Determination of 14C by Acceleration Mass Spectrometry: Status Update

¹Swapan kumar Bera and ²Dr. Rajeev Ranjan Sinha

1. Research Scholar, Deptt. of Physics, Jharkhand Rai University, Ranchi. 2.Assistant Professor, P.G. Deptt. Of Physics, S.P. College, Dumka, S.K.M. University, Dumka.

Abstract: In the present study it has been reviewed how Accelerator Mass Spectrometry is better than mass spectrometry for the determination of radiocarbon ¹⁴C. Ion source design criteria for AMS has also been discussed as an edge over Mass spectrometry. Data acquisition technique has also been precisely discussed. Keywords: Acceleration Mass Spectrometry, Ion source, Data Acquisition Technique etc.

Introduction I.

The development of AMS in different nuclear science experimental facilities has been preferred rather than developing mass spectrometers because the design of critical components such as ion sources has been easily obtained after modification of the equipments designed for nuclear physics experiments. For the AMS of 14 C solid samples and other radioisotopes the principal requirements for ion source design are –

To eliminate the most molecular & atomic isobaric interferences which results in low abundances of the isotopes, the highest currents of ions that can be obtained from the sample are needed. Further stability of this current on the time scale of the switching or sampling cycles is important to reduce the systematic errors.

The ability to provide meaningful results even from very small samples by AMS has stimulated the need for the ion sources such that maximum part of target materials be converted into ions with trajectories which can be accepted by the spectrometer.

AMS system is comparatively a more complex one than conventional mass spectrometers with more filter stages and less well pumped paths for the ion becomes especially in the accelerator section. So, the drifts in elector and magnetic fields associate with the transport of ions and for vacuum pressure variations are possible. To reduce this for systematic reproducibility frequent comparison between the unknown and a standard target is required. So, in the ion source, reproducibility in target position must be maintained and the time lost in moving between targets must be minimized.

The initial success of AMS was founded on the removal of ¹⁴N isobar of ¹⁴C due to very short lifetime

of N⁻. Doing isobar separation at or near the ion source reduces the complexities of the analysis. 14 C concentration in a sample can be expressed as Δ^{14} C which is per mil (%o) deviation of 14 C/ 12 C ratio of the sample with respect to a modern 14 C standard whose 14 C activity equals to that of pre-industrial wood of AD 1890. Also, for isotopic fractionation of the ¹³C isotope, the ratios are normalized and corrected for decay of ¹⁴C. Old samples of carbon have less ¹⁴C than a modern sample and therefore have positive ¹⁴C ages in BP (Before present, present corresponds to AD 1950) and negative Δ^{14} C %0 values, whereas the current terrestrial wood samples with higher ¹⁴C show negative ¹⁴C ages in BP and +ve Δ^{14} C %o values. Geologically, old carbon samples such as marble or old limestone, coal and other fossil fuels, are "¹⁴C dead", that means ¹⁴C is almost decayed from that sample. Such samples have ¹⁴C appear as infinite and Δ^{14} C ~ 1000% o. ¹⁴C dating of terrestrial samples, depends on part ¹⁴C level of rapidly mixing global atmosphere with a small difference between the two hemisphere. ¹⁴C is introduced in the atmosphere through its production in the upper atmosphere by the reaction of atmospheric nitrogen with thermal neutrons which are produced from cosmic ray spallation reaction on other components of the atmosphere ${}^{14}N_7{}^{+1}n_0 = {}^{14}C_6{}^{+1}H_1 + \Delta$ (Energy).

These ¹⁴C produced are soon oxidized in the presence of atmospheric oxygen to form Carbon Monoxide which eventually oxidizes to form Carbon dioxide.

$$^{14}C+O=^{14}CO$$

 $^{14}CO+O=^{14}CO_2$

These ${}^{14}CO_2$ (radioactive) enters the biosphere through photosynthesis by terrestrial plants and then to entire food chain through herbivores living beings. However, when a living being dies, the ${}^{14}C$ exchange halts and the ^{14}C in the deal tissues start to decrease exponentially through radioactive decay. $N{=}N_oe^{-\Lambda t}$

 14 C forms stable nitrogen through β -decay and has the half life approximately 5770 years. ${}^{14}C_6 = {}^{14}N_7 + \beta^-$

The radioactive decay of ¹⁴C can be used for age determination of organic or biogenic samples. W.F. Libby in 1960 was awarded Noble prize for his pioneering work of ${}^{14}C^{-}$ dating. For the samples up to 50,000 years old, ¹⁴C is suitable with its half life 5730±40 years. So, for Pleistocene period, ¹⁰Be⁻ dating is being developed now a days ($t_{1/2}$ of ⁷⁰Be=1,25,000 years). A very simple way to enhance the separation between ¹⁴C and ¹⁴N in the ΔE -E plot is to insert a degrader foil just in front of SSD. As the ¹⁴C ions of 4.5MeV energy lost about 22 KeV in a 31^{µg}/cm² carbon foil, the Bohr straggling FWHM is this FWHM in this foil is about 6.8 KeV and the half width scattering angle is about 0.036°, the number of electrons emitted per ¹⁴C ion is 40–50. R. Gosler et.al.)

As the process studied at National Ocean Science Acceleration Mass Spectrometry Facility (Seguin, Schneider et.al., 1994), it is useful here to describe how the data acquisition technique works in C^{14} –AMS. For this a typical target carries 45 unknown samples, 10 reference standards, two process blanks, and a machine blank. As a programmed sequence, each individual targets are exposed to a sputtering beam for 5-min. periods with nine exposures for each sample over a run cycle of 10–12 hours. Each exposure results in a measurement of ¹⁴C counts, ¹²C and ¹³C currents and various other parameters recorded with a time stamp. Every sixth target exposed in a reference standard with a known value of ¹⁴C/¹²C used to calibrate the relative efficiency of ¹⁴C and ¹²C, the knowledge of which will be useful for converting raw measurements of ¹⁴C counts and ¹²C current to an accurate value of ¹⁴C/¹²C for each unknown sample.

II. Conclusion

¹⁴C dating has become the most precise & convenient technique by AMS. Terrestorial production of ¹⁴C is however less than the oceanic radiocarbon production. In our next study it is planned.

Reference

- L.R. Kilius, W.E. Kieser, A.E. Litherland, X.L. Zhao, J.C. Rucklidge, R.P. Beukens; Ion source design criteria for AMS, Nucl. Instr. And Meth. B 123 (1997) 5-9.
- [2]. L.R. Kilius and J.C. Rucklidge, Isotrace Laboraty 1995 Annual Report.
- [3]. R.G. Cooks and O.W. Hand, NIMB 29 (1987) 427.
- [4]. A.E. Litherland, NIM B52 (1990).
- [5]. P. Sigmund, J. Heinemeier, F. Besenbacher, et.al. NIM 150 (1978) 221.
- [6]. K.H. Purser, Symposium of Northeastern Acclerator Personnel, Tallahassee (1972) P.6.
- [7]. W. Kuschera & G. Korschinek, in: Proc. 2nd Int. Cont. on Ion Source (1972).
- [8]. Fredrick H. Seguin, Robert J. Schneider, Glenn A. Jones and Karl F. Von Reden; "Optimised data analysis for AMS radiocarbon dating". (NIMB 92 (1994) 176-181.
- Koushik Dutta, Marine ¹⁴C Reservoir Age and Suess Effect in the Indian Ocean, e-journal Earth Science India, Volume 1(iii), P.P. 175-188.
- [10]. Nandi T. & Sinha R.R., Accelerator Mass Spectrometry using 15UD pelletron at NSC, NSCTR/TKN/2000-01/14.
- [11]. R.R. Sinha & T.K. Nandi, Determination of Cosmogenic radionuclide ³⁶Cl from quality sample after separation from the isobars, Acta Cieneia Indica Vol. XXXIV, P.No. 2, 207 (2008).