
IOSR Journal of Applied Physics (IOSR-JAP)  

e-ISSN: 2278-4861.Volume 9, Issue 3 Ver. II (May - June 2017), PP 32-42 

www.iosrjournals.org 

DOI: 10.9790/4861-0903023242                                      www.iosrjournals.org                                        32 | Page 

 

Quantum and Thermal Fluctuations in the Ising Chains: A Case Study of 

Spin-Two System 
 

S. Ehika
*
, O. J. Ataman, S.E. Iyayi 

Department of Physics, Ambrose Alli University, Ekpoma, Edo State, NIGERIA. 

 

Abstract: For a system at absolute zero temperature, all thermal fluctuations are frozen out, while quantum fluctuations 

prevail. These microscopic quantum fluctuations can induce a quantum phase transition (QPT) in the ground state of a 

many-body system when the relative strength of two competing energy terms is varied across a critical value. This paper 

presents a detailed and quantitative study of the magnetic properties of Ising two-spin system at zero temperature in the 

presence of longitudinal, transverse and mixed fields, and also at finite temperatures. At the critical longitudinal magnetic 

field, the system is found to undergo a QPT to a ferromagnetic state. For this system, an infinitesimal departure from zero 

transverse field is found to trigger off QPT and also remove the degeneracies that persisted even in the presence of 

longitudinal field. These quantum fluctuations, leading to QPT are more evident in the mixed field than the separate effect of 

longitudinal and transverse fields. The observed quantum effects at zero temperature for this system are found to be 

completely wiped out at finite temperatures due to thermal fluctuations. A temperature increase favours antiferromagnetic 

alignment of spins, while a decrease in temperature favours ferromagnetic alignment. 

Keywords: Quantum phase transition, thermal fluctuations, quantum fluctuations, Ising systems, longitudinal field, and 

transverse field. 

 

I. Introduction 
We all observe phase transitions in our daily lives, with hardly a second thought. When we boil water for a cup of 

tea, we observe that the water remain quiescent until it reaches a certain temperature (100°C), and then bubbles appear 

vigorously until all the water has turned to steam. We have watched the melting away of snow gathered overnight when 

temperatures rise during the day. The more adventurous among us may have heated an iron magnet to a temperature of about 

760°C and noted the disappearance of its magnetism. Familiar and ubiquitous as these and many related phenomena are, a 

little reflection shows that they are quite mysterious and not easy to understand.  Indeed, the reasons for these observed 

phenomena did not emerge until the middle of the 20th century. Although, much has been understood since then, active 

research continues. Ice and water both consist of molecules of H2O, and we can look up all the physical parameters of a 

single molecule, and of the interaction between a pair of molecules, in standard reference texts. However, no detailed study 

of this information prepares us for the dramatic change that occurs at 0°C. Below 0°C, the H2O molecules of ice are arranged 

in a regular crystalline lattice, and each H2O molecule hardly strays from its own lattice site. Above 0°C, we obtain liquid 

water, in which all the molecules are moving freely throughout the liquid container at high speeds. Why do 1023 H2O 

molecules co-operatively ―decide‖ to become mobile at a certain temperature, leading to the phase transition from ice to 

water? 

In Physics, a quantum phase transition (QPT) is a phase transition between different quantum phases of matter at 

absolute zero temperature [1-8]. Contrary to classical phase transitions, quantum phase transitions can only be accessed by 

varying a physical parameter such as magnetic field or pressure at absolute zero temperature. The transition describes an 

abrupt change in the ground state of a many-body system due to its quantum fluctuations. At the critical point where the 

quantum phase transition (QPT) occurs, the ground state of the system undergoes a qualitative change in some of its 

properties [5, 6]. QPT can be described as second order phase transition. On the other hand, classical phase transitions are 

driven by a competition between the energy of a system and the entropy of its thermal fluctuations. A classical system does 

not have entropy at absolute zero temperature and therefore no phase transition can occur. Their order is determined by the 

first discontinuous derivative of a thermodynamic potential. A phase transition from water to ice, for example, involves 

latent heat (a discontinuity of the heat capacity) and is of first order.     

Among the various systems, one dimensional (1D) and quasi-one dimensional systems are fantastic playground for 

quantum phase transitions (QPTs), with rather unique properties [3, 5, 6, 8, 10, 11, 12]. There are various reasons for this 

special behaviour. Firstly, contrary to their higher dimensional counterparts, interactions play a major role in 1D particles. 

These interactions transform any individual motion of the particles into a collective one. Secondly, in 1D particles quantum 

and thermal fluctuations are pushed to a maximum, and prevent the breaking of continuous symmetries, making simple 

mean-field Physics inapplicable. The combination of these two effects leads to a very special universality class for 

interacting quantum systems, known as Luttinger liquids (LLs) [12-14]. The important point is that LL is taken to be in a 

critical phase in which correlations decrease at zero temperature, as power laws of space and time. This makes the system 

extremely fragile to external perturbations and leads to a host of QPTs. Examples of such perturbations are the effects of 

large Coulomb repulsion which leads to a Mott transition [15], and disorder that leads to localized phases such as Anderson 

localization or the Bose glass [16-17]. Each of these transitions is characterized by a quantum critical point (QCP) that can 

be computed from LL theory [18-20].  

The study of the field-induced effects in low-dimensional quantum spin systems has been attracting much interest 

from theoretical and experimental points of view [1, 3, 5, 6, 8, 11]. For example, the behaviour of the one-dimensional 

antiferromagnetic XXZ model in a transverse magnetic field is drastically different in comparison with the case of the 

longitudinal field [8, 21, and 22]. The one-dimensional (1D) Ising chain in transverse field is perhaps the most-studied 
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theoretical paradigm for a quantum phase transition [10, 22]. More so, in a class of one-dimensional magnetic systems, QPT 

has also been shown to be associated with a change of entanglement [23-24]. This entanglement is known to exhibit scaling 

behaviour in the vicinity of the transition point [25]. This behaviour was discussed in detail for the Heisenberg model by 

Osborne and Nielsen in ref. [25].   

Quantum phase transitions are relevant in quantum computing, e.g., adiabatic quantum computing [26-27] and 

quantum estimation [28-29]. Interesting phenomena related to QPTs have recently been experimentally observed in various 

systems, such as Cuprate Superconductors [30-31], heavy fermions and Bose-Einstein condensates [32], magnetic insulators 

[33-34] and Jaynes-Cummings-Hubbard (JCH) system [35]. The aim of this work is to study the effect of external magnetic 

fields,  namely longitudinal, transverse and mixed fields at zero and finite temperatures on the ground state properties of the 

Ising spin chains, using two-spin system as a case study. The results obtain for this simple system will be useful for the 

advance study of complicated systems. This study is also expected to provide further insight into the behaviour of one and 

quasi-one dimensional systems subject to varying magnetic fields at zero and finite temperatures. 

 The remainder of this paper is organized as follows. In section II, we give a brief description of the Ising model. 

Section III investigates the effect of zero field and zero temperature on Ising spin-two system. Section IV investigates the 

effect of longitudinal field on the system. Section V investigates the effect of transverse field on the system. Section VI 

investigates the effect of mixed field on the system. Section VII investigates the response of this system to finite 

temperatures. We present and discuss results in section VIII. We conclude in section IX.    

  

II. Ising model 
The Ising model is the simplest theoretical description of ferromagnetism. This model was invented by Wilhelm 

Lenz in 1920 and named after Ernst Ising, a student of Lenz who chose the model as the subject of his doctoral dissertation. 

The model consists of discrete variables called spins that are arranged on a lattice. The antiferromagnetic version of this 

model in one dimension reads: 
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where J  is the superexchange coupling parameter between nearest neighbour spins. The symbols 
z

iS
 
and  

x

iS  are the 

diagonal and off diagonal spin operators respectively. These operators act in the reduced Hilbert space of no doubly 

occupied sites. The longitudinal and transverse field are respectively denoted by zh  and xh . The Ising model can be 

recovered from the Heisenberg model by switching off the spin fluctuation term, i.e. 011  
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creation and annihilation operator, the form in (1) can be written as: 
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Here, summation over nearest neighbour is explicit       

                                                                         

 

III. Spin-two Ising system in zero field and zero temperature 
This section will examine the nature of the ground state of the simplest possible Ising cluster (i.e. the spin-1/2 two –

site dimer) in zero field.  Periodic boundary conditions (PBC) is imposed on the spins so that
zz

N SS 11  . Thus, the 

topology of the spin space is that of a circle as shown in Fig.1.  

 

 
Fig.1. A two -site chain.  The topology is that of a circle on the application of periodic boundary conditions.       

 

The Hamiltonian of this system in the absence of external magnetic field is given by  
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Since a spin have two configurations in space (i.e. spin up or spin down) and the exclusion of doubly occupied site is 

understood, the size of the Hilbert space of an Ising system with N spins is 2N
.  Hence, for two-spin system, the size of the 

Hilbert space is 4. The basis states are: 

 214,2,13,2,12,2,11
  

It is possible to construct a matrix representation of the Hamiltonian by using 0H  to act on each of these basis states. Thus, 
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These operations will lead to the matrix representation 
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At a glance, the Hamiltonian is observed to be block-diagonal with respect to subspaces 
z

totS =1,-1 and 0, with two-fold 

degeneracy in both the ground and excited states.  

 
 

IV. Effect Of External Longitudinal Magnetic Field 
 In the presence of the longitudinal field, the Ising Hamiltonian for two-spin system, expressed in the second 

quantized form is given by: 

zh HHH
z

 0                                                                                                                                                  (5) 

where zH  is given by: 
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Therefore, the Hamiltonian matrix in the presence of external longitudinal magnetic field gives: 
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The eigen values of this matrix are: 4/1 J ,  4/2 J ,    zhJ  4/3  and    zhJ  4/4  

           Observe that the external longitudinal field does not have effect on antiferromagnetic states. At a glance, we see that 

the two-fold degenerate triplet state at zero magnetic field splits into two distinct states as the magnetic field is applied. The 

energy levels per magnetic coupling constant arising from (7) can be constructed as follows:  

)/(25.0/,)/(25.0/,25.0/ 4433121 JhJEJhJEJEE zz                (8)
     

The competing energies for this system are the two-fold degenerate energy levels (i.e. E1 and E2) and the excited energy 

level E3. The energy dependence of this system with longitudinal field is shown in Table 1. This dependence and energy 

level crossing is illustrated in Fig. 2, while Fig.3 captures the quantum of magnetization. 

 

V. Effect of external transverse magnetic field 
The Hamiltonian for two-spin Ising system in the presence of transverse field gives:    

xh HHH
x

 0                                                                                                                                                 (9) 

Here, the Hamiltonian xH is given by: 
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The Hamiltonian matrix in the presence of an external transverse magnetic field gives:  
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The complete diagonalization of the Hamiltonian matrix in (11) gives the following eigenvalues:  
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These eigenvalues in (12) can be recast as follows: 
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It is obvious that the twofold degenerate ground state that persists even in the presence of longitudinal field is 

completely removed by the transverse field. The two competing energies are now 1E  and 3E . The dynamics of the spins in 

the corresponding eigen states at zero temperature is completely driven by quantum fluctuations. The variations of the 

ground and excited state energies with the transverse field are presented in Table 2 and Fig.4.  

 

VI. Effect of mixed field 
The Hamiltonian for mixed field (i.e. involving both longitudinal and transverse fields) is given by  

0HHH h                                                                                                                                                    (14) 

where hH  is given by 

xzh HHH                                                                                                                                                  (15) 

For two-spin system, (15) gives 
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The interaction of this mixed field with the two-spin system gives the following 
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The Hamiltonian matrix arising from the interaction of this mixed field with two-spin system gives: 
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The variations in the excited and ground state energies when xh  and zh  are simultaneously varied are shown in Table 3. 

By keeping hz at its critical field (hz=0.5), the response of the spins to variations in xh  is also investigated as presented in 
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Table 4. The quantum spin fluctuations at the ground state when either hz  or xh  is fixed and the other varied are presented 

in Table 5.  
 

 

VII. Effect of finite temperatures on two-spin system 
At finite temperatures, T enters the Hamiltonian through the uniform magnetization given by 
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For the case of the two-spin Ising system, Eq. (18) is expanded to give    
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Magnetic field dependence of the uniform magnetization calculated for fixed T=0.04J, 0.08J, 0.1J and 0.4J is shown in Table 

6 and also illustrated Fig.5. Temperature dependence of the uniform magnetization calculated for fixed hz=0.8J, 1.6J, 2J, 2.5J 

is presented in Table 7 and also captured in Fig. 6.  

 

VIII. Results and discussion 
This section presents and discusses the results obtained for two-spin Ising system in the presence of external fields 

at zero temperature and finite temperatures. The variations of the energies of the two-spin system with finite longitudinal 

fields at zero temperature are shown in Table 1.  As observed from Table 1, the two-fold degenerate ground state energy 

25.0// 21  JEJE  unaffected by the field. This is because the configurations of the spins in this state are 

antiferromagnetic which do not respond to external longitudinal magnetic field. The energy JE /4 exhibits a linear 

behaviour with zh , while JE /3  exhibits an inverse behaviour with zh  as shown in Fig. 2. At a critical field of 

2/Jhzc   (or 2/1/ Jhzc ), there is a cross over where the 1z

totS
 
state becomes the ground state, and therefore 

magnetization jumps from 0 to 1 as shown in Fig.3. In other words, the system undergoes a quantum phase transition (QPT) 

from antiferromagnetic ground state to ferromagnetic ground state. This energy level crossing changes the ground state from 

JEJE // 21   to JE /3 .  

Next, we investigate the response of the spins to external transverse field at 0zh  and 0T . It is observed 

that quantum fluctuation which gives rise to QPT is immediately triggered at infinitesimal transverse field. The degeneracy 

that persisted even at finite longitudinal fields is completely wiped out at very small transverse field as shown in Table 2. An 

avoided level-crossing between the ground state with energy 1E  and the competing excited state with energy 3E  is 

observed as shown in Fig. 4. The ground state energy now shifts from 1E   to 3E . This implies a shift in ground state from 

antiferromagnet to ferromagnet.  

For the case of the mixed field, we first study the response of the spin to simultaneous variations in longitudinal 

and transverse fields at 0T . As seen from Table 3, the simultaneous variations of xh  and zh
 

disrupt the 

antiferromagnetic alignment of spin more compare to the separate effect of  xh  and zh  as captured in Table 1 and 2 

respectively.  A further study is carried out by keeping the longitudinal field at its critical value ( 5.0zh ) and then 

varying xh . This study which is presented in Table 4 enables us to visualize the rapid lifting up of the degeneracy by xh  

that persisted even in the presence of zh . The removal of this degeneracy by transverse field is reflected in the increase of 

the energy E3 and the subsequent decrease of the energy E1. This transfer of energy from 1E  to 3E  implies a shift of 

ground state energy from 3E  to 1E . The spins of the electrons in 1E  are expected to be ferromagnetically aligned. The 

comparison between the response of the Ising two-spin system to xh  and its response to zh  is drawn by keeping either zh
 

or xh constant at 0.1 and varying the other. This study which is presented in Table 5 reveals that the two-spin system 

responds faster to xh  than zh . This observation further provides evidence for the fast disappearance of the 

antiferromagnetic ground state and the emergence of a ferromagnetic ground state in the presence of a transverse field.  
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However, by comparing Tables 3 and 5, it can be seen that the simultaneous variations of xh  and zh
 
trigger off quantum 

phase transition more quickly than the independent variations of xh  and zh .   At finite temperatures, the quantum jump 

observed in Fig.3 is smoothened out. This is because they are wiped out by thermal fluctuations. The magnetic field and 
temperature dependence of the uniform magnetization as calculated from (18) is presented in Table 6 and 7 respectively. 
The temperature dependence of the uniform magnetization depends on the strength of the applied magnetic field. If the 

applied field is less than the critical field strength, the zero-temperature magnetization vanishes, and ),( Thm
 
is 

thermally activated, i.e.   1
)2/exp(2)exp()exp(),(


 JhhThm  .

 
On the other hand, if the applied field 

exceeds the critical field strength at zero temperature, the uniform magnetization is activated as

)exp(1),( hThm  . In both cases, at sufficiently large temperatures, ),( Thm  exhibit Curie-like decay which 

is common to all Ising systems. At low temperatures, its behaviour depends on the field, beginning at 1 for zchh   and 

terminating at 0 for zchh  .This behaviour at finite temperatures is illustrated in Figs. 5 and 6. Observe in Fig. 5 the 

gradual transition of the system into the ferromagnetic ground state as zh  is increased. This shows that zh  favours the 

ferromagnetic alignment of spins. On the contrary, as observed in Fig.6, an increase in temperature favours 
antiferromagnetic alignment of spins due to thermal agitations caused by temperature increase.   

 

Table 1. Variation of the energies of the two-spin system with longitudinal field. At critical field of 5.0zch , the ground 

state shifts from 1z

totS to 0z

totS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2.  Variation of the energies of the two-spin system with transverse field. The energy levels are nondegenerate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hz/J E1 E2 E3 E4 

0.00 -0.25 -0.25 0.25 0.25 

0.10 -0.25 -0.25 0.15 0.35 

0.20 -0.25 -0.25 0.05 0.45 

0.30 -0.25 -0.25 -0.05 0.55 

0.40 -0.25 -0.25 -0.15 0.65 

 

 

 

 

 

 

0.50 -0.25 -0.25 -0.25 0.75 

0.60 -0.25 -0.25 -0.35 0.85 

0.70 -0.25 -0.25 -0.45 0.95 

0.80 -0.25 -0.25 -0.55 1.05 

0.90 -0.25 -0.25 -0.65 1.15 

1.00 -0.25 -0.25 -0.75 1.25 

Jhx /    E1  E2    E3   E4 

     
0.00 -0.25 0.25 -0.2500 0.2500 

0.10 -0.25 0.25 -0.2693 0.2693 

0.20 -0.25 0.25 -0.3202 0.3202 

0.30 -0.25 0.25 -0.3905 0.3905 

0.40 -0.25 0.25 -0.4717 0.4717 

0.50 -0.25 0.25 -0.5590 0.5590 

0.60 -0.25 0.25 -0.6500 0.6500 

0.70 -0.25 0.25 -0.7433 0.7433 

0.80 -0.25 0.25 -0.8382 0.8382 
0.90 -0.25 0.25 -0.9341 0.9341 

1.00 -0.25 0.25 -1.0308 1.0308 
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Table 3. Variation of the energies of the two-spin system with mixed field.The antiferromagnetic alignment of spin is easily 

disrupted by mixed field. 

 

 
 

Table 4. Varying xh  at the critical longitudinal field ( 5.0zh ).The removal of degeneracy by transverse field is 

manifested in the shift of ground state from E3 to E1. 

Table 5. Quantum Spin flunctuations at the G.S. This is investigated when either zh  or xh  is fixed and the other varied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xz hh            E1                                E2                                                 E3       E4  

0.1 -0.26997 -0.25 0.16142 0.35855 

0.2 -0.32853 -0.25 0.09923 0.47930 

0.3 -0.41856 -0.25 0.06149 0.60701 

0.4 -0.52896 -0.25 0.03997 0.73899 

0.5 -0.65097 -0.25 0.02748 0.87349 

0.6 -0.77953 -0.25 0.01985 1.00967 

0.7 -0.91195 -0.25 0.01494 1.14701 

0.8 -1.04677 -0.25 0.01161 1.28516 

0.9 -1.18318 -0.25 0.00927 1.42390 

1.0 -1.32067 -0.25 0.00757 1.56310 

xh  E1 E2 E3 E4 

0.0000001 -0.250000 -0.25 -0.250000 0.75000 

0.0000010 -0.250001 -0.25 -0.249999 0.75000 

0.1000000 -0.323079 -0.25 -0.181921 0.75500 

0.2000000 -0.400381 -0.25 -0.119611 0.76999 

0.3000000 -0.481193 -0.25 -0.063724 0.79492 

0.4000000 -0.564895 -0.25 -0.014671 0.82957 

0.5000000 -0.650969 -0.25 0.027479 0.87349 

0.6000000 -0.738992 -0.25 0.063022 0.92597 

0.7000000 -0.828620 -0.25 0.092556 0.98606 

0.8000000 -0.919978 -0.25 0.116858 1.05272 

     

hz hx G.S 

(fixed hz) 

hx hz G.S 

(fixed hx) 

0.1 0.1 -0.26997 0.1 0.1 -0.26997 

0.1 0.2 -0.32212 0.1 0.2 -0.27243 

0.1 0.3 -0.39336 0.1 0.3 -0.27797 
0.1 0.4 -0.47498 0.1 0.4 -0.29082 

0.1 0.5 -0.56245 0.1 0.5 -0.32308 
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Table 6. Variations of m(h,T) with h for fixed values of T. This table shows a gradual transition from antiferromagnetism to 

ferromagnetion when the longitudinal field is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 

7.Variations of m(h,T) with T for fixed values of h. This table shows a gradual transition from ferromagnetism to 

antiferromagnetion when the temperature is increased. 
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Fig. 2. Energy levels of two-spin Ising system as a function of the external longitudinal field. Level crossing occurs at hz 

/J=0.5. 

 

 

h/J m(h,T) 

T=0.04J 

m(h,T) 

T=0.08J 

m(h,T) 

T=0.1J 

m(h,T) 

T=0.4J 

0.00 0.00000 0.00000 0.00000 0.00000 

0.50 0.99615 0.33333 0.03915 0.29782 

1.00 0.99999 0.99615 0.33331 0.62875 

1.50 0.99999 0.99999 0.85898 0.85810 

2.00 1.00000 0.99999 0.98670 0.95499 

2.50 1.00000 1.00000 0.99890 0.98670 

 

J/T m(T,h) 

h=0.8J 

m(T,h) 

h=1.6J 

m(T,h) 

h=2J 

m(T,h) 

h=2.5J 

0.0 0.00000 0.00000 0.00000 0.00000 

0.5 0.17367 0.33878 0.41569 0.50495 

1.0 0.29741 0.56211 0.67029 0.77756 

1.5 0.38432 0.71230 0.82217 0.90848 

2.0 0.44858 0.81612 0.90886 0.96458 

2.5 0.50008 0.88608 0.95499 0.98670 

3.0 0.54452 0.93118 0.97825 0.99507 

4.0 0.62239 0.97603 0.99507 0.99933 
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Fig. 3. Quantum of magnetization at zero temperature( m(h,T=0)) of two-spin Ising system. The spins will remain anti-

aligned until a critical field of hz=J/2 is reached. 

 

 

 
Fig. 4. Energy levels of two-spin Ising system as a function of external transverse field. All degeneracies are completely 

removed and level crossing occurs at an infinitesimal field. 

 

 
Fig .5. Magnetic field dependence of the uniform magnetization of a 2-site Ising system. This dependence is investigated for 

given values of T. Thermal fluctuations smooth out the step function seen in m(h,T=0). 
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Fig 6. Temperature dependence of the uniform magnetization of a 2-site Ising system. This dependence is investigated for 

given values of h. Thermal fluctuations smooth out the step function seen in m(h,T=0). 

 

IX. Conclusion 

The magnetic properties of two-spin system are studied within the Ising quantum antiferromagnetic model. At the 

critical longitudinal magnetic fields of hzc=J/2, the system is found to undergo a quantum phase transition (QPT) to the 

ferromagnetic state. The effect of transverse field on the spin system is so strong that an infinitesimal departure from zero 

transverse field causes the system to undergo a QPT to ferromagnetic state. This shows that quantum spin fluctuations are 

more pronounced in the transverse field than the longitudinal field. It is also observed that QPT for the special case of mixed 

fields occurs at a faster rate than the separate effect of longitudinal and transverse fields.  

The quantum magnetization observed at zero temperature for the Ising spin-two systems is found to be completely 

wiped out at finite temperatures due to thermal fluctuations. A temperature increase favours antiferromagnetic alignment of 

spins, while a decrease in temperature favours ferromagnetic alignment. On a macroscopic view, this temperature increase 

accounts for the disappearance of magnetic field when a magnet is subjected to thermal heating in accordance with curie’s 

law. The experimental evidence of this QPT has been observed at optimum doping in the cuprate Bi2Sr2-xLaxCuO6+δ and in 

quasi-one dimensionally Ising ferromagnet [10,30]. Ultracold atoms in optical lattices has also provided a versatile tool with 

which to investigate fundamental properties of quantum many-body systems  such as quantum phase transition and quantum 

spin dynamics [39]. 
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