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Abstract:A theoretical investigation has been made of obliquely propagating electrostatic solitary structures in 

a magnetized dusty plasma, composed of negatively charged dust, nonthermal ions of distinct temperatures, and 

Boltzmann distributed electrons. The properties of small but finite amplitude dust-acoustic solitary waves 

(DASWs) in this dusty plasma system are studied by deriving the Zakharov-Kuznetsov (ZK) equation. It has been 

inferred that the effects of obliqueness, external magnetic field, nonthermal ions of two distinct temperatures, 

and Boltzmann electrons cause modification of the characteristics (i.e., amplitude and width) of these solitary 

structures. The implications of our present investigation in understanding the basic features of nonlinear 

electrostatic perturbations observed in many space plasma systems and laboratory devices are briefly 

discussed. 
 

I. Introduction 
Nowadays, the study of waves and their instabilities in dusty plasmas have been the focus of intense 

interest because of its vital role in understanding various types of collective processes in space and laboratory 

plasmas, such as cometary tails, planetary rings, intergalactic and interstellar media, Earth's environment, etc. 

[1-4]. The presence of charged dust grains in a plasma modifies the existing plasma wave spectra as well as 

introduces a number of novel eigenmodes [viz., dust-ion acoustic waves (DIAWs) [5, 6], dust-acoustic waves 

(DAWs) [7-10], dust lattice waves [11],etc.]. Dust grains acquire negative charge by the collection of electrons 

[1, 12]because the thermal speed of the electron is much higher than that of the ions. The phase speed of DAWs 

is much smaller than the electron and ion thermal speed but larger than the dust thermal speed in which restoring 

force is provided by the thermal pressure of ions and electrons while inertia is provided by the mass of dust. 

Recently, several authors [13-15]have analyzed the effects of negatively or positively charged dust grains on 

electrostatic waves in nonthermal dusty plasmas. 

Generally, nonthermal plasma is a plasma which is not in thermodynamic equilibrium, either because 

the ion temperature is different from the electron temperature, or because the velocity distribution of one of the 

species does not follow a Maxwell-Boltzmann distribution. A number of spacecraft or satellite observations 

indicate the existence of nonthermal electrons or ions in different space plasma environments particularly, 

in/around the Earth's bow shock [16]and foreshock [17], in the upper Martainionsphere[18], in the auroral 

region [19, 20], in the lower part of magnetosphere [21, 22] etc. To explain the effects of nonthermal plasma 

species on the basic characteristics of the plasma system, containing fast nonthermal plasma species, Cairns et 

al. [23]introduced a distribution function followed by those plasma species. After this pioneering work of Cairns 

et al. a number of authors have studied the effects of nonthermal plasma species on different electrostatic 

propagation modes in a dusty plasma system containing negatively charged dust [5, 24, 25, 27]. The above cited 

works [5, 24, 25, 27] are confined to negatively charged dust and nonthermal ions or electrons of single 

temperature only. But the existence of two-temperature ions [26, 28, 29, 31-33, 41]or electrons [34, 36-38] 

which are common to occur in both space environments [36, 39, 40]and laboratory plasmas [35, 36] are the 

topic of recent interest. Recently, Tasnimet al. have studied the effects of distinct temperature nonthermal ions 

on DA solitary [26]and shock [41]structures, respectively, in unmagnetized dusty plasmas with negatively 

charged dust. Dorranian and Sabetkar[42]have also studied the properties of DA solitons considering an 

unmagnetized dusty plasma system containing negatively charged dust and two nonthermal ion species at 

different temperatures deriving the Kadomtsev-Petviashivili (KP) equation. The effects of external magnetic 

field, obliqueness, and arbitrarily charged dust on the solitary structures in dusty plasmas with ions of different 

temperatures are not discussed at all in these works [26, 41, 42]. In this investigation, we have considered the 

propagation of highly nonlinear dust-acoustic solitary waves (DASWs) in a magnetized dusty plasma consisting 

of negatively charged dust fluid, Boltzmann distributed electrons, and nonthermal ions of distinct temperatures. 

We have derived the Zakharov-Kuznetsov (ZK) equation [32, 43]for the considered dusty plasma model, and 

analyzed the properties of DASWs both analytically and numerically. The manuscript is organized in the 

following manner. In section II, the relevant equations governing the dynamics of nonlinear DAWs are 
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provided. The ZK equation is derived in section III. The numerical solution of ZK equation is analyzed in 

section IV. A brief discussion of the results obtained from this investigation is contained in section V. 

II. Governing Equations 
We consider the nonlinear propagation of DA waves in a collisionless magnetized dusty plasma system 

consisting of negatively charged mobile dust fluid, nonthermal ions of distinct temperatures Ti1 and Ti2, and non-

inertial electrons having finite temperature Te, where 𝑇𝑒 ≫ 𝑇𝑖2 ≫ 𝑇𝑖1 in the presence of an external magnetic 

field 𝐁𝟎 = 𝐵0𝑧 . Thus, at equilibrium, 𝑛𝑖10 + 𝑛𝑖20 = 𝑛𝑒0 + 𝑍𝑑𝑛𝑑0,where ni10 and ni20 are the densities of the 

lower and higher temperature ions, respectively, at equilibrium, Zd is the number of electrons residing onto the 

dust grain surface, and ne0 (nd0) is the equilibrium density of the electron (dust). The nonlinear dynamics of the 

obliquely propagating DA waves in such a dusty plasma system is governed by 

 
𝜕𝑛𝑑

𝜕𝑡
+ 𝛁 ·  𝑛𝑑𝒖𝒅 = 0,         (1) 

𝜕𝒖𝒅

𝜕𝑡
+  𝒖𝒅 · 𝛁 𝒖𝒅 = 𝛁𝜙 − 𝛼 𝒖𝒅 ⨯ 𝑧  = 0,       (2) 

𝛻2𝜙 = 𝑛𝑑 + 𝜇𝑒𝜎2𝜙 − 𝜇𝑖1(1 + 𝛽𝜙 + 𝛽𝜙2)𝑒−𝜙 − 𝜇𝑖2(1 + 𝛽𝜎1𝜙 + 𝛽𝜎1
2𝜙2)𝑒−𝜎1𝜙 ,(3) 

 

where nd is the dust particle number density normalized by its equilibrium value nd0, ud is the dust fluid velocity 

normalized by Cd=(ZdTi1/md)
1/2

, ϕ is the wavepotential normalized by Ti1/e, the time variablet is normalized by 

dust plasma period ωpd
-1

=(md/4πnd0 Zd
2
e

2
)

1/2
, and the space variable is normalized by λDm=(Ti1/4πnd0Zde

2
)

1/2
. 

Here,σ1=Ti1/Ti2, σ2=Ti1/Te,α=ωcd/ωpdis the dust cyclotron frequency normalized by ωpd,β is the nonthermal 

parameter, μi1=ni10/Zdnd0, μi2=ni20/Zdnd0, μ=ne0/Zdnd0=μi1+μi2-1, and e is the magnitude of the electron charge. 

 

III. Derivation Of ZK Equation 
 To study small but finite amplitude electrostatic DASWs in the dusty plasma system, under 

consideration, one usually constructs a weakly nonlinear theory [44], and uses a scaling of the independent 

variables through the stretched coordinates [32, 43, 44] as 

𝑋 = 𝜖1 2 𝑥,          (4) 

𝑌 = 𝜖1 2 𝑦,         (5)  

𝑍 = 𝜖1 2 (𝑧 − 𝑉𝑝𝑡),        (6) 

𝜏 = 𝜖3 2 𝑡,          (7) 

whereϵ is a small parameter measuring the weakness of the dispersion, Vp is the phase speed  normalized by the 

dust-acoustic speed Cd. It may be noted here that X, Yand Z are all normalized by the Debye radius (λDm), and τ 

is normalized by the ion dust plasma period (ωpd
-1

). 

 

The perturbed quantities nd, udx, udy, udz, and ϕ can be expanded along with their equilibrium values as [44-47] 

 

𝑛𝑑 = 1 + 𝜖𝑛𝑑
(1)

+ 𝜖2𝑛𝑑
(2)

+···,         (8) 

𝑢𝑑𝑥 = 𝜖3 2 𝑢𝑑𝑥
(1)

+ 𝜖2𝑢𝑑𝑥
(2)

+···,         (9) 

𝑢𝑑𝑦 = 𝜖3 2 𝑢𝑑𝑦
(1)

+ 𝜖2𝑢𝑑𝑦
(2)

+···,         (10) 

𝑢𝑑𝑧 = 𝜖𝑢𝑑𝑧
(1)

+ 𝜖2𝑢𝑑𝑧
(2)

+···,         (11) 

𝜙 = ϵ𝜙(1) + 𝜖2𝜙(2) +···.         (12) 

 

Now, using eqns. (4)-(7), and (8)-(12) into eqns. (1)-(3), one can obtain the first order continuity 

equation,  z-component of the momentum equation, and Poisson's equation, which after simplification, yield 

𝑛𝑑
 1 

=
1

𝑉𝑝
2 𝜙 1 ,           (13) 

𝑢𝑑𝑧
 1 

=
1

𝑉𝑝
𝜙 1 ,           (14) 

𝑉𝑝 =  
1

 𝜇𝜎2+𝜇 𝑖1−𝜇 𝑖1𝛽+𝜇 𝑖2𝜎1−𝜇 𝑖2𝛽𝜎1
 .        (15) 

Eqn. (15) is the phase speed of theDA waves propagating in the magnetized dusty plasma, under consideration. 

The first order x- and y-components of the momentum equation can be written as 

𝑢𝑑𝑥
(1)

= −
1

𝛼

𝜕𝜙 (1)

𝜕𝑌
,          (16) 

𝑢𝑑𝑦
(1)

=
1

𝛼

𝜕𝜙 (1)

𝜕𝑋
.          (17) 

The equations (16) and (17), respectively, represent the x and y-components of (VE+VD) for dust, where VE and 

VD are E×B0 and diamagnetic drift, respectively. These equations are also satisfied by the second order 

continuity equation.  
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Again, using eqns. (4)-(7) and (8)-(12) into eqns. (1)-(3), and eliminating𝑢𝑑𝑥 ,𝑦
(1)

 , the next higher order x- 

and y-components of the momentumequation, and Poisson's equation can be found as 

𝑢𝑑𝑥
(2)

= −
𝑉𝑝

𝛼2

𝜕2𝜙(1)

𝜕𝑍𝜕𝑋
 ,          (18) 

𝑢𝑑𝑦
(2)

= −
𝑉𝑝

𝛼2

𝜕2𝜙(1)

𝜕𝑍𝜕𝑌
,          (19) 

𝜕2𝜙 1 

𝜕𝑋2
+

𝜕2𝜙 1 

𝜕𝑌2
+

𝜕2𝜙 1 

𝜕𝑍2
= 𝑛𝑑

 2 
+ 𝜇𝜎2𝜙

 2 +
1

2
𝜇𝜎2

2 𝜙 1  
2
− 𝜇𝑖1𝛽𝜙 2 + 𝜇𝑖1𝜙

 2  

                                            −
1

2
𝜇𝑖1 𝜙

 1  
2
− 𝜇𝑖2𝛽𝜎1𝜙

 2 + 𝜇𝑖2𝜎1𝜙
 2 −

1

2
𝜇𝑖2𝜎1

2 𝜙 1  
2
. (20) 

Equations (18) and (19), respectively, denote the x- and y-components of the dust polarization drifts. Now, 

following the same procedure one can obtain the next higher order continuity equation, and z-component of the 

momentum equation. Using these new higher order equations along with (13)-(20), one can eliminate𝑛𝑑
(2)

, 𝑢𝑑𝑧
(2)

, 

and 𝜙(2), and can finally obtain 
𝜕𝜙(1)

𝜕𝜏
+ 𝐴𝐵𝜙(1) 𝜕𝜙 (1)

𝜕𝑍
+

1

2
𝐴

𝜕

𝜕𝑍
 

𝜕2

𝜕𝑍2 + 𝐷  
𝜕2

𝜕𝑋2 +
𝜕2

𝜕𝑌2  𝜙
(1) = 0,      (21) 

where 

𝐴 = 𝑉𝑝
3,            (22) 

𝐵 =
1

2
 𝜇𝑖1 + 𝜇𝑖2𝜎1

2 − 𝜇𝜎2
2 −

3

𝑉𝑝
4 ,         (23) 

𝐷 = 1 +
1

𝛼2 .          (24) 

 

 

IV. SW Solution Of The ZK Equation 
To study the properties of the SWs propagating in a direction making an angle δ with the Z-axis, i.e., with 

the external magnetic field and lying in the (Z-X)plane, the coordinate axes (X,Z) are rotated through an angle δ, 

keeping the Y-axis fixed. Thus, we transform our independent variables to 

 

𝜌 = 𝑋 cos 𝛿 − 𝑍 sin 𝛿,   𝜂 = 𝑌, 

𝜉 = 𝑋 sin 𝛿 + 𝑍 cos 𝛿,    𝜏 = 𝑡.     (25) 

 

This transformation of these independent variables allows us towrite the ZK equation in the form 

𝜕𝜙(1)

𝜕𝑡
+ 𝛿1𝜙

(1)
𝜕𝜙(1)

𝜕𝜉
+ 𝛿2

𝜕3𝜙(1)

𝜕𝜉3
+ 𝛿3𝜙

(1)
𝜕𝜙(1)

𝜕𝜌
+ 𝛿4

𝜕3𝜙(1)

𝜕𝜌3
+ 𝛿5

𝜕3𝜙(1)

𝜕𝜉2𝜕𝜌
 

      +𝛿6
𝜕3𝜙 (1)

𝜕𝜉𝜕 𝜌2 + 𝛿7
𝜕3𝜙 (1)

𝜕𝜉𝜕 𝜂2 + 𝛿8
𝜕3𝜙 (1)

𝜕𝜌𝜕 𝜂2 = 0,   (26) 

where 

𝛿1 = 𝐴𝐵cos𝛿, 

𝛿2 =
1

2
𝐴 cos3𝛿 + 𝐷sin2𝛿cos𝛿 , 

𝛿3 = −𝐴𝐵sin𝛿, 

𝛿4 = −
1

2
𝐴 sin3𝛿 + 𝐷sin𝛿cos2𝛿 , 

𝛿5 = 𝐴  𝐷  sin𝛿cos2𝛿 −
1

2
sin3𝛿 −

3

2
sin𝛿cos2𝛿 ,      (27) 

𝛿6 = −𝐴  𝐷  sin2𝛿cos𝛿 −
1

2
cos3𝛿 −

3

2
sin2𝛿cos𝛿 , 

𝛿7 =
1

2
𝐴𝐷cos𝛿, 

𝛿8 = −
1

2
𝐴𝐷sin𝛿. 

It is now necessary to look for a steady state solution of this ZK equation in the form 

𝜙(1) = 𝜙0(𝑍),            (28) 

where 

𝑍 = 𝜉 − 𝑢0𝑡,           (29) 

in which u0 is a constant speed normalized by the positive DA speed Cd. Using this transformation the ZK 

equation can be written in steady state form as 

−𝑢0
𝑑𝜙0

𝑑𝑍
+ 𝛿1𝜙0

𝑑𝜙0

𝑑𝑍
+ 𝛿2

𝑑3𝜙0

𝑑𝑍3 = 0.        (30) 
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Now, using the appropriate boundary conditions, viz., ϕ
(1)

→0, (dϕ
(1)

/dZ)→0, (d
2
ϕ

(1)
/dZ

2
)→0 as Z→±∞, 

the solitary wave solution of this equation is given by 

𝜙0 𝑍 = −𝜙𝑚sech2(𝜅𝑍),         (31) 

whereϕm=3u0/δ1 is the magnitude of amplitude and 𝜅 =  𝑢0 4𝛿2  is the inverse of the width of the solitary 

waves. As A>0, it is clear from eqns.(23) and (27) that depending on whether B is positive or negative, the SWs 

will be associated with either positive potential (ϕm>0) or negative potential (ϕm< 0).  Therefore, there exist SWs  

associated with positive (negative) potential when B>0 (B<0). 

 

 
Figure 1:B=0 surface plot (i.e., variation of μc1 withσ1 and σ2 for β=0.4 and μi2=0.8, where μc1isthe critical 

value of μi1) above which ϕm>0 and below which ϕm<0. 

 

 
Figure 2:B=0 surface plot (i.e., variation of μc2 with σ1 and σ2 for β=0.5 and μi1=0.4, where μc2is the critical 

value of μi2) above which ϕm>0 and below which ϕm<0. 
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Figure 3: Variation of the amplitudes of solitary profiles for positive potential ϕmwith μi1 andσ1 for u0=0.1, 

μi2=0.4, σ2 =0.41, δ=20
º
 andβ=0.3. 

 

 
Figure 4: Variation of the amplitudes of solitary profiles for positive potential ϕmwith μi2 and σ2 for u0=0.1, 

μi1=0.58, σ1=0.2, δ=20
º
 and β=0.5. 

 

 
Figure 5: Variation of the amplitudes of solitary profiles for negative potential ϕmwith μi1 and σ1 for u0=0.1, 

μi2=0.4, σ2=0.3, δ=20
º
 and β=0.3. 

 

 
Figure 6: Variation of the amplitudes of solitary profiles for negative potential ϕmwith μi2 and σ2 for u0=0.1, 

μi1=0.3, σ1=0.5, δ=20
º
 and β=0.3. 
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Figure 7: Variation of the width (Δ) of solitary waves withδ and α foru0=0.1,μi1=0.58, μi2=0.8, σ1=0.2,σ2=0.41, 

and β=0.3. 

 

 
Figure 8: Variation of the width (Δ) of solitary waves with βand σ1 foru0=0.1,μi1=0.58, μi2=0.8, σ2=0.41, 

α=0.25, and δ=20
º
. 

 

 
Figure 9: Variation of the width (Δ) of solitary waves with μi1and μi2 for u0=0.1,β=0.3, σ1=0.4, σ2=0.41, α=0.3, 

and δ=20
º
. 

 

V. Numerical Analysis 
Figures 1 and 2 show B=0 surface plot showing the variation μc1 and μc2, respectively, with σ1 and σ2, 

where μc1(μc2) is the critical value of μi1 (μi2). The figures indicate that the upper (lower) region of the surface 

corresponds to B>0 (B<0), i.e., corresponds to the positive (negative) DASWs. The figures also indicate that the 

critical values of μi1 and μi2 decrease, as the values of both σ1 and σ2 increase.It is observed from eqns. (15), (22), 
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(23), (27), and ϕm=3u0/δ1 that the amplitude (ϕm) is the nonlinear function of μi1, μi2, σ1,σ2, δ, and β. The variation 

of ϕm, for positive and negative potential, with μi1, μi2, σ1, andσ2are shown in figs. 3-6. Fig. 3 shows the variation 

of the amplitudes of the positive SWs(ϕm>0) withμi1 and σ1 for u0=0.1, μi2=0.4, σ2 =0.41, δ=20
º
 and β=0.3. This 

shows that the magnitude increases with increasing both values of μi1 and σ1. Fig. 4 shows the variation of the 

amplitudes of the positive SWs (ϕm>0) with μi2 and σ2 for u0=0.1, μi1=0.58, σ1 =0.2, δ=20
º
 and β=0.5. This 

figure shows that the amplitude decreases (increases) with increasing the value of σ2for lower (higher) value of 

μi2, whereas the magnitude of the amplitude increases with increasing the value of μi2.Fig. 5 shows the variation 

of the amplitudes of the negative SWs (ϕm<0) withμi1 and σ1 for u0=0.1, μi2=0.4, σ2 =0.3, δ=20
º
 and β=0.3. The 

figure indicates that the amplitude of the negative solitary potential decreases with increasing the values of both 

μi1 and σ1. Fig. 6 shows the variation of the amplitudes of the negative SWs(ϕm<0)with μi2 and σ2 for u0=0.1, 

μi1=0.3, σ1 =0.5, δ=20
º
 and β=0.3. This shows that the amplitude of the negative solitary potential deceases with 

increasing the values of both μi1 and σ1. This is to be noted that the amplitude of the external magnetic field has 

the significant effect only on the width, but not on the amplitude of these solitary waves. 

 It is found from eqns. (15), (22), (24), (27), and 𝜅 =  𝑢0 4𝛿2  that the width (Δ=1/κ) is a nonlinear 

function of δ, α, μi1, μi2, σ1, σ2, and β.The variations of the width, for positive and negative SWs, with δ, α, μi1, 

μi2, σ1, and βare represented in figs. 7-9. Fig. 7 shows how the width (Δ) of solitary waves varies with δ and α for 

u0=0.1,μi1=0.58, μi2=0.8, σ1=0.2, σ2=0.41, and β=0.3. This figure shows that the width increases with δ for the 

lower range, i.e., from 0
º
to about 55

º
, but decreases with δ for higher range, i.e., from about 55

º
 to 90

º
, and as 

δ→0
º
, the width goes to zero. This also shows that the width decreases with increasing α, and is valid only for 

δ<90
º
. Fig. 8 shows how the width (Δ) varies with β and σ1 for u0=0.1,μi1=0.58, μi2=0.8, σ2=0.41, α=0.25, and 

δ=20
º
. This figure indicates that the width of the SWs increases (decreases) with increasing the value of β (σ1). 

Fig. 9 shows the variation of the width (Δ) of solitary waves with μi1and μi2 for u0=0.1,β=0.3, σ1=0.4, σ2=0.41, 

α=0.3, and δ=20
º
. The figure shows that the width decreases with increasing the both values of μi1and μi2. We 

have not shown the change of width with σ2 physically, but observed that the width of the SWs decreases with 

increasing σ2, when other parameters remain unchanged. 

 

VI. Discussion 
We have considered magnetized dusty plasma system consisting of negatively charged dust fluid, 

Boltzmann distributed electrons, and nonthermal ions of distinct temperatures, and have studied DASWs 

associated with both positive and negative potentials by deriving the ZK equation. We have found that, 

depending on the values of μi1, μi2, σ1,σ2, δ, and β, the SWs may become associated with either positive or 

negative potential. We have seen that, as the values of μi1, μi2, σ1, and σ2 increase, the amplitude of the positive 

(negative) SWs increases (decreases), and their width increases (decreases) with the increase of the β value (μi1, 

μi2, σ1, and σ2 values). We have found that as the value of δ increases, the width of the SWs (for both positive 

and negative potentials) increases for the lower range of δ (from 0
º 
to about 55

º
) but decreases for its higher 

range (from about 55
º
to 90

º
). As δ→90

º
, the width goes to zero, and the amplitude goes to ∞. It is likely that, for 

large angles, the assumption that the waves are electrostatic is no longer valid, and we should look for fully 

electromagnetic structures. It is found that the magnitude of the external magnetic field B0 has no direct effect 

on the SW amplitude. However, it does have a direct effect on the width of the SWs, and have found that, as the 

magnitude of B0 increases, the width of the wave decreases, i.e., the magnetic field makes the solitary structures 

spikier.Therefore, it is found that the effect of nonthermal ions of distinct temperature and external magnetic 

field significantly modify the basic properties of the DASWs. 

The ranges (β=0.1 - 0.9, α=0.1-0.9, μi1= 0.1-0.9, μi2= 0.1-0.9, σ1=0.1-0.9, σ1=0.1-0.9) of the dusty 

plasma parameters used in this numerical analysis are very wide. Therefore, the dusty plasma parameters 

corresponding to space and laboratory dusty plasmas are certainly within these ranges. So, our present results 

may be useful for understanding the localized electrostatic disturbances in space and laboratory dusty plasmas.  
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