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Abstract: Analytical solution to the Schrodinger equation is of paramount importance in the field of science. In 

this research we have been able to resolve the Schrodinger equation with the Yukawa’s potential into a 

hypergeometric function and obtain a useful analytical approximate solution. 
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I. Introduction 
Solutions to Schrodinger equation are possible only for some potentials [1-5]. In a more recent 

researches different authors have develop different analytical solutions for several potentials [6-8]. Many of 

which are important in the field of science today. Obtaining dynamical solutions to Schrodinger equation are of 

great interest in physics and chemistry such is the exact solution to the hydrogen atom and harmonic oscillator 

[10-12]. The Yukawa potential or Static Screened Coulomb Potential (SSCP) [13] is given by: 
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Where, V0 = aZis the fine-structure constant, 𝑍is the atomic number, anda = (137.037)−1is the 

screening parameter. This potential is often used to compute bound-state normalizations and energy levels of 

neutral atoms [14-16] which have been studied over the past years.

 In addition, although the Yukawa interaction(equation 1) is an idealized one, it nonetheless forms a reasonable 

basis for the description of physical phenomenasuch as the photoelectric disintegration of the deuteron and the 

so-called deuteron-stripping process [17]. 

 

II. Materials And Methods 
In this research work we set out to solve the Schrodinger equation using an approximate method by 

resolving the equation into a hypergeometric function.The applications of this novel treatment to solving 

Schrodinger equation, have been proven a success. With the successful application of this method and bearing in 

mind the significance of a reliable algebraic solution for Yukawa-type potentials, that is clearly reported, we 

demonstrate here how such interaction potentials can be simply treated within the framework of the present 

formalism.Given the Schrodinger equation in the x-direction as shown in equation (2). 
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Then it could be resolve that  
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Where, 
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The potential in (equation 3) can be replaced with the Yukawa’s potential (equation 1) which is given by: 
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At large ‘a’ this reduces to  
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Putting the resolve Yukawa’s potential into equation (3) we get: 
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Where,   
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Equation (7) can be written as: 
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We the subjected equation (8) to the Wolfram Mathematica 9.0 program. The solution to the equation is give in 

hypergeometric function as: 

),,(2),,(1

222222

)( cba

kxkkx

cba

kxkkx

FxCeFxCex





 





 

 (9) 

Where, C1 and C2 are constant, while F(a,b,c)  is the Whittaker’s confluent hypergeometric function. Assuming 

that C2 = 0, equation (9) reduces to:
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Equation (10) is the Eigen function to the assumed solution in equation (8)  

Where,
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The complex plane real value is gotten given a real equation (10) for the actual plane wave 
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Using the following transformation of hypergeometric function
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Setting d = 0
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Hence we have that 
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Where, n = a − 1 

 

III. Results And Discussion 
 

The Yukawa potential is very deep and the wave function becomes very sharply peaked near the origin. This 

causes a great deal of difficulty in the numerical solution of the Schrödinger equation, which is reflected in the 

instability of the wave function thus obtained.TheWhittaker's confluent hypergeometric function for special 

cases of the confluent hypergeometric function can be express as: 

https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
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For the special case generated by equation (17) we let n = 1 in equation (15), hence we have: 
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The wave function then becomes: 
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The normalization constant C1, in the above equation can be gotten by normalizing the wave function: 
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On the condition that k must be an integer. 
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The Eigen value was then obtained from equation (11). 
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This show that the Eigenvalue depend onV0. 

 

IV. Conclusion 
In this paper, we have been able to infuse the Yukawa’s potential into the Schrodinger equation and 

obtained an approximate value for the Eigen function and the Eigenvalue in accordance with reviewed literature. 

This was obtained for a large value of ‘a’.  
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