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Abstract: A theoretical model to study the dynamical behaviour of zinc blende structure crystals has been 

formulated. This model is known as van der Waal’s three body force rigid shell model (VTRSM). This new 

model incorporates the effect of van der Waal’s interactions and three-body interactions into the rigid shell 

model of zinc blende structure, where the short range interactions are operative upto the second neighbours. 

The model thus developed, has been applied to study the phonon dispersion curves (PDCs) along the three 

principal symmetry directions, Debye temperatures variation, Combined density of states (CDS) curves,        

two-phonon Raman / IR peaks and anharmonic elastic properties (third order elastic constants and their 

pressure derivatives) of ZnSe. Our results are in good agreement with the available measured data. It is 

concluded that this model VTRSM will be equally applicable to study above properties of other zinc blende 

structure solids as compared to the models of earlier researchers. 

Keywords: Phonons ,  van  der  Waal's  interactions ,  Debye  temperatures variation ,  Combined  density  of  

states  curve , Raman  spectra ,  zinc  selenide ,  phonon  dispersion curves ,  lattice dynamics. 

PACS No:  63.20.-e, 65.40.Ba, 78.30.-j 

 

I. Introduction 
 The semiconductors of zinc-blende structure (ZBS) crystals are promising attraction for numerous 

experimental and theoretical investigations in recent years. These investigations are consequences efforts 

devoted to understand the interesting crystal properties of phonon dispersion curves, harmonic and anharmonic 

elastic constants, Debye temperatures variation, combined density of states, cohesive energy, two phonon IR 

and Raman spectra and numerous other physical properties. In the earlier past, it was an extensive theoretical 

study of the phase-transition and anharmonic properties of the solids by different type of cohesive energy. The 

maximum cohesive energy potentials are contributed with long-range Coulomb interactions and short-range 

overlap repulsion. The overlap repulsion is a sum of lattice to describe the cohesive energy in the most of ionic 

solids by Born and Mayer [1]. The earlier researchers Tosi and Fumi [2] properly incorporated van der Waal’s 

interaction along dipole-dipole (d-d) and dipole-quadrupole (d-q) interactions respectively to reveal the cohesive 

energy in several ionic solids. Hafemeister and Flygare [3] followed the three body interactions and overlap 

repulsion upto second neighbour ions besides short range interactions. We also quote the work of Singh [4], who 

introduced the effects of charge transfer i.e. despite their successes, the basic nature of these inter atomic 

potentials i.e. they are inadequate to reveal a consistent picture of the interaction mechanism in ionic solids. The 

present investigation of van der Waal’s three body force rigid shell model (VTRSM) is organized as follows. 

We begin with the estimation of van der Waal’s coefficient from the Slater-Kirkwood variation method [5] with 

both ions are polarizable. Later on, third order elastic constants and pressure derivatives  are deduced within  

framework of the rigid shell model, that incorporates the long-range Coulomb interactions, van der Waal’s 

(vdW) interactions, the short range overlap repulsive interaction upto second neighbour ions and three-body 

interactions. The structural properties of IIB-VIA semiconductors have been a subject of much interest both 

experimentally and theoretically [6-16] due to their polymorphic structure. The second order elastic constants of 

ZnSe have been determined Berlincourt et al. [17] piezo resonance technique, Lee [18]  ultrasonic pulse-echo 

method, Hennion et al. [19] inelastic neutron scattering, Hodgins [20] brillouin scattering, Kunk et al. [21] rigid 

ion model, Talwar et al. [22] 11-parameter rigid ion model, Rajput and Browne [23] six-parameter adiabatic 

charge model has also been quite successful in explaining the phonon spectra, Sharma [24] effective 

interactional potential model, Wang et al. [25] density functional perturbation theory, Tista Basak et al. [26]     

ab initio as well as potential model and so on. 

 In this communication, we have included (i) the effect of VDWI and (ii) TBI in the framework of RSM 

where short range interactions are effective upto the second neighbours. Our new model VTRSM has                

14-parameters i.e. four TBI parameters b, ρ, f(r0), r0f 
'
(r0); six  nearest and the next nearest neighbour short-range  
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repulsive interaction parameters A12, B12, A11, B11, A22, B22 two distortion polarizabilities of negative and 

positive ions d1, d2 and two shell charges of the negative and positive ions Y1, Y2 respectively. They can be 

deduced with the help of measured values of elastic constants, dielectric constants, electronic polarizabilities 

and van der Waal’s coupling coefficients. This model has been applied to study the lattice dynamics of zinc 

chalcogenides (ZnS, ZnSe, ZnTe). In this paper, we are reporting the study of phonon dispersion curves, Debye 

temperatures variation, combined density of states (CDS) curves, third order elastic constants and pressure 

derivatives of SOEC. The formalism of our model has been presented in the next section in detail.  

 

II.   Theoretical Framework of the Present Model 
We have developed a model for ZBS structure, which includes the effect of van der Waal’s interactions 

(VDWI) and three body interactions (TBI) in the frame work of rigid shell model (RSM) where short range 

interactions are effective upto the second neighbours and known as van der Waal’s three body force rigid shell 

model (VTRSM).  

 

2.1. Secular Equations 

  For ZBS crystals, the cohesive energy for a particular lattice separation (r) has been expressed as 

   𝛷(𝑟) = 𝛷𝐿𝑅(𝑟) + 𝛷𝑆𝑅(𝑟)                (1) 

 

 where the first term 𝛷𝐿𝑅(𝑟) represents the long-range Coulomb and three body interaction (TBI) 

energies expressed by 

𝛷𝐿𝑅(𝑟) = − ∑
𝑍𝑖𝑍𝑗𝑒2

𝑟𝑖𝑗

 {1 + ∑ 𝑓(𝑟𝑖𝑘)

𝑘

} = −
𝛼𝑀𝑍2𝑒2

𝑟
{1 +

4

𝑍
𝑓(𝑟)}

𝑖𝑗
𝑖≠𝑗≠𝑘

                                                                     (2) 

   

where Zi is the ionic charge parameter of i 
th

 ion, rij separation between  i 
th 

and j 
th

 ion,  f(rik) is the 

three-body force parameter dependent on nearest-neighbour separation rik and is a measure of ion size difference  

Singh [4], αM is Madelung constant (=1.63805 for ZBS). 

The second term in equation (1) is short-range energy contributions from overlap repulsion and van der 

Waal’s interactions (VDWI) expressed as [27]. 

𝛷𝑆𝑅(𝑟) = 𝑁𝑏 ∑ 𝛽𝑖𝑗

2

𝑖,𝑗=1

𝑒𝑥𝑝 [
𝑟𝑖 + 𝑟𝑗 − 𝑟𝑖𝑗

𝜌
] − ∑

𝑐𝑖𝑗

𝑟𝑖𝑗
6

𝑖𝑗

− ∑
𝑑𝑖𝑗

𝑟𝑖𝑗
8

𝑖𝑗

                                                                                        (3) 

 where N is the Avogadro's a number, b is the hardness parameters and the first term is the Hafemeister 

and Flygare (HF) potential Hafemeister and Flygare [3] and used by Singh and coworkers. The second term and 

third term represent the energy due to VDW for cij dipole-dipole (d-d) and dij dipole-quadrupole (d-q) 

interactions, respectively. 

Using the crystal energy expression (1), the equations of motion of two cores and two shells can be 

written as; 

  

𝜔2𝑀 𝑈 = (𝑅 + 𝑍𝑚 𝐶 ′ 𝑍𝑚)𝑈 + (𝑇 + 𝑍𝑚𝐶 ′ 𝑌𝑚)𝑊             (4) 

 

𝑂 = (𝑇𝑇 + 𝑌𝑚 𝐶 ′ 𝑍𝑚)𝑈 + (𝑆 + 𝐾 + 𝑌𝑚𝐶 ′ 𝑌𝑚)𝑊           (5) 

 

 Here 𝑈 and 𝑊 are vectors describing the ionic displacements and deformations, respectively. 𝑍𝑚 and 

𝑌𝑚 are diagonal matrices of modified ionic charges and shell charges, respectively;  𝑀 is the mass of the core; 𝑇 

and 𝑅 are repulsive Coulombian matrices respectively; 𝐶 ′ and 𝑌𝑚 are long-range interaction matrices that 

include Coulombian and TBI respectively;  𝑆 and 𝐾 are core-shell and shell-shell repulsive interaction matrices, 

respectively and 𝑇𝑇 is the transpose of matrix 𝑇. The elements of matrix 𝑍𝑚 consist of the parameter 𝑍𝑚 giving 

the modified ionic charge.  

𝑍𝑚 = ±𝑍√1 + (
8

𝑍
) 𝑓(𝑟0)                                     (6) 

The elimination of 𝑊 from eqns. (4) and (5) leads to the secular determinant; 

│𝐷(�⃗�) − 𝜔2𝑀 𝐼│ = 0                                                                                                                                (7) 

 for the frequency determination. Here D (q) is the (6×6) dynamical matrix given by 

𝐷(�⃗�) = (𝑅′ + 𝑍𝑚𝐶 ′ 𝑍𝑚) − (𝑇 + 𝑍𝑚𝐶 ′ 𝑌𝑚) × (𝑆 + 𝐾 + 𝑌𝑚𝐶 ′𝑌𝑚)
−1

(𝑇𝑇 + 𝑌𝑚 𝐶 ′ 𝑍𝑚)       (8)      
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The numbers of adjustable parameters have been largely reduced by considering all the short-range 

interactions to act only through the shells.  

 

2.2.     Vibrational Properties of Zinc-Blende Structure 
By solving the secular equation (4) along [q00] direction and subjecting the short and long-range 

coupling coefficients to the long-wavelength limit �⃗� → 0 two distinct optical vibration frequencies are obtained 

as 

(𝜇𝜔𝐿
2)𝑞=0 = 𝑅0

′ +
(𝑍′𝑒)2

𝑣𝑓𝐿
∙

8𝜋

3
(𝑍𝑚

2 + 4𝑍𝑟0𝑓 ′(𝑟0))                    (9) 

  

(𝜇𝜔𝑇
2 )𝑞=0 = 𝑅0

′ −
(𝑍′𝑒)2

𝑣𝑓𝑇
∙

4𝜋

3
𝑍𝑚

2                                                    (10) 

where the abbreviations stand for 

𝑅0
′ = 𝑅0 − 𝑒2 (

𝑑1
2

𝛼1
+

𝑑2
2

𝛼2
) ; 𝑅0 =

𝑒2

𝑣
[4 

𝐴12+2𝐵12

3
] ; 𝑍′ = 𝑍𝑚 + 𝑑1 − 𝑑2                                          (11) 

 

𝑓𝐿 = 1 + (
𝛼1+𝛼2

𝑣
) ∙

8𝜋

3
(𝑍𝑚

2 + 4𝑍𝑟0𝑓 ′(𝑟0))                                                                                            (12) 

 

𝑓𝑇 = 1 − (
𝛼1+𝛼2

𝑣
) ∙

4𝜋

3
                                                                                                                            (13)  

and 

𝛼 = 𝛼1 + 𝛼2                                                                                                                                          (14) 

And 𝑣 = 3.08𝑟0
3 for ZBS (volume of the unit cell).   

  

2.3.     Debye Temperatures Variation 

The specific heat at constant volume 𝐶𝑣 at temperature T is expressed as  

𝐶𝑣  = 3𝑁𝑘𝐵

∫ /
𝜐𝑚{(

ℎ𝜐
𝑘𝐵𝑇)

2
𝑒ℎ𝜐/𝑘𝐵𝑇} 𝐺(𝜐)𝑑𝜐

0
(𝑒ℎ𝜐/𝑘𝐵𝑇−1)

2

∫ 𝐺(𝜐)𝑑𝜐
𝜐𝑚

0

                               (15) 

 Where, 𝜐𝑚 is the maximum frequency, h is the Planck's constant and kB is the Boltzmann's constant. 

The equation (15) can be written as a suitable form for a computational purpose as 

𝐶𝑣  = 3𝑁𝑘𝐵
∑ { 𝐸 (𝑥)}𝐺(𝜐)𝑑𝜐𝜐 

∑ 𝐺(𝜐)𝑑𝜐𝜐
                                   (16) 

where E(x)  is the Einstein function, defined by  

𝐸(𝑥) = 𝑥2 𝑒𝑥𝑝 (𝑥)

{𝑒𝑥𝑝(𝑥)−1}2                       (17) 

where x = {(
ℎ𝜐

𝑘𝐵𝑇
)

2

𝑒
ℎ𝜐

𝑘𝐵𝑇}   

Also,  

∑ 𝐺(𝜐)𝑑𝜐𝜐  = Total number of frequencies considered. 

     = 6000 for zinc-blende structure. 

Hence, equation (16) can be written for zinc-blende structure type crystals, as  

𝐶𝑣  =
3𝑁𝑘𝐵

6000
∑ 𝐸(𝑥)𝐺(𝜐)𝑑𝜐𝜐                                   (18) 

 The contribution of each interval to the specific heat is obtained by multiplying an Einstein function 

corresponding to mid-point of each interval (say 0.1 THz) by its statistical weight. The statistical weight of the 

interval is obtained from the number of frequencies lying in that interval. The contributions of all such intervals 

when summed up give  ∑ 𝐸(𝑥)𝐺(𝜐)𝑑𝜐𝜐 . The Specific heat 𝐶𝑣 is then calculated by expression (18).  

 

2.4.       Second and Third Order Elastic Constant 

Proceeding with the use of three body crystal potential given by equation (1), (Sharma and Verma [28]) 

have derived the expressions for the second order elastic constants and used by (Singh and Singh [29]) for    

zinc-blende structure crystals. We are reporting them here as their corrected expressions. 

The expressions for second order elastic constants (SOEC) are- 

𝐶11 = 𝐿 [0.2477𝑍𝑚
2 +

1

3
(𝐴1 + 2𝐵1) +

1

2
(𝐴2 + 𝐵2) + 5.8243𝑍𝑎𝑓 ′(𝑟0)]                                          (19) 

𝐶12 = 𝐿 [−2.6458𝑍𝑚
2 +

1

3
(𝐴1 −  4𝐵1) +

1

4
(𝐴2 − 5𝐵2) + 5.8243𝑍𝑎𝑓 ′(𝑟0)]                             (20) 

𝐶44 = 𝐿 [−0.123𝑍𝑚
2 +

1

3
(𝐴1 + 2𝐵1) +

1

4
(𝐴2+3𝐵2) −

1

3
∇(−7.539122𝑍𝑚

2 ) + 𝐴1 − 𝐵1]                   (21) 

where   A1 = A12, B1 = B12, A2 = A11 + A22 , B2 = B11 + B22 ,  C1 =  
𝐴12

2

𝐵12
   and  C2 =  

𝐴2
2

𝐵2
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and the expressions for third order elastic constants (TOEC)  are- 

𝐶111 =  𝐿 [0.5184𝑍𝑚
2 +

1

9
(𝐶1 −  6𝐵1 − 3𝐴1) +

1

4
(𝐶2 − 𝐵2 − 3𝐴2) − 2(𝐵1 + 𝐵2) −  9.9326𝑍𝑎𝑓′(𝑟0) +

                2.5220𝑍𝑎2𝑓 "(𝑟0)]                     (22) 

𝐶112 = 𝐿 [0.3828𝑍𝑚
2 +

1

9
(𝐶1  + 3𝐵1 − 3𝐴1) +

1

8
(𝐶2 + 3𝐵2 − 3𝐴2) − 11.642𝑍𝑎𝑓′(𝑟0) + 2.5220𝑍𝑎2𝑓 "(𝑟0)]

                                                                         (23) 

𝐶123 = 𝐿 [6.1585𝑍𝑚
2 +

1

9
(𝐶1 + 3𝐵1 − 3𝐴1) − 12.5060𝑍𝑎𝑓′(𝑟0) + 2.5220𝑍𝑎2𝑓 "(𝑟0)]                 (24) 

𝐶144 = 𝐿 [6.1585𝑍𝑚
2 +

1

9
(𝐶1  + 3𝐵1 − 3𝐴1) − 4.1681𝑍𝑎𝑓′(𝑟0) + 0.8407𝑍𝑎2𝑓 "(𝑟0) + ∇ {−3.3507𝑍𝑚

2 −

               
2

9
𝐶1 +  13.5486𝑍𝑎𝑓′(𝑟0) –  1.681𝑍𝑎2𝑓 "(𝑟0)} + ∇2 {−1.5637𝑍𝑚

2 +
2

3
(𝐴1 − 𝐵1) +

1

9
 𝐶1 −

               5.3138𝑍𝑎𝑓′(𝑟0) +2.9350𝑍𝑎2𝑓 "(𝑟0)}]                                                                                                (25) 

𝐶166 =  𝐿 [−2.1392𝑍𝑚
2 +

1

9
(𝐶1 − 6𝐵1 − 3𝐴1) +  

1

8
(𝐶2 − 5𝐵2 − 3𝐴2) − (𝐵1 + 𝐵2) −  4.1681𝑍𝑎𝑓  ′(𝑟0) +

                 0.8407𝑍𝑎2𝑓 "(𝑟0)   +           ∇ {−8.3768𝑍𝑚
2 +

2

3
(𝐴1 − 𝐵1) −

2

9
𝐶1 + 13.5486𝑍𝑎𝑓 ′(r0) −

               1.681𝑍𝑎2𝑓 "(𝑟0)} + ∇2 {2.3527𝑍𝑚
2 +

1

9
 𝐶1 −   5.3138𝑍𝑎𝑓 ′(r0)+ 2.9350𝑍𝑎2𝑓 "(𝑟0)}]                     (26)                                      

𝐶456 =      𝐿 [4.897𝑍𝑚
2 +

1

9
(𝐶1 − 6𝐵1 − 3𝐴1) − 𝐵2 + ∇ {−5.0261𝑍𝑚

2 −
1

9
𝐶1} +  ∇2 {7.0580𝑍𝑚

2 +

                
1 

3
 𝐶1} +∇3 {−4.8008𝑍𝑚

2 +
1

3
(𝐴1 − 𝐵1) −

                
1

9
 𝐶1}]                                                                                                                                                         (27)  

where Zm is the modified ionic charge defined earlier with L = e
2
/4a

4 
and  

 

∇= [
−7.53912𝑍(𝑍+8𝑓(𝑟0))+(𝐴1−𝐵1)

−3.141𝑍(𝑍+8𝑓(𝑟0))+(𝐴1+2𝐵1)+21.765𝑍𝑎𝑓′(𝑟0)
]                                               (28) 

 

and the expression for pressure derivatives of SOEC are- 

 
𝑑𝐾 ′

𝑑𝑃
    = −(3Ω)−1[20.1788𝑍𝑚

2 − 3(𝐴1 + 𝐴2) + 4(𝐵1 + 𝐵2) +  3(𝐶1 + 𝐶2) − 104.8433𝑍𝑎𝑓 ′(𝑟0)

+ 22.7008𝑍𝑎2𝑓 "(𝑟0)]                                                                                                                         (29) 

  
𝑑𝑆 ′

𝑑𝑃
    =  −(2Ω)−1 [−11.5756𝑍𝑚

2 + 2(𝐴1 − 2𝐵1) +
2𝐴2

3
−

7𝐵2

2
+

1

4
∙ 𝐶2

+ 37.5220𝑍𝑎𝑓 ′(𝑟0)]                                                                                                                            (30) 

𝑑𝐶44
′

𝑑𝑃
   =  −(Ω)−1 [{0.4952𝑍𝑚

2 +  
1

3
(𝐴1 − 4𝐵1 + 𝐶1) +

1

2
∙ 𝐴2 −

3

2
∙ 𝐵2 − 

1

4
∙ 𝐶2 + 4.9667𝑍𝑎𝑓 ′(𝑟0)

+ 2.522𝑍𝑎2𝑓 "(𝑟0)}

+ ∇ {−17.5913𝑍𝑚
2 + 𝐴1 − 𝐵1 −

2

3
∙ 𝐶1 + 40.6461𝑍𝑎𝑓 ′(𝑟0) − 5.044𝑍𝑎2𝑓 "(𝑟0)}

+ ∇2 {3.1416𝑍𝑚
2 +

2

3
(𝐴1 − 𝐵1) +

1

3
∙ 𝐶1 − 15.9412𝑍𝑎𝑓 ′(𝑟0)

+ 8.8052𝑍𝑎2𝑓 "(𝑟0)}]                                                                                                                       (31)  

 

where     𝐾 =
𝐶11+ 2𝐶12

3
   ,      𝑆 =  

𝐶11− 𝐶22

2
 

and     Ω  =  −5.0440𝑍𝑚
2 +  (𝐴1 + 𝐴2) − 2(𝐵1 + 𝐵2) + 17.4730𝑍𝑎𝑓 ′(𝑟0) 

The values of Ai, Bi and Ci as defined by Sharma and Verma [28]. 

 

III.     Computations 
The model parameters {b, ρ and f(r0)}, have been determined by using the expressions (19-21) and the 

equilibrium condition (
dΦ(r)

dr
)

r0=a 
√3

2

= 0, with the inclusion of the van der Waal’s interactions (VDWI) 

[equation (3)]. The values of the input data Lee [18], Jai Shankar et al. [30] and K. Kunc et al. [21] and model 

parameters have been shown in Table 1. The values of Ai, Bi, Ci  have been calculated from the knowledge of     

b, ρ; the values of various order of derivatives are f(r0) and van der Waal’s coupling coefficients [28]. The 

values of VDW coefficients used by us in the present study have been determined using the Slatre-Kirkwood  
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Variation (SKV) method [5], Lee [18] approach as suggested by Singh and Singh [29] and reported by Sharma 

and Verma [28]. Thus our model parameters are [b, ρ, f(r0), r0f '(r0), A12, A11, A22, B12, B11, B22, d1, d2, Y1 and 

Y2]. The values of the van der Waal’s coefficients (VDW) are shown in Table 2. Our model parameters of 

VTRSM have been used to compute the phonon spectra of ZnSe for the allowed 48 non-equivalent wave 

vectors in the first Brillouin zone. The frequencies along the symmetry directions have been plotted against the 

wave vector to obtain the phonon dispersion curves (PDCs). These curves have been compared with those 

measured by means of the coherent inelastic neutron scattering technique [19] in Figure 1 along with the 

DBM calculations of Kunc et al. [21]. Since the neutron scattering experiments provide us only very little data 

for the symmetry directions, we have also computed combined density of states (CDS) and the Debye 

temperatures variation for the complete description of the frequencies for the Brillouin zone. 

  The complete phonon spectra have been used to compute the combined density of states (CDS), 

N(j+j') corresponding to the sum modes (j+j') following procedure of Smart et al.  [31]. A histogram 

between N(j+j') and (j+j') has been plotted and smoothed out as shown in Figure 2. These curves show well 

defined peaks which correspond to two-phonon Raman scattering and IR absorption spectra. These CDS peaks 

have been compared with the assignments calculated and shown in Table 3. The Debye temperatures variation 

for ZnSe measured from by Irwin and LaCombe [32]
 
and those calculated by us using VTRSM has been 

compared in Figure 3. The calculated values of TOEC using equations (22-27) have been compared with 

calculated values of Anil et al.  [33] and shown in Table 4. The pressure derivatives of SOEC have also been 

calculated and compared with those calculated by Khenata et al. [34] and Dinesh et al. [35]
 
and measured by 

Lee [18] in Table 5.  

 

IV.    Results and Discussion 
4.1 Phonon Dispersion Curves 

 From figure 1, our phonon dispersion curves for ZnSe agree well with measured data reported by 

Hennion et al. [31]. It is evident from PDCs that our predictions using present model (VTRSM) are better than 

those by using DBM [21]. Our model has successfully explained the dispersion of phonons along the three 

symmetry directions. From figure 1 and Table 6, it is clear that: there are deviations of 2.51% along LO(X), 

2.28% along TO(X), 9.45% along LA(X), 13.33% along TA(X), 12.45% along LA(L) and 34.50% along TA(L) 

from experimental results. From DBM, deviations are 15.71% along TA(X), 12.85% along LA(L) and 35.08% 

along TA(L) while from VTRSM 2.38% along TA(X), 0.40% along LA(L) and 0.58% along TA(L). From 

Table 6 it is clear that VTRSM has very small deviation from experimental data. Our model VTRSM has 

34.50% improvement over DBM due to inclusion of three body interactions (TBI) and VDWI coefficients. 

Therefore, our VTRSM model has better agreement with experimental data over DBM [21]. Furthermore, our 

results are very similar to those of recently reported by Tista Basak et al. [26]. 

 

4.2.     Combined Density of States 

 The present model is capable to predict the two phonon Raman / IR spectra [19]. The results of these 

investigations for combined density states (CDS) peaks have been presented in Figure 2. The theoretical peaks 

are in good agreement with both observed Raman / IR spectra for ZnSe. The assignments made by the critical 

point analysis have been shown in Table 3. The interpretation of Raman / IR spectra achieved from both CDS 

approach and critical point analysis is quite satisfactory. This explains that there is an excellent agreement 

between experimental data and our theoretical results.  

 

4.3.  Third Order Elastic Constants (TOEC), Pressure Derivatives of Second Order Elastic Constants 

(SOEC) 
 Our calculations on TOEC have been reported in Table 4 and compared with measured data Prasad 

[36] on TOEC of ZnSe, theoretical results of Anil et al. [36].  Further, pressure derivatives of SOEC for 

ZnSe have also been compared with the calculated results of Dinesh et al. [35] and measured data of Lee et 

al. [18] as shown in Table 5. The results are in good agreement.  

 

4.4.      Debye Temperatures Variation 

 From figure 3, our study shows a better agreement with the measured data of Irwin and  LaCombe [32]
 

and the theoretical results reported by Hennion et al. [19] using rigid ion model (RIM). To conclude, we can say 

that our present model gives a better interpretation of the Debye temperatures variation for ZnSe. 

 

V.     Conclusion 
 The inclusion of van der Waal’s interactions (VDWI) with TBI have influenced both the optical 

branches and the acoustic branches. Another striking feature of present model is noteworthy from the 

excellent reproduction of almost all branches. Hence the prediction of phonon dispersion curves (PDC) for  
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ZnSe using VTRSM may be considered more satisfactory than from other models DBM [21]. The basic aim 

of the study of two phonon Raman / IR spectra is to correlate the neutron scattering and optical measured data 

of ZnSe.  In this paper, we have systematically reported phonon dispersion curves, combined density of 

states, Debye temperatures variation and a part of harmonic and anharmonic properties of ZnSe. On the 

basis of overall discussion, it is concluded that our van der Waal’s three body rigid shell model (VTRSM) is 

adequately capable of describing the crystal dynamics of zinc selenide. This model has also been applied 

equally well to study the crystal dynamics of other compound of this group ZnS and has been accepted for 

publication [40] and is in press. Its application to ZnTe is ready for communication. Our work gets strong 

support from paper of Mishra and Upadhyaya [41]. 
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Figure 1: Phonon dispersion curves for ZnSe 

 

 
Figure 2: Combined density of states curve for ZnSe 

 
Figure 3: Debye characteristics temperatures ΘD (ºK) as a function of temperature T for ZnSe 
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Table 1. Input data and model parameters for ZnSe [Cij and B (in 10
11

 dyne/cm
2
),  (in THz), r0 (in 10

-8
 cm),    

αi (in 10
-24

 cm
3
), b (in 10

-12
 erg), ρ (in 10

-8
 cm)] 

Input Data Model Parameters 

Properties Values Parameters Values 

C11 8.59a b 1.6000 

C12 5.06a ρ 0.4930 

C44 4.06a f(r0) -0.0274 

B 6.24b r0f '(r0)
 0.1322 

r0 2.45b A12 16.2445 

νLO(Γ) 7.59c B12 -5.4020 

νTO(Γ) 6.39c A11 107.8440 

νLO(L) 6.40* B11 -22.2153 

νTO(L) 6.60* A22 -4.2166 

νLA(L) 4.98c B22 -6.8826 

νTA(L) 1.71c d1 0.2963 

α1
 1.08d d2 2.9222 

α2
 5.94d Y1 -2.3148 

ε0
 5.90e Y2 -1.2909 

*
Extrapolated values from [19]. 

a
-( B. H. Lee [18]);

 b
- (D. Berlin Court et al. [17]); 

c_
(Hennion et al. [19]);                   

d
- (Jai Shankar et al. [30]) and 

e
- (K. Kunc. et al. [21]); 

     

Table 2. van der Waal’s interaction coefficients for ZnSe (Cij and C in units of 10
-60

 erg cm
6
 and dij and             

D in units of 10
-76

 erg cm
8
) 

Parameters Numerical 

Values 

C+ - 213 

C+ + 66 

C- - 844 

d+ - 170 

d+ +  23 

d- - 662 

C 1275 

D 725 

 

Table 3.  Assignments for the observed peak positions in combined density of states in terms of selected   

phonon frequencies at Γ, X and L critical points for ZnSe 
CDS 

Peaks 

(cm-1) 

Raman Active Infra-Red Active 

Observed Raman 

Peaks (cm-1) 

[37, 38] 

Present Study Observed 

IR Peaks (cm-1) 

[39] 

Present Study 

Values 

(cm-1) 

Assignments Values (cm-1) Assignments 

....... ....... 112 2TA(L) ....... ....... ....... 

117 117 115 TO1+TA1() ....... ....... ....... 

139 139, 146a 138 LO-TA (X) ....... ....... ....... 

....... ....... 142 2TA(X) ....... ....... ....... 

189 189 192 2TA1() ....... 192 2TA1() 

....... 228 222 LA+TA (L) ....... ....... ....... 

....... ....... 259 LA+TA1 () ....... ....... ....... 

....... 270 264 LA+TA (X) ....... 269 LO+TA(L) 

....... ....... ....... ....... ....... 276 TO+TA(L) 

....... 296, 297a 291 TO+TA(X) ....... ....... ....... 

299 ....... 307 TO1+TA1() ....... 307 TO1+TA1() 

317 317 319 LO+TA1() ....... 319 LO+TA1() 

....... 368 ....... 2LA(L) ....... ....... ....... 

370 381 374 TO1+LA() 371 374 TO1+LA() 

....... ....... ....... ....... ....... 379 LO+LA(L) 

396 396 386 2LA(X) ....... ....... ....... 

....... ....... 402 LO+LA (X) ....... ....... ....... 

....... 407 406 2TO(Γ) ....... ....... ....... 

....... 414 413 TO+LA(X) ....... ....... ....... 

420 ....... 422 2TO1() 420 422 2TO1() 

432 431 433 LO+TO(L) ....... ....... ....... 

....... ....... 434 LO+TO1() ....... 434 LO+TO1() 

....... 448 446 2LO() ....... 446 2LO() 

503 503, 504a 506 2LO(Γ) 501 ....... ....... 

Reference 
a_

[38] 
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Table 4. Third order elastic constants (in the unit of 10
11

dyne/cm
2
) for ZnSe 

Property Present Study Experimental  

Results [36]* 

Other Theoretical 

Results [33] 

C111 - 92.5 -82.7 -52.0 

C112 - 10.0 -13.6 -26.2 

C123 -45.6 -55.1 -0.04 

C144 -18.0 -22.2 -0.34 

C166 - 29.1 -26.5 -25.6 

C456 -25.6 -27.8 -0.08 
*
Results noted for comparison from Anil et al. [21] 

 

Table 5. Values of pressure derivatives of SOEC (in dimensionless) for ZnSe 
Properties Values 

Present Study Experimental [18] Other [35] 

dK'/dP 5.12 4.77 4.86 

dS'/dP -0.19 -0.12 -0.39 

dC'44/dP 0.52 0.43 1.13 

 

Table 6. Comparison of frequencies from various sources (X and L points) for ZnSe 
Points Branches 

(THz) 

Expt. 

[19] 

DBM [21] Present Study % 

Improvement  

Over DBM          
(a ~ b) 

Value (±) 

Deviation 

% (a) Value (±) 

Deviation 

% (b)  

 

X (100) 

LO  6.39 6.56 0.17 2.66 6.38 0.01 0.15 2.51 

TO  6.59 6.75 0.16 2.43 6.60 0.01 0.15 2.28 

LA  5.82 5.25 0.57 9.79 5.80 0.02 0.34 9.45 

TA 2.10 2.43 0.33 15.71 2.15 0.05 2.38 13.33 

 

L (.5.5.5) 

LO ....... 6.37 6.37 ....... 6.40 ....... ....... ....... 

TO ....... 6.56 6.56 ....... 6.60 ....... ....... ....... 

LA 4.98 5.62 0.64 12.85 5.00 0.02 0.40 12.45 

TA 1.71 1.11 0.60 35.08 1.70 0.01 0.58 34.50 

 


