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Abstract: We demonstrate the synchronization dynamics of coupled Duffing - Van der Pol (DVP) equation. The 

stability and sufficient criteria for synchronization alongside some pairs of period doubling (route to chaos) are 

discovered and periodic windows with the range of angular velocities for which the system is non-chaotic are 

experienced using linear matrix inequality (LMI).  Numerical simulation tools such as bifurcation diagrams, 

Poincar e   maps and phase projections are used to exhibit some new complex dynamical behaviors of the 

systems.  We obtained the full synchronization using a forth order Runge kutta routine as well as the software 

dynamics when the coupling parameter (
c

 ) reaches a certain threshold 2587.0
th

c
. The numerical value 

of 
th

c
  obtained from the average energies of the systems is in good agreement with the theoretical analysis.  
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I. Introduction 
  Duffing and Van der Pol are paradigm of a deterministic mathematical model for studying nonlinear 

dynamic and chaos in mechanical systems.  Since the discovery of chaos in the Lorenz equation, the study of 

chaotic phenomena in deterministic nonlinear dynamical systems has been a subject of prominent research [1]. 

Sequel to this, enormous progress has been made in understanding various types of synchronization, 

bifurcations, period doubling (route to chaos), e.t.c. Synchronization has been of intense interest date back from 

the earlier discovery of synchronization of two pendula clock by Huygens in 1673 [2], also the research work of 

Pecora and Carroll on the synchronization of identical chaotic systems [3,4,5].   

Synchronization can be defined as a state in which two or more systems (with dynamics that can either 

be periodic or chaotic) adjust to each other given rise to a common dynamical behavior. The behavior can be 

induced either by coupling the systems locally, (that is, the synchronized state is stable, and that once 

synchronized, it will be difficult to desynchronized the system with small perturbation);  or globally (that is,  the 

system will surely synchronized regardless  of the starting point of the systems  in relation to one another ) or by 

forcing them [6]. Due to the practical applications of synchronization phenomena in the study of physical, 

biological and technological problems; a lot of research has been carried out both experimentally, numerically 

and theoretically about synchronization for many systems in the last decade. [7,8,9,10,11]. Among these are 

complete synchronization [3,12,13]; chaotic synchronization [14]; generalized synchronization [15]; phase 

synchronization [5,16 ]; lag synchronization [5]; adaptive synchronization [14,15]; anticipated synchronization 

[17];  measure synchronization [18,19,20] and quasi-synchronization [21].    

Coupled dynamical systems from the view of its practical applications are interesting in that they 

permit the study of the properties of chaos, synchronization,  multi-stability of attractors and can be use to make 

a system whose dynamics is more complex than that of its constituents.   They are usually obtained from 

simpler, low dimensional systems to produce new and more complex orderliness. This is realized with the view 

of modeling spatially extended systems, retaining the dominant features of the constituent systems [6]. Intensive 

studies of  coupled systems in a wide range of disciplines such as  condensed matter, Optical systems, biological 

systems, physical systems, neural networks  and a lot more has facilitated coupled systems [22]. 

Synchronized dynamics in coupled or driven nonlinear oscillators have wide technical applications and 

are fundamentally  important  in many areas like information control, monitoring of the dynamical systems and 

control, Chemical reactions, modeling brain and cardiac rhythm activity and earthquake dynamics [4,10,12,14]. 

Some of the extensively studied phenomena associated with synchronization in coupled or driven nonlinear 

oscillators are: bifurcation diagram, poincar e   map, period doubling, phenomena crises, transient chaos, quasi-

periodicity, intermittencies [11,18] , boundary crises [13,17], interior crises [23],  Multi-stability attractors and 

basin crises [10].  In this paper, we examine the synchronization behavior in coupled Duffing-Van Der Pol 

oscillator (DVP) with the giving potential using bifurcation diagrams, Poincare map, period doubling leading to 

chaos and Multi-stability attractors . This is because the properties of chaotic systems are basically depend on 

the coupling strength and mechanism of the system. One of such mechanisms is the coupling procedure between 
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Duffing and Van der Pol. This oscillator has been studied by many researchers but to obtain some necessary and 

sufficient conditions for the occurrence of full synchronization. We examined in detail the synchronization 

behavior of linearly coupled chaotic systems and show that the backward sweep in the bifurcation diagram gives 

rise to a more chaotic system during the transition to synchronization and make the periodic window narrower.  

The remainder of this paper is structured as follows:  Section 2 describes the methodology. The results 

and discussions of the computational experiments are presented in section 3. Finally, the conclusion is given in 

Section 4. 

 

II. Methodology 
 The most widely investigated system in  coupled or driven nonlinear oscillators that has provided 

fundamental models of the dynamical problems in physical sciences, medical sciences, biological sciences,  

engineering, electronics, and  many other disciplines are: the Duffing Oscillator, the Van der Pol Oscillator and 

the coupled Duffing-Van der Pol Oscillator. The classical Duffing-Van der Pol Oscillator (which appears in 

many physical problems) in dimensionless form is governed by the nonlinear Eq. (1). 
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)(

)1(
2

t
dx

xd
xxx Ψ

Θ
        (1) 

 Where )( tΨ  is an external force ( ΩΨ cos)( t ), x  represents the displacement, 0 ,  f  and 

  are constant parameters.  Physically,   is regarded as the damping factor which removes the energy 

conservation to obtain chaos and )( x   is an anharmonic potential function. The dots denote the derivative 

with respect to time t. 

 Eq. (1) is generally referred in this case as Duffing-Van der Pol Oscillator, which evolve from the 

combination of Duffing and Van der Pol Oscillators’ equations. Each one has a wide view in dynamical systems 

and they are employed as models of various physical and engineering problems such as Josephson Junctions, 

electrical circuit and plasma Oscillators [24]. A lot of researches are focused on the case where
42

)( bxaxx  . In this paper, we consider an extension of this important model corresponds to the case 

where the potential is of 
6

U type defined by equation 2. Because of its universal nonlinear differential equation, 

it has attracted works in biological and physical problems but only few works has been carried out with this 

potential. 
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 Where ,,  and   are constant parameters and the last term is the coupling term, k is the coupling 

parameter which determines the strength of the coupling. Through 0
c

 Eq. (2) illustrates the potential for 

two uncoupled systems exhibiting both regular and chaotic dynamics. Through 0
c

 the change in 

symmetry and the equilibrium make the dynamics richer and interesting. We can consider at least three 

physically situations based on the sets of these parameters were the potential is single, double and triple well.  

 When two of such systems (1) interact with each other through a specific coupling, the potential (2) is 

perturbed. 

 Ueda and Akamatsu, 1981 [25] gave the first report on the chaotic motion of system (1) with single-

well-type restoring force as a model of the negative resistance oscillator. Momeni et al., 2007, [26] used the Van 

der Pol equation to model the dynamical behavior of the dust grain charge near parametric resonance.  The 

resonance and off-resonance oscillations of an extendend DVP oscillator was analysed by Siewe et al., 2004, 

[27] using multiple time scale method. The nonintegrability of a family of DVP oscillators was investigated by 

Lu et al., 2002 [28] using the analytic properties of the solution in the complex time plane. It was also 

discovered that the DVP oscillator with a double- well potential possesses a rich dynamical behavior with a vast 

number of state. It also exhibits smale horseshoe chaos when transverse intersections of the homoclinic orbits 

occur. Another research also simulated the DVP oscillator using analog with a double-hump potential (see ref 

[28] and the references therein). 

 

2.1 The Model and dynamics of   Duffing-Van der Pol Oscillators 

  In this work we used some numerical tools like: bifurcation diagram, Poncare map and Period doubling 

route leading to chaos to consider the different routes to chaos in order to have a better insight about the 

dynamics of the system under investigation.  In this case from Eq. (2), Eq. (1) becomes 
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 Where  ,,,  and    are all constant parameters. Physically,   is regarded as damping or 

dissipation factor,   is the strength of nonlinearity and   and   are the amplitude and frequency of the 

external force respectively. Eq. (3) is essentially equivalent to a combination of DVP oscillators and has wide 

applications in the modelling of nonlinear oscillation processes. Eq. (3) is Duffing  (if 0 ) and Van der Pol  

(if  0 )  these have been studied from analytical and numerical investigations with rich structures of the 

bifurcation set, bifurcation routes chaotic dynamics and phase-locking phenomenon [29].  

The equation that govern the coupled system is given as, 
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These equations can be written in autonomous form using the transformation )1()1( yx   and 

)2()2( yx   by doing this, the second order differential equations (4) and (5) are expressed as systems of first 

order differential equations with variables     1,1 yx  and     2,2 yx  respectively.  

In a compact vector form, we can write Eq. (4) and (5) as  
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   Where 2&1i , kq   (the coupling parameter) which determines the strength of the coupling. The 

over dots represent the derivative of x  with respect to time. 

 Basically, chaos synchronization problem can be formulated as follows. Given a chaotic system, which 

is considered as the master (or driven) system (4) phase synchronization of Duffing-Van der Pol oscillators and 

another identical system, which is considered as the slave (or response) system (5), the aim is to force the 

response of the slave system to synchronize the master system in such a way that the dynamical behavior of 

these two system be identical after a transient time. One particular characteristic in DVP model is that its phase 

depends on initial conditions. Therefore, if two DVP oscillators run with different initial condition with two 

phase trajectories )1( and )2(  ; The objective of the synchronization in this paper is to phase-lock the 

oscillators (phase synchronization) so that 0)1()2(   . That is coupling the slave to the master system in 

such a way that 

t
lim    0||)1()2(||       (8) 
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 The justification of the condition in equation (8) implies full synchronization between )1(  and )2( . 

Empirically, the limit does not always approach zero asymptotically but a constant value   according to the 

inequality, 
t

lim 0||)1()2(||  , suggesting  imperfect full synchronization which according to 

Vincent et al., 2015 [21] in most cases arises from parameter mismatches between the two coupled systems. 

 To simplify the analysis, all the parameters except the coupling parameter (
c

 ) are kept constant. 

Taking the system parameters for ,40.0 ,35.0 ,65.0  ,19.0     ,20.121  ff

001.0TΔ and 36.0 .  The dynamical response of Eq. (4) and (5) as 
c

 is progressively increases is 

described in the figures below.  

 

III. Results And Discussions 
 To achieve a long-term behavior or stability, the first one hundred values were discarded and the results 

obtained are presented as follows. The bifurcation diagram of the coupled system (1) in  X plane is given 

in Fig. 1 and 2.  

 

 
 

 

Fig. 1 Bifurcation diagram of system (1) in )( X plane for ,40.0 ,35.0 ,65.0  ,19.0

    ,20.121  ff 001.0TΔ and 36.0  when (a)  0
c

 (b) 25.0
c

 

  Fig.1(a) is the bifurcation diagram when the coupling parameter 0)( 
c

(i.e the system is 

uncoupled) and the set of control parameter which contain periodic and chaotic dynamics is 3.21   . As   

is increased from 1.3rad/s, the dynamic of system (1) gets into chaos from period-1 orbit through intermittent 

bifurcation. In the bifurcation diagram, the map iterated several hundred times at each of many intervening 

values of control parameter . However, there is instability in this bifurcation. The control parameter   varies 

smoothly from 1.310 to 2.090rad/s and the angular displacement  is between -2.0 to 2.0m a well pronounced 

chaotic situation is experienced. A pair of period-doubling (route to chaos) begins at 1.550rad/s. Periodic 

windows experienced from 1.00 to 1.33rad/s (period-1), 1.520  to 1.850rad/s (period-3), and 2.070 to 2.10rad/s 

(period-3)  show the range of angular velocities for which the system is non-chaotic. The choice of this range of 

angular velocity is favourable when a normal, predictable and non-chaotic behavior of the system is desired.  It 

is advisable that the control parameter   range between 1.330 to 1.520rad/s and 1.850 to 2.070rad/s angular 

velocities should be avoided when working with this system because of its unpredictable chaotic manner.   Fig. 

 1(b) is the bifurcation diagram when 25.0)( 
c

.  0.41  gives the set of control parameter 

which contain chaotic dynamics.  The control parameter    varies smoothly from 1.310 to 2.750rad/s, and the 

angular displacement is between -2.0 to 2.0.  A well pronounced chaotic situation was also experienced. A pair 

of period-doubling (route to chaos) begins at 1.850rad/s. Periodic windows experienced from 1.00 to 1.33, 1.520  

to 1.850, 2.070 to 2.30 and 2.500 to 4.000 show the range of angular velocities for which the system is non-

chaotic. The choice of this range of angular velocity is favourable when a normal, predictable and non-chaotic 

behavior of the system is desired; it is advisable that the control parameter   range between 1.330 to 

1.520rad/s, 1.850 to 2.009rad/s and 2.300 to 2.500rad/s. The angular velocities should be avoided when working 

with this system because of its unpredictable chaotic manner. 

     

(b) 

(a) 



Bifurcations and Attractors in Synchronization Dynamics of Coupled Duffing-Van der Pol Oscillators 

DOI: 10.9790/4861-07518491                                      www.iosrjournals.org                                      88 | Page 

                
 

 

Fig. 2 Bifurcation diagram of system (1) in )( X plane for ,40.0 ,35.0 ,65.0  ,19.0

    ,20.121  ff 001.0TΔ and 36.0  when 35.0
c

 (a) Forward sweep (b) backward sweep. 

                                                                                                                                                                                                                                                                                                                                        

 Fig. 2 is the bifurcation diagram when the coupling parameter )35.0( 
c

. Skipping some analogous 

analysis, it is obvious from Fig. 2(a), that there are reductions in the chaotic range for forward sweep from 

period-1via period-6 to period-1.  The control parameter which contains chaotic dynamics for the forward sweep 

is 0.41   . Also, the backward sweep produces more period doubling cascade from period-6 attractors as 

shown in Fig. 2 (a) to period-12 attractors as shown in Fig. 2 (b), hence the system becomes more chaotic at 

backward sweep.       

                                  

 

Fig.3 Poincaré section of some chaotic states for ,05.3 ,5.1 ,1 22F  (a) 0
c

 (uncoupled 

system) (b) 0
c

(coupled system) 

 In order to gain better insight into chaos features and dynamics; various kinds of strange attractors are 

also shown in the Poincar e   map (as shown in Fig. 3). Transition to synchronization gives the structural 

changes associated with the transition to stable synchronous behavior. To illustrate this, we consider the strange 

attractor exhibited by the drive Duffing-Van der Pol oscillator. When the oscillators become synchronized, the 

attractor for the response system would be precisely superimposed, point-to-point with that of the slave attractor. 

 To understand the structural changes that took place in the system, we obtained the Poincar e   section 

of the phase portraits within and somewhere outside the synchronization region for the response system.  Fig. 

4(a  & c) show some phase plane plots of an imbedded period doubling cascade when 0
c

and 0

respectively. Fig. 4 (b & d) are used to demonstrate the phenomenon of crises. 

 

 
 

 

 

 

(a) 
(b) 



ω 

 )2(x

)2(x

 

(a) (b) 



ω 

(a) (b) 
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Fig.4 Attractors of some chaotic states for ,05.3 ,5.1 1 and 22F  at (a), (b) 0
c

  

(uncoupled) and (c), (d) 2.0
c

 (coupled). 

 Basically, when the oscillators are synchronized, any microscopic property of the systems are 

synchronized and equal or nearly equal. One of such microscopic quantity that we consider is the average bare 

energies )(
2,1

  written as 



T

dttE

0

2,12,1
)(

2

1
        (9) 

Where,    
2,12,1

2

2,1

2,1
),(

2
)( px

P
tE Ω        (10) 

 
)(

2,1
tE is the associated momentum and )(

2,1
x is the potential . The measurement is carried 

out after discarding a sufficient initial transient when allowed to run for a sufficient time. We calculate  
2,1

  as 

functions of the coupling strength   as shown in Fig.6. When 
c

  reaches a certain threshold 2578.0
th

c
 

full synchronization is realized. Above the
th

c
 , the synchronization is stable, which indicates a strong 

correlation between the oscillators that are asymptotically approach identical trajectories.  

To obtain the quality of synchronization, we adopt the method defined by Vincent et al., 2007 [30], by 

examining the behavior of the average error 
av

E  given by  

 dttE
T

E
T

av 
0

1
       (11) 

where 

     
2

12

2

12
yyxxtE        

 With this result, the error dynamics asymptotically becomes zero when the coupled oscillators are 

synchronized. But when the system is uncoupled (i.e 0
c

) no noticable synchronization in the system (as 

shown in Fig. 5).  Vincent et al., 2007 reported the case of irregular pattern of dynamic with average error 

against time for the uncoupled case. In this paper, we look at the case when the coupling parameter is nonzero to 

achieve a complete synchronization as shown in Fig.7.  

 

                                                

                       t  

Fig.5 Time series of the error state of system (4) and (5) for ,05.3 ,5.1 ,1 22F when the 

coupling parameter is 0 (no synchronization). 

(d) (c) 

     
e
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Fig. 6  The average bare energies, 
2,1

  
s

V    for the coupled system 

                               

                                                
 

Fig. 7 The average synchronization error 
av

E   Vs    

 

IV. Conclusion 
 We have examined the synchronization behavior of a coupled master-slave system using the regular 

and chaotic motion of the Duffing-Van der Pol oscillator with some useful numerical simulation tools like 

bifurcation diagram, Poincar e   map and phase projections. Some pairs of period-doubling route leading to 

chaos were discovered and periodic windows were experienced at the same time the range of angular velocities 

for which the system is non-chaotic was observed in figure 1 and 2.                                                                                                                                                                                                                                                                                                                      

 We also observed the backward sweep in Fig. 2, this  produces more period doubling cascade from 

period-6  to period-12 attractors as shown in figure 2 (b), hence the system becomes more chaotic at backward 

sweep. Some interesting dynamical phenomena such as Poincar e   map and crises phenomena were also used to 

observe the state of chaos in the system.  It is advisable that the control parameter   for the chaotic range 

should be avoided when working with this system because of its unpredictable chaotic manner. A numerical 

solution were obtained using a forth order Ruge-Kutta routine as well as the software dynamics to obtained full 

synchronization when the coupling parameter k  reaches a certain threshold 2587.0
th
k . 
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