = 0), at high positive values of the interaction strength. 

This study reveals that when the Coulomb interaction is zero, that is, for free electron system (non-interacting), 

thevariational parameters which describe the probability distribution of lattice electron system is the same. The 

spectra intensity for on-site electrons is zero for all values of the interaction strength. 
Keywords: unit step Hamiltonian, Hubbard Hamiltonian, 3D cubic lattice, interaction strength, total energy, 

lattice separation. 

 

 

 

I. Introduction 
 In recent years, the Hubbard model has received increasing attention for its relevance for high-Tc 

superconductivity, antiferromagnetism, and ferromagnetism, thus playing a central role in the theoretical 

investigation of strongly correlated systems (Domanski et al., 1996).In spite of the enormous successes of the 
approach (Rycerz and Spalek, 2001) based on the effective single particle wave equation for many 3-

dimensional metals andsemiconductors, the understanding of the so-called correlated fermionic systems is still 

lacking.  

 This is because in their description of the electronic states the role of the long-range Coulomb 

interaction is crucial, as the charge screening becomes less effective. An electron located at a given lattice site 

would always feel the presence of another electron which is located at a different lattice site. This interaction is 

due to the presence of spin and charge between them. So long as this relationship exists the electrons are said to 

be correlated.  

 In probability theory and statistics, correlation, also called correlation coefficient, indicates the strength 

and direction of a linear relationship between two random variables. In general statistical usage, correlation or 

co-relation refers to the departure of two variables from independence, although correlation does not imply 

causation. 
 Interacting electrons (van Bemmel et al., 1994) are key ingredients for understanding the properties of 

various classes of materials, ranging from the energetically most favourable shape of small molecules to the 

magnetic and superconductivity instabilities of lattice electron systems, such as high-Tc superconductors and 

heavy fermion compounds. 

 The one-dimensional Hubbard Hamiltonianis a good prototype for an exactly solvable model of 

correlated electrons in narrow band systems (Vallejo et al., 2003), where at half-filling the ground state is found 

to be anti-ferromagnetic and insulating for a repulsive (positive) potential. The other exact solution for the 

Hubbard Hamiltonian is the case of an infinite dimensional lattice. The exact solutions have brought a very 

important progress in the understanding of strongly correlated systems.  

 The Hubbard model has the following features: (i) the model exhibits non-fermi liquid (FL) (quantum 

liquid in which the spin fluctuation is unmodified by interaction) behaviour as long as U > 0 for a finite particle 
density, (ii) there is no correspondence between the states of free and interacting particles even at nearly zero 

density, (iii) it allows double occupancy at a given site, (iv) consequent upon (iii) the size of the Hilbert space 

for a given cluster is much larger then for the t - J model, (v) the model exhibits anti-ferromagnetism rather than 

ferromagnetism, (vi) the Hubbard Hamiltonian (Hubbard, 1963) becomes very cumbersome to handle when the 

size of the Hilbert space of a given dimensional lattice increases.  
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 We have in this study extended the work of Chen and Mei (1989) which was limited to one-and two-

dimensional (ID and 2D) lattice to three-dimensional (3D) lattice. We also devised a unit step Hamiltonian and 

simplified trial wavefunction for our variational calculation instead of the more complex Hubbard Hamiltonian 

and correlated trial wavefunction developed by Chen and Mei. 

 The organization of this paper is as follows.In section 1, we discussed the nature of superconductivity 

and the relevance of the single band Hubbard Hamiltonian and its limitation for solving correlated electrons 

system. In section 2 we provide the method of this study by giving a brief description of the single - band 
Hubbard Hamiltonian and thetrail wavefunction to be utilized. We also present in this section an analytical 

solution for the two particles interaction on a 3x3 x 3 cluster of the simple cubic lattice. In section 3 we present 

numerical results. The result emanating from this study is discussed in section 4. This paper is finally brought to 

an end with concluding remarks in section 5 andthis is immediately followed by an appendix and lists of 

references.  

 

II. Mathematical Theory 
 The single-band Hubbard Hamiltonian (Marsiglo, 1997) reads; 

 


  
i

i
i

ij

ji nnUchCCtH


 ..                                       (2.1) 

where ji,  denotes nearest-neighbour (NN) sites,   ji CC
 is the creation (annihilation) operator with spin  

 or  at site i , and  iii CCn   is the occupation number operator, ..ch (  ij CC


)  is the hermitian 

conjugate . The transfer integral 
ijt  is written as ttij  , which means that all hopping processes have the same 

probability. The parameter U is the on-site Coulomb interaction. It is worth mentioning that in principle, the 

parameter U is positive because it is a direct Coulomb integral. The exact diagonalization of (2.1) is the most 

desirable one. However, this method is applicable only to smaller dimensional  lattice system, since the 
dimension of the Hamiltonian matrix increases very rapidly with the number of sites and number of particles. 

 

2.2 The correlated variational trial wave function (CVA) 

 The correlated variational trial wave function (CVA) given by Chen and Mei (1989) is of the form 

  }{}{ ,,,, 


  jiji
ji

XiiiiX jIIi

i

              (2.2) 

where  ,...,2,1,0iX i  are variational parameters and  ji ,  is the eigen state of a given electronic 

state, l  is the lattice separation. 

 The exact diagonalization of (2.1) is the most desirable one. However, this method is applicable only to 

smaller dimensional lattice system, since the dimension of the Hamiltonian matrix increases very rapidly with 

number of sites and number of particles. 

 With a careful application of the two equations above we can conveniently solve for the wave function 

and hence the  groundstate energy of the two interacting electrons provided the two important conditions stated 

below are duly followed. 

(i) the field strength tensor  










jiiff

jiiff
ji ij 0

1
  (2.3) 

(ii)  the  Marshal rule for non-conservation of parity (Weng et al.,  1997)                  

 ijji ,,   (2.4)     

 

 The analytical geometry of the 3D 3 x 3 x 3 cluster is shown in the appendix. There are a total of five 

planar lattices. We have generally summarized the details of the two electrons interaction on the 3D 3 x 3 x 3 

cluster of the simple cubic lattice in table 2.0. 
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Table 2.0The summary of the relevant information derived from the analytical geometry of the 3D 3X3X3 

cluster on a simple cubic lattice. 

Lattice separation l  

Between the two 

electrons and actual 

separation distance d  

 

 

Pair wave 

function 

l  

 

Number of pair electronic states at 

lattice separation l  

ll   

 

 

Pair electronic states 

 ji ,  

l  d  

0  0  
0  

27 
,111,111 

 333,333,  

1  a  
1  

162 
,211,111 

 333,332,  

2  a2  
2  

324 
,221,111 

 332,233,  

3  a2  
3  

216 
,222,111 

 232,323,  

Total number of electronic states 

N=3; (N x N)
3
 or (N x N x N)

2
 729 729 

 

 It can be shown from the lattice symmetry that the central site for any odd 3D N x N x N lattices is  








 

2

1
,

2

1
,

2

1 NNN
,from which for the 3D 3 x 3 x 3 it is (222).A lattice separation of 0l , then means 

that both electrons are at the same site ),,( iii . Whilea lattice separation of 1l ,then means that both electrons 

are on different sites at a separation distance of 1 and so on. Note that the actual separation distance d comprises 

of both linear and diagonal lengths.Details of how to calculate the respective actual separation distance for 
various separation lengthsbetween the two interacting electrons, can be found in (Akpojotor et al, 2002) and 

(Enaibe, 2003). 

 

2.3 The Unit Step Hamiltonian in 3D cluster of the simple cubic lattice. 

 The approximation to the Hubbard Hamiltonian study is actually necessary because of the strong 

limitation and difficulty pose by the Hubbard Hamiltonian as we move away from finite - size lattices to larger 

N - dimensional lattices. Thus this work has provided a means of overcoming the finite - size lattice defects as 

we pass on to a higher dimension. 

 The unit step model takes advantage of the symmetry of the Hubbard model given by (2.1). The kinetic 

hopping term ( t ) can only distribute and redistribute the electrons within only nearest-neighbour (NN) sites in a 

given lattice according to ±1. The U part can only act on the on-site electrons (double occupancy) while it is 

zero otherwise. Also from the geometry of the 3D lattice we can recast (2.2) as  

ll

l

l

X  
0

(2.5) 

where
l  are the eigen states for a given separation, N is the total number of separations.Now suppose we let 

mlkji ,,,,  and n  represent the eigen state of a given lattice site such that for the 3D cluster on a simple cubic 

lattice it will be     lmnijk , . Then 

 )(,)1()(,)1()(,)( { lmnkjilmnjkitlmnijkH + 

 mnlijklmnkij )1(,)()(,)1(  

})1(,)()1(,)(  nmlijknmlijk  

 )(,)( iiiiiiU  (2.6) 
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 )(,)1()(,)1( lmnkijlmnkij  +                                                             

 nmlijknmlijk )1(,)()1(,)(  

 nmlijknmlijk )1(,)()1(,)(  

})1(,)()1(,)(  nmlijknmlijk  

 )(,)( iiiiiiU (2.7)    

 

2.4 On the evaluation of the unit  step Hamiltonian 

 The N - dimensional unit step Hamiltonian contains the kinetic hopping term t and the on-site Coulomb 

repulsion term U. In practice the U term makes a contribution only when all lattice sites are equal (double 

occupancy). It is zero for inter-site lattice. The implementation of the Hubbard model on the trail wave function 

would demand using (2.1) to run through all pair electronic states one after the other.  

 That is, for 3D 3x3x3simple cubic lattice where there are a total of 729 pair electronic states;

729,,3,2,1:  llH . While for 3D 5 x 5 x 5 simple cubic lattice wherethere are a total of 15625 

pair electronic states; then 15625,,3,2,1:  llH . This process as we all know is actually 

cumbersome and it will be very difficult to handle without error. 

 The advantage of theunit step model as an approximation to the single band Hubbard 

Hamiltonian,which we presented in this work is that instead of using (2.1) to run through all  the pair electronic 

states one after the other as the case demands, we rather use (2.6) to act on only one single electronic in each 

separation and sum the result.We know that  H  is always a commuting or Hermitian matrix. The eigen 

vectors of the Hermitian matrix are orthogonal and form a complete set, i.e., to say that any vector of this space 

is a linear combination of vectors of this set.  

 Consequent upon this, we use (2.6) to evaluate only a given eigen state from each of the given set 

l  and generalize the result since the vectors are commuting. Thus generally, when the unit step model acts 

on (2.5) we can sum the result as follows. 

 
l

llXHH
ll

jj

jlll
XU

Xn
t

llj





 














)(

                      (2.8) 

 where n is the total number of states generated within a given lattice separation, ll   is the 

inner product of the state acted on by the unit step Hamiltonian, jj   is the total number or the inner 

product of the new state generated after operating on theeigen state, l  is the particular lattice separation, 

j is the new state generated.  

 To understand completely how the unit step Hamiltonian works, we shall demonstrate it elementarily 

for only two cases and assume the same routine for the rest separations. Now 

  
llXHH 33221100  HXHXHXHXHX

ll (2.9) 

0
H  111,111H   111,211111,3110Xt 111,131 +

 
111,121 +  311,111211,111111,112111,113  

 112,111113,111121,111131,111 00  XU  (2.10) 

Note that in  the process of applying this technique, for instance, if ( i + l ) = 4 or ( i - l ) = 0, since there is no 4 

or 0 in the information providedby thelattice geometry  in table 2.0, then 4 ( = 1) and 0 ( = 3 ) because of the 
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requirements of the repeated boundary conditions. It is obvious from the parentheses of (2.10) that all the 12 

new eigen states generated are ofthe same separation 1l and thereforehavingeigen state 1 .  

0
H =  112  t 00  XU           (2.11) 

Hence upon comparing this result with the equation (2.8), then 12n , 1j and 0l  .Thus 

0
H = 00

11

100

0

12














 XUXt          (2.12) 

0
H = 00

1

0 162

2712












 XUXt   0010 2  XUXt (2.13) 

 Now there is also the need for us to use the unit step Hamiltonian to act on the state in separation 1l

instead of just generalising the effectiveness and accuracy of the unit step Hamiltonian with the result of only 

separation 0l . The events of separation  1l  would be a bit different from the first one. Thus, when the unit 

step Hamiltonian acts on the eigen state in separation 1l  we get, 

1
H  211,111H






10

1 211,311211,211Xt 
2

211,121  

2
211,131  + 

0122
111,111311,111211,113211,112  






2222

213,111212,111231,111221,111

(2.14) 

  Where for clarity of purpose the superscripts only indicate the respective separations generated. We can 
now revert to (2.8) for the summation technique. 

1
H =  2101 822  Xt                                               (2.15) 

1
H = 
























22

211

11

111

00

011

1

822
Xt  (2.16) 

1
H = 







 








324

1628

162

1622

27

1622 210

1Xt  (2.17) 

1
H =  2101 4212  Xt                                    (2.18) 

 Also by a similar algebraic subroutine, when the unit step Hamiltonian acts on the eigen state in 

separation 2l and 3l ,after a careful simplification we get respectively  

2
H =  3212 648  Xt                                      (2.19) 

3
H =  323 64  Xt (2.20) 

 We can see that this technique is very straightforward as it limits the operation to only one eigen state 

in a given lattice separation instead of using the Hubbard Hamiltonian to operate on all the states 

consecutively.Hence in accordance with (2.8) and (2.9) we get 


33221100  XXXX (2.21) 

  32221221110110 64842122 XXXXXXXtH  

 3323 64 XX
00 UX  (2.22) 

With the use of (2.3)and the information provided in table 3.1, we can eventually establish after multiplying 

through (2.21) and (2.22) by the complex conjugate of (2.5) that 

 00
2

0X  11
2

1X  22
2

2X 33
2

3 X   (2.23) 

 2
3

2
2

2
1

2
0 812627 XXXX                                   (2.24) 

 2
0

2
3

2
2

2
1322110 )4/(1212324246)4)(27( XtUXXXXXXXXXtH           (2.25) 
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2.5 The variational method  

 The variational method consists in evaluating the integral 

 

 HEg
 uHtH                             (2.26) 

 Where 
gE is the correlated ground state energy and  is the guessed trial wave function. We can now 

differentially  minimize (2.26) after the substitution of (2.24) and (2.25) as follows.  















 H

XX
E

X

E

ii
g

i

g
                          (2.27) 

 Subject to the condition that the correlated ground state energy of the two interacting electrons is a 

constant of the motion, that is 

 

0




i

g

X

E
           ;    3,2,1,0 i                             (2.28) 

We can carefully transform the resulting equation into a homogeneous eigen value problem of the form 

  0 ll XIA


 (2.29) 

 

 Where A is an NXN matrix which takes the dimension of the number of separations, 
l is the eigen 

value (total energy E ) to be determined, I is the identity matrix which is also of the same order as A , 
iX


 are 

the various eigen vectors or simply the variational parameters corresponding to each eigen value. After some 

algebraic subroutine we get the matrix.  
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                               (2.30) 

 Where tUu 4/ is the interaction strength between the two interacting electrons and tEE g / is the 

total energy possess by the two interacting electrons. From the matrix given by (2.30) we can now determine the 

total energy and the corresponding variational parameters for various arbitrary values of the interaction strength. 

2.6 Spectra density )(f


and spectra intensity 
2

)(f


of the two electrons.  

The spectra density )(f


defines the distribution of the probability of values of the momentum to the total 

energy E  . The spectra density is defined as follows. 

 

dx
xi

xf
X

f ell







0

2

)(
2
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      (2.31) 

But the kernel )(xf in the integrand is simply
2

X , this is because the variational parameters is the square of the 

lattice separation. Now suppose we evaluate (2.31) within the limits of the lattice spacing l  ( l =0, 1, 2, 3) then 

dx
xi

X
X

f

l

ll e
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The spectra intensity which is the absolute value of the spectra density is given by 
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Now because of the presence of the exponential function in (2.34) would make us to vary it logarithmically so 

that 
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After a careful arrangement we get that the spectra intensity is 

lll e
lX

f







239.1
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32
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2
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  (2.36) 

 

III. Presentation of Results 
Table 3.0 Shows the calculated values of the total energy and the variational parameters for various arbitrary 

values of the interaction strength. 
Interaction 

strength U/4t 

Total energy 

E=Eg/t 
Variational parameters ( lX )  ( l 0, 1, 2, 3) 

0X  1X  2X  3X  

50.00 -11.5906 0.0278 0.4897 0.5941 0.6376 

30.00 -11.6394 0.0456 0.5008 0.5920 0.6298 

20.00 -11.6530 0.0659 0.5033 0.5908 0.6271 

15.00 -11.6656 0.0846 0.5055 0.5895 0.6243 

10.00 -11.6883 0.1181 0.5088 0.5867 0.6188 

5.00 -11.7415 0.1944 0.5142 0.5775 0.6035 

1.00 -11.8916 0.3871 0.5126 0.5370 0.5469 

0.00 -12.0000 0.5000 0.5000 0.5000 0.5000 

-1.00 -12.2290 0.6700 0.4594 0.4200 0.4045 

-5.00 -21.3825 0.9930 0.1144 0.0289 0.0113 

-10.00 -40.6358 0.9986 0.0529 0.0059 0.0010 

-15.00 -60.4149 0.9994 0.0346 0.0025 0.0003 

-20.00 -80.3081 0.9997 0.0257 0.0014 0.0001 

-30.00 -120.2035 0.9999 0.0170 0.0006 0.0000 

-50.00 -200.1212 0.9999 0.0101 0.0002 0.0000 

 

Table 3.1 Shows the calculated values of the of the spectra intensity for various variational parameters and total 

energy with a fixed arbitrary value of the spatial frequency mrad /5 . 
Interaction 

strength U/4t 

Total energy 

E=Eg/t Spectra intensity 
2

)(f


 

0X  1X  2X  3X  

50.00 -11.5906 0.0000 187.3164 5.72 x 10
8
 1.90 x 10

14
 

30.00 -11.6394 0.0000 206.6151 5.69 x 10
8
 1.83 x 10

14
 

20.00 -11.6530 0.0000 211.2646 5.65 x 10
8
 1.80 x 10

14
 

15.00 -11.6656 0.0000 215.4480 5.62 x 10
8
 1.77 x 10

14
 

10.00 -11.6883 0.0000 221.9907 5.53 x 10
8
 1.72 x 10

14
 

5.00 -11.7415 0.0000 233.6787 5.24 x 10
8
 1.57 x 10

14
 

1.00 -11.8916 0.0000 236.7220 4.02 x 10
8
 1.08 x 10

14
 

0.00 -12.0000 0.0000 218.2158 3.08 x 10
8
 7.72 x 10

13
 

-1.00 -12.2290 0.0000 161.5063 1.59 x 10
8
 3.43 x 10

13
 

-5.00 -21.3825 0.0000 1.8987 1.09 x 10
4
 6.39 x 10

7
 

-10.00 -40.6358 0.0000 0.3135 68.3902 1.42 x 10
4
 

-15.00 -60.4149 0.0000 0.1268 4.8732 253.0000 

-20.00 -80.3081 0.0000 0.0682 0.8468 5.5307 

-30.00 -120.2035 0.0000 0.0293 0.0640 0.0000 

-50.00 -200.1212 0.0000 0.0101 0.0022 0.0000 
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IV. Discussion of Results 
 The total energies and the variational parameters for the 3D 3 x 3 x 3 simple cubic lattice obtained from 

the matrix (2.30) of section 2 is shown in table 3.0. The table shows that (i) the total energy is non-degenerate 

and it decreases as the interaction strength is decreased, (ii) X0 increases as the interaction strength is decreased, 

(iii) X1 increases until the interaction strength tU 4/  = 5.00 and then it starts to decrease as  tU 4/  is 

decreased, (iv) X2and X3 decreases consistently as tU 4/  is decreased.  

 The table exhibits clearly that the variational parameters for any given system are of equal weights 

when tU 4/  = 0. This implies that the probability of double occupancy is the same as single occupancy. When 

the interaction strength tU 4/  = 0, we observe a free electron system (the electrons are non-interacting). Since 

the electrons are not under the influence of any given potential they are free to hop to any preferable lattice site.  

 We infer from this result that when the interaction strength tU 4/  is made more negatively large, then 

the electrons now prefer to remain close together (Cooper pairing). This is represented by the greater value of X0 

(double occupancy). Generally, it is this coming together or correlation of electrons that is responsible for the 

many physical properties of condensed matter physics, e.g. superconductivity, magnetism, super fluidity. 

However, in the regime of tU 4/   20, the two electrons prefer to stay far apart as possible and the event is 

synonymous with ferromagnetism. 

 As indicated in table 3.1, the spectra intensity for on-site electrons is zero for all values of the 

interaction strength. The table exhibits clearly that the variational parameter X1increases until tU 4/ =1.00 and 

thereafter it starts to decreasewhile X2 and X3decreases consistently to zero as the interaction strength is 

decreased. This implies that high values of positive interaction strength increase the intensity of the two 

electrons and they prefer to stay as far apart as possible. While high negative interaction strength decreases the 
intensity of the two electrons. 

 

V. Conclusion 

 This study demonstrates that for any positive on-site interaction strength ( tU 4/ ), the two electrons 

prefer to stay as far apart as possible in order to gain the lowest energy. The model in this regime best describes 

ferromagnetism. Also for sufficiently large and negative on-site interaction strength ( tU 4/ ) the electrons 

prefer to stay close together in order to gain the lowest energy. The model in this regime favours Cooper pairing. 

Generally, it is this coming together or correlation of electrons that is responsible for the many physical 

properties of materials in condensed matter physics, e.g. superconductivity, magnetism, super fluidity.We have 
investigated in this study, that the repulsive Coulomb interaction which in part leads to the strong electronic 

correlations, would indicate that the two electron system prefer not to condense into s-wave superconducting 

singlet state (s = 0), at high positive values of the interaction strength U/4t. This study reveals that for free 

electron system (non-interacting), the probability distribution of lattice electron system is the same.  
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Appendix 
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 The dotted square maps out the boundary of our interest in a given planar lattice. We consider the 

origin at(111). Now for lattice separation 0l , for instance means the two electrons are on the same site and 

the lattice distance between them is 0l , there are 27 of such possibility. 

 For lattice separation 1l , nearest neighbour sites NN, we have a single linearlattice distance d a , 

that means one electron is at lattice site (111) and the second one is at site (211) within the same plane or (121) 

in the second plane and there are 162 of the possibility of the two electrons to interact. Note that these two 

positions are also equivalent to (212) or (232) and (221) or (223). 

 For lattice separation 2l , we have a diagonal lattice distance d a2  , that means one electron is at 

lattice site (111)and the second one is at site  (212) within the same plane or (122) on the second plane and there 

are 324 of such possibility. 

 For lattice separation 3l , we have a double lattice distance al 2  , that means one electron is at 

lattice site (111) and the second one is at site (113) within the same plane or (131) on the third plane and there 

are 216 of such possibility. 

 The total number of sites n  at a separation parameter l from the origin (111); for 0l , 1n ; 1l , 

6n (4 NN from one plane while 2 from either sides of the plane), 2l , 12n , 3l , 8n . 
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