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ABSTRACT: We develop a progressive comparable to Bank’s General Ledger, and call it a General
Theory of all the problems under the head of NP hard problems. Problems have their variables. For
instance “Travelling Sales man problem” can have various different cities. Based upon parameters
classification is done and stability analysis, asymptotic stability and Solutional behaviour of the
equations are investigated We eschew from stating any primary predications, coextensive
representations, predicational anteriority of the Problems attributed to space constraints. In
consideration to the parametric based classification and there is both ontological consonance,
primordial exactitude, and phenomenological testimony as one finds in Bank’s ledgers. General Ledger
is in fact the statement of all inflows and outflows, such a one as that occurs in problems, and theories in
some conditions, like for example the conservation of energy breaking down in Hawking’s radiation.
Emphasis is laid on the fact that for instance a travelling salesman makes some move and then retracts
to redress his move or starts another move to further his final destination. And this destination is
General Ledger.-The General Theory Of all the NP (hard) problems. .It is a journey, a journey to find
the final balance which probably never ends like an account never closes. So we are on to the journey
KEY WORDS: Boolean satisfiability Problem, N Puzzle, Knapsack Problem, Hamiltonian Path
problem, Travelling Salesman Problem

l. INTRODUCTION:

As stated in the abstract we will not give any introduction, inconsideration to the leviathans’
material and humungous literature on each subject matter for fear of missing woods for trees. On the
other hand, for the interested reader the literature provides a rich receptacle, repository and treasure-trove
of knowledge, And also because of space constraints. We note that the NP (HARD) problems are
classified as follows:

1) Boolean satisfiability Problem
2) N Puzzle

3) Knapsack Problem

4) Hamiltonian Path problem

5) Travelling Salesman Problem
6) Sub graph Isomorphism Problem
7) Subset Sum problem

8) Clique Problem

9) Vertex Cover Problem

10) Independent Set problem

11) Dominating set problem.

12) Graph Coloring Problem

As in a Bank, various parameters are there for an account like balance standing, rate of interest,
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implications of inflation, money depression, depreciation of the currency, implications of Policies,
philosophies and programs of the Government, each problem has certain parameters. That Gravity is
constant does not mean it does not depend upon the masses of individual particles and there is no total
gravity. Stratification is done based on the parameters of each problem and then consummated with the
other to form a monolithic Diaspora for building the Model, which essentially as said is a progressive,
nay a General Theory Of all the ways and means in which the problem can be solved be it by invocation
or by abnegation and revocation of the action. Everything is recorded in the Computer and we draw up a
Final General Ledger-nay The General Theory Of all NP (HARD) Problems. Essentially a prediction
model, it as said analyses various other facets too.

GLOSSARY OF THE SYSTEM BOOLEAN SATISFIABILITY PROBLEM AND N PUZZLE
NOTATION :

G;5 : Category One Of Boolean Satisfiability Problem
Gy, : Category Two Of Boolean Satisfiability Problem
G5 : Category Three Of Boolean Satisfiability Problem
T;; : Category One Of N Puzzle

Ty, :Category Two Of N Puzzle

Ty5 :Category Three Of N Puzzle

GLOSSARY OF THE SYSTEM KNAPSACK PROBLEM AND HAMILTONIAN PATH
PROBLEM:

G, - Category One Of Knapsack Problem

G, : Category Two Of Knapsack Problem

G,g : Category Three Of Knapsack Problem

Ty, - Category One Of Hamiltonian Path Problem
Ty, : Category Two Of Hamiltonian Path Problem

T, : Category Three Of Hamiltonian Path Problem

GLOSSARY OF THE SYSTEM:TRAVELLING SALESMAN PROBLEM AND SUBGRAPH
ISOMERISM PROBLEM

G, : Category One Of Travelling Salesman Problem
G,; : Category Two Of Travelling Salesman Problem
G,, :Category Three Of Travelling Salesman Problem

T,, : Category One Of Sub graph Isomerism Problem
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T, : Category Two Of Sub graph Isomerism Problem
T,, : Category Three Of Sub graph Isomerism Problem
GLOSSARY FOR THE SYSTEM: SUBSET SUM PROBLEM AND CLIQUE PROBLEM

G,, : Category One Of Subset Sum Problem
G,5 : Category Two Of Subset Sum Problem
G, . Category Three Of Subset Sum Problem
T,, : Category One Of Clique Problem

T,5 : Category Two Of Clique Problem

T,¢ : Category Three Of Clique Problem

GLOSSARY FOR THE SYSTEM: VERTEX COVER PROBLEM AND INDEPENDENT SET
PROBLEM

G,g . Category One Of Vertex Cover Problem
G, : Category Two Of Vertex Cover Problem
G5, : Category Three Of Vertex Cover Problem
T, : Category One Of Independent Set Problem
T,q : Category Two Of Independent Set Problem

Ty, : Category Three Of Independent Set Problem

GLOSSARY OF THE SYSTEM: DOMINATING SET PROBLEM AND GRAPH COLORING
PROBLEM

==== G5, : Category One Of
Dominating Set Problem

G5 . Category Two Of Dominating Set Problem
G, : Category Three Of Dominating Set Problem
T, : Category One Of Graph Coloring Problem
T;5 : Category Two Of Graph Coloring Problem

T, : Category Three Of Graph Coloring Problem
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ACCENTUATION COEFFICIENTS

(a13)®, (a1)™, (a;5)®, (b13)®, (b14)®, (b15)® (a16)®, (a17,)®, (a;5)@
(b16)(2)' (b17)(2), (blg)(z): (azo)(B)' (a21)(3), (azz)(S) , (bzo)m' (b21)(3), (bzz)(S)
(a24)®, (a25)®, (a26)®, (b24)®, (b25) ™, (b6)®, (b2)®, (b29)®, (b30)®,
(azs)(s), (azg)(s)’ (ago)(s)' (agz)(ﬁ), (a33)(6), (a34)(6), (b32)(6), (b33)(6), (b34)(6)

DISSIPATION COEFFCIENTS

D (6]

(aiS)(l): (ai4)(1): (ais) , (bi3)(1); (bi4)(1); (bis) , (ai())(Z), (ai7)(z); (ais)(z);
(bi6)(2): (b17)@, (big)(z) ) (aéo)(g), (a31)®, (a)®, (béo)(”; (0,10, (b3)®
(@)@, (a35) " (@)@, B2, (b35) ™ (B3I, (b3)®), (b)), (b3)
(a26)®, (a20)®, (a30)® , (a32)®, (a33) @, (@34) @, (b32) @, (b33)®@, (b34)®

GOVERNING EQUATIONS OF THE SYSTEM BOOLEAN SATISFIABILITY PROBLEM
AND N PUZZLE

The differential system of this model is now

dG , ,

2= (a13) W6y — [(a13)® + (a1) P (T4, 0] 613 !
dG , ,

= () W63 — [(@1) P + (@) (T14, ]G4 ?
dG N Y] N ¢Y) 3

715 = (a15) MGy — [(a1s) + (ass) (T14:t)] Gis

dr, , ,

713 = (b13) Ty — [(b13)® — (b15)V (G, )] T !
dr, , ,

714 = (b)) VTy3 — [(b14)(1) — (b1)V(G, t)]TM >

5 = (bys) Ty — [(b15) " = (b15) V(G 0] T 6
7 = 1) Ty 15 15 )| Tis

+(a;i3) P (Ty,, t) = First augmentation factor 7
—(by3)P(G,t) = First detritions factor 8
GOVERNING EQUATIONS:OF THE SYSTEM KANPSACK PROBLEM AND

HAMILTONIAN PATH PROBLEM

The differential system of this model is now

dG , .

= (w16) PGy — [(a16)@ + (a16) P (T17, ]Gy ?
dG , .

— = (a17)P66 — [(017)@ + (a1 P (T17, 06y 10
dG , .

= (a19) PGy — [(a15)@ + (a1) P (T17,0)]Gig H
d , .

26 — (b, )OT;y — [(bi6)® = (B1)? (610, E)]Tie 12
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dT17 _
a

(b17)@Tys = [(b17)@ = (b17)P((Gy1o),t)]Ti7

dT; ’ "
718 = (b1g)PTy; — [(bw)(z) = (b18)(2)((G19); t)]T18
+(a;)@ (Ty;,t) = First augmentation factor

—(b1s)@((Gy9),t) = First detritions factor

13

14

15

16

GOVERNING EQUATIONS: OF THE SYSTEM TRAVELLING SALESMAN PROBLEM AND

SUBGRAPH ISOMERISM PROBLEM:

The differential system of this model is now

dG . p
720 = (ay)® Gy — [(azo)(g) + (a30)®(Tyy, t)]Gzo
dG . p

721 = (a21)(3)Gzo - [(a21)(3) + (a31)®(Tyy, t)]Gz1
dGzp

i (a2)®6yy — [(aéz)(” + (a5,) @ (Tyy, t)]Gzz

d;‘% = (bZO)(3)T21 - [(béo)(3) - (b;o)(3)(G23, t)]TZO

% = (b2)®Ty - [(bé1)(3) — (b;1)®(Gya, t)]T21

dez

=2 = () Ty — [(022)® — (03)P (623, D] Tz

+(az0)® (Tyy,t) = First augmentation factor

—(by)®(Gys,t) = First detritions factor

GOVERNING EQUATIONS:OF THE SYSTEM SUBSET SUM PROBLEM AND CLIQUE

PROBLEM

The differential system of this model is now

dGa4

ac (224) PG5 — [(a2)® + (a20)® (o5, )] Goa

N C)) v \(4)
dg_tzs = (aZS)(4)GZ4 - [(azs) * + (aZS) ' (Tzs,t)] GZS

d626

ac (a26) G5 — [(a26)™® + (a26)® (Tos, )] Gas

d ' "
% = (b20)WTys — [(b24)(4) — (b2)((Gyy), t)]T24

AN O) v N (4)
%:(bzs)(‘*)Tﬂ—[(bZS) — (bys) ((527),t)]T25

% = (b26)VTys — [(bé6)(4) - (bge)m((Gzﬂ. t)]Tze

+(ay,)® (T,s,t) = First augmentation factor

—(by)®((Gy7),t) = First detritions factor
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GOVERNING EQUATIONS:OF THE SYSTEM VERTEX COVER PROBLEM AND

INDEPENDENT SET PROBLEM

The differential system of this model is now

dG ! "
728 = (azg)(S)sz) - [(azs)(s) + (aZB)(S) (T9, t)]GZB

dGyg

pr (ay0)®)Gyg — [(aé‘))(s) + (az0)® (Tyo, t)]G29

dG3o

A (a3o)(5)629 - [(aéo)(s) + (a;o)(s)(ng, t)]G30

T = (byg) DTy — [(b36)® — (b36) P ((G31), £)]Tg

dT. ' )
T = (0y9) Ty = [(039)® = (b39) P ((G31), )] T

d;% = (b30)(5)T29 - [(béo)(s) - (bgo)(s)((Gm); t)]Tso

+(a55)®(Ty,t) = First augmentation factor

—(b5)®((G31),t) = First detritions factor

GOVERNING EQUATIONS:OF THE DOMINATING SET PROBLEM AND GRAPH

COLORING PROBLEM:

The differential system of this model is now

dG : ,
=2 = (az) @63 — [(a3)@ + (a3)© (T35, )]Gz,

dG33

ac (a33) @G, — [(a33)®@ + (a33) @ (T35, )] G5

dG3s

ac (a34) @G35 — [(a3)® + (a3)© (T33, )] G4

d ' "
% = (b3) T35 — [(b32)(6) - (b32)(6)((G35); t)]T32

d ' "
% = (b3) T3, — [(b33)(6) — (b33)@((G35), t)]T33

i , "
% = (b34)(6)T33 - [(b34)(6) - (b34)(6)((G35); t)]T34

+(az,)© (Ts3,t) = First augmentation factor

—(b3,)®((Gs5),t) = First detritions factor

FINAL CONCATENATED GOVERNING EQUATIONS OF THE SYSTEM:

BOOLEAN SATISFIABILITY PROBLEM
N PUZZLE

KNAPSACK PROBLEM
HAMILTONIAN PATH PROBLEM
TRAVELLING SALESMAN PROBLEM
SUB GRAPH ISOMERISM PROBLEM

ourwdE
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33
34
35
36
37
38

39

40

42
43
44
45
46
47

48

49
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7. SUBSET SUM PROBLEM

8. CLIQUE PROBLEM

9. VERTEX COVER PROBLEM
10. INDEPENDENT SET PROBLEM
11. DOMINATING SET PROBLEM
12. GRAPH COLORING PROBLEM

[ - - - 7 50
dGi3 (a)DG (a13)(1)|+(a13)(1)(T14; t) | | +(a16) @) (Ty7, 1) || +(az0) 3 (T4, t)| G
— = a3 14 — 13
d " " m
f | [H(az) @444 (s, 0)|[+(aze) G555 (o, )| [+(a5) 559 (T, )] |
[ ' " " " T 51
dG1s W (a14)(1)|+(a14)(1)(T14, t) ”+(a17)(2'2') (Ty7,t) || +(az) 3 (Tyy, 1) |
dt = (a14) Gl3 - v\ (4,4,4,4) m m Gl4’
] +(azs) (s, t) |+(a29)(5'5'5'5') (Tyo, 1) | | +(ag3) 008 (T, 1) | ]
[ D @ "N22) " (33) 52
1615 _ (g YOG (ai5) |+(ais) (T, ) |+(a18) - (T17,t)||+(a22) "~ (T21;t)| G
ar Y15 14 — - - — 15
| [+ (aze) 444 (T, £)][+(az0) 555 (Tyg, £)|| +(a34) ©08) (T3, 1)
- ,, NG . . - 54
Where|(a13)(1)(T14, t)| ,|(a14)(1)(T14, t)|, (als)( )(T14, t)| are first augmentation coefficients for
category 1, 2 and 3 55

|+(a{6)(2'2') (Ty7, t)| , |+(a{7)(2'2') (Ty7, t)| , |+(a{8)(2'2') (Ty7,t) | are second augmentation coefficient

for category 1, 2 and 3

[+(a50) 83 (T, O, [+(a5) B3 Ty, )], [ +(a5,) 33 (T, ) | are third augmentation coefficient for 56

category 1, 2 and 3

m " 4,444, T .
|+(a24)(4'4'4'4')(T25,t)| : +(a25)( )(Tzs,t) ,|+(a26)(4'4'4'4')(T25,t)|are fourth augmentation >
coefficient for category 1, 2 and 3

m ,, - . . 58
| +(az5) 555 (Tyo, ) || +(a30) O35 (Tyo, )|, | +(a3e) &%) (Tyo, t)| are fifth augmentation
coeffylyuent for category 1, 2 a?d 3 _ . . 5
|+(a32)(6'6'6'6') (Ty3,t) | |+(a33)(6'6'6'6') (Ts3, t)l ,|+(a34)(6'6'6'6') (Ts3, t)| are sixth augmentation
coefficient for category 1, 2 and 3
. N i) Vb1 DG, O] [~ b1 2 (G, O] |- (032 (G5, D] ®
— = (b3) VT, — - - r T,

dt 2 14 |—(b24)(4’4’4’4’)(G27; t)“—(bzs)(s‘s‘s‘s‘) (G31, ) | | —(b3,) %) (Gys, t)l 2

B . . 7 61
T W (b14)(1)|—(b14)(1)(G, t)l |—(b17)(2‘2‘) (Gyo, t)“‘ (b31)53)(Gy3, t)l
7 = (b14) T13 - " (4,4‘4‘4‘) - - Tl4-

| _(bzs) (Gy7,8) |—(b29)(5‘5‘5‘5‘) (G, t)“ —(b33)(0000) (Gy5, 1) | ]

[ \@® D z . ] 62
dTys (b1 )T, (b15) _(b15) @,t) |—(b18)(2‘2‘)(G19't)“—(bzz)(3‘3‘)(623z t)l T
= 15 14 — 15
“ | [=(2e) 444 (Gyy, ) || = (b30) S555 (G3y, D) || = (b34) ©0°%) (G, £)| |

Where | —(b3)V(G,t) | ,|—(b1”4)(1)(G, t)l, —(bi’s)(l)(G, t)| are first detrition coefficients for category 63

1,2and 3

|—(b{6)(2'2') (Gyo, t) | ,|—(b{7)(2'2') (Gyo, t)|,|—(b1”8)(2'2') (Gyo, t)| are second detrition coefficients for 64
category 1, 2 and 3

|—(b§0)(3r39 (Gy3, t)| ,|—(b£1)(3'3') (Gy3, t)|,|—(b§2)(3'3') (Go3, t)|are third detrition coefficients for 65

category 1, 2 and 3
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|—(b§4)(4'4'4'4')(627, t) | —(bys (444) (Gy7,t) ,|—(b§6)(4'4'4'43 (Gy7,t) | are fourth detrition coefficients
for category 1, 2 and 3

|=(b36)5555) (Gay, )], | = (B39) 555 (G, )|, [=(B30) 55552 (G, £) | are fifth detrition coefficients
for category 1, 2 and 3

|=(03,)©555) (Gag, )], | = (b33)©000) (G5, 0], [—(B3,)©568) (G55, ¢) | are sixth detrition coefficients
for category 1, 2and 3

16 _ (g, )6 (ai6)(2)| +(ais)?(Ty7, 1) ” +(ajs) M (T, t)” +(az0) @3 (T, t)|
=6 17 — 16
d m m m
‘ | |+(a24)(4'4'4'4'4) (Tys, £) | | +(a28)(5'5'5'5'5) (Tyo, 1) || +(as, )(6666,6) (Tz3, ) |
61 _ (3o (a1)@[+(a1)® (T17, )| +(a1) P (T, O] +a3) 53 (T, )]
—= =(a17)"" Gy — 17
dt N (444,44) ,, -
| +(a25) (s, t) |+(a29)(5'5'5'5'5) (T, t)||+(a33)(6'6'6'6'6) (Ts3, t)|
, M »3(11) "
1618 _ (g, )2G (a18)(2)|+(a18)(2)(T17't)l +(ajs) (T, t) |+(a22)(3'3'3)(T21,t)| G
o - g 17 — . = - 18
‘ | |+(a26)(4'4'4'4'4) (s, £) | | +(az0) 559 (T, t)” +(azq) ©0000) (Tys, t)|

Where | +(a;s) P (Ty7,t) | , |+(a{7)(2)(T17, t) | ,|+(a{8)(2)(T17, t) | are first augmentation coefficients for
category 1, 2 and 3

[+ (@) (T, )], [ +(a1) W (T, O] | +(als)
category 1, 2 and 3

|+(a§0)(3'3'3)(T21, t) | | +(ay,) 333 (Tyy, t) | , | +(ay,) 333 (Ty, t) | are third augmentation coefficient
for category 1, 2 and 3

|+(a§4)(4'4'4'4'4)(T25,t) | +(a;5)(4'4'4'4'4)(T25,t) |+(a§6)(4'4'4'4'4)(T25,t)| are fourth augmentation
coefficient for category 1, 2 and 3

| +(a35) 5559 (Tyg, )| [+(a50) &35 (Tho, )|, [ +(aze) &5 (T, )| are fifth augmentation
coefficient for category 1, 2 and 3

| +(a3,)©0559) (Tyg, )| [+(azs) @440 (Tys, )], [ +(azy) @440 (T4, )| are sixth augmentation
coefficient for category 1, 2 and 3

1)

(Ty4,t)| are second augmentation coefficient for

ihe _ oy (i) ?[=(01)® G0, O] [~ i) VG, 0] |- i) G 0)] |
— — Wie 17 = — — — 16
a [=(B7) #4449 (Goy, )| | = (b35) ©5559) (Gay, D) || = (05,) @050 (G35, 1) |
i " GNP =GN G, O] [2Bi) TG, O] [- (015 (653, D)
7 = (b17) T16 - " (4,4‘4‘4‘4) - - Tl7
|| =(b25) (627, D)||=(b30) 5555 (Gyy, ) || = (b33) €459 (Gys, 1) |
, - PINGES) p 1
dTig _ (b )(Z)T (bIB)(Z)I_(b18)(2)(Gl9vt)l _(b15) @, t) |—(b22)(3‘3‘3‘)(523:t)| T
. 18 17 — 18
“ | [=(070) #4449 (Go7, )| [ = (b3)©5559) (Gay, D) || = (05,) €050 (G35, 1) ||

where| —(b{ﬁ)(z)(Glg,t)| ,|—(b{7)(2)(G19,t)| ,|—(b{8)(2)(G19,t)| are first detrition coefficients for
category 1, 2 and 3

|—(b'1'3)(1'1') (@G, t)| | —(b]) VG, t)| , —(b{S)(M') (G, t)| are second detrition coefficients for category
1,2and 3

|—(b§0)(3'3'3')(623,t)|,|—(b£1)(3'3'3')(623,t)|,|—(b§2)(3'3'3')(G23,t)| are third detrition coefficients for
category 1,2 and 3
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[—(;0@4 48 (G, D)) |- (b3s) ™ (G7, O)}[=(b36) #4496, )] are fourth detrition
coefficients for category 1,2 and 3

|=(b36) 55555 (Gay, )], | = (B30) O (G, )|, [~ (B30) 55559 (G, )| are fifth detrition

coefficients for category 1,2 and 3

|=(03,)©5559) (Gag, )] [~ (0350059 (Ga5, )], |~ (b5,) @000 (G35, 1) | are sixth detrition
coefficients for category 1,2 and 3

(aéo)m’ +(a;0)(3) (T21,t) || +(a{6)(2'2'2) (T17,0) ‘ ‘ +(ags )(1’1’1’) (T14,8) ‘ |

d;;tzo = (aZO)(3)G21 - v\ (4444,44) v (5,5,5,5,5,5) v 1(6,6,6,6,6,6) lGZO

’+(a24) (Tzs't)H"'(azs) (T29,t)H+(a32) (T33»t)‘J
421 — (a)®6 (aél)(3)’+(a£1)(3)(T21,t)“+(a{7)(2'2'2)(T17,t)H+(a{4)(1'1'1')(T14,t)‘ G
2 \d21 20 ~ 21
dt ’+ (s )(4,4,4,4,4,4) (Tys,t) H + (agg)(s,s,s,s,s,s) (Tyo,©) H +(als )(6,6,6,6,6,6) (T3 ) ‘
4922 — (a,,)®6 (aéz)(”""(a;z)c)@zpt)H+(ai,8)(2’2’2)(7“17,t)H‘l'(ai,s)(l'llll)(TM:t)‘ G
5 \d22 21~ 22
dt ’+(a£6)(4,4,4,4,4,4) (Tys,t) H +(a§0)(5'5'5'5'5'5) (Tyo £) H +(a§4)(6,6,6,6,6,6) (T3 t) ‘

|+(a§0)(3)(T21, t)|, |+(a§1)(3)(T21, t) | |+(a§2)(3)(T21, t)l are first augmentation coefficients for
category 1, 2 and 3

|+(a{6)(2'2'2)(T17, t) |,|+(a{7)(2'2'2)(T17, t)| ,|+(a{8)(2'2'2)(T17, t) | are second augmentation coefficients
for category 1, 2 and 3

[+ ar) W (T, O], [+(ar) W (T, )| | +(ars)
for category 1, 2 and 3

|+(a§4)(4'4'4'4'4'4) (Tzs,t)| : +(a£5)(4'4'4'4'4'4)(T25,t) ,|+(a§6)(4-4-4-4-4-4) (Tzs,t)| are fourth augmentation
coefficients for category 1, 2 and 3

| +(az5) 55559 (Tyq, ) || +(ape) 5555 (Tyg, )|, | +(azy) &5555) (T, t) | are fifth augmentation
coefficients for category 1, 2 and 3

| +(az,)©55660) (Tyy, )|, [+(ais) ©00000) (Tyy, )] |+ (az,) ©65568) (T, t) | are sixth augmentation
coefficients for category 1, 2 and 3

1,1,1, . . ..
( )(T14,t) are third augmentation coefficients

N ¢ " v N(2,2,2) »N(1,1,1)
@ _ (YT (b2) 3)|_(b20)(3)(623: t) ||— (b16)(2 D (G10,) “— (bls)(l ", t)l .
= = (020) T — 20
dt _ | —(b£4)(4'4'4'4'4'4) (6o ) H _(bgs)(s,s,s,s,s,S) (s, t) “ (b5, )(6,6,6,6,6,6)(635’ 0 l _
RN ¢ " v \(2,2,2) »y(1,1,1)
e o (52| =(3)? 65,0 - (61)**? G0, 0)| |- (622) 6, 0)| ’
— = (21 20 ~ 2
dt _ | (s )(4,4,4,4,4,4) (6o ) H _(bgg)(s,s,s,s,s,:;) (s t) l l (b )(6,6,6,6,6,6) (Gas, ) l _
@i _ (YO (b2 )(3)|_(b£2 )(3) (Gy3,1) ||— (bi,s)(Z'Z'Z)(Gw: t) “— (bfs)(l'l'l')(G, t)l r
= (b 21~ 22
dt _ | _(b£6)(4,4,4,4,4,4) 6o ) H _(bé,o)(s,s,s,s,s,S) (s t) “ _(bé,4)(6,6,6,6,6,6)(635' 0 l _

|—(b§0)(3)(623,t)|,|—(b§'1)(3)(623,t)| ,|—(b£2)(3)(623,t)| are first detrition coefficients for category
1,2and 3

|—(b{6)(2'2'2)(619, t)| , |—(b{7)(2'2'2)(619, t)l , |—(b1”8)(2'2'2)(619, t)| are second detrition coefficients for
category 1,2 and 3

82

83

84

85

86

87

88

89

90

91
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|—(b'1'3)(1'1'1')(6, t)|,|—(b’1’4)(1'1'1')(G, t)|, —(b{S)(l'l'l')(G, t)| are third detrition coefficients for
category 1,2 and 3
” vy (4,4,4,4,4,4) m
|_(b24)(4'4'4'4'4'4) (Gy7,t) |. —(bys) (Gy7, ) |—(b26)(4'4’4’4’4’4) (Gy7,t) | are fourth
detrition coefficients for category 1, 2 and 3 92
= (b3) 555555) (G, )} | ~(b30) 555559 (Gy1, )], [~ (b30) G555 (Gay, 1) are fith
detrition coefficients for category 1, 2 and 3
| = (b5,)©65555) (Gag, )], | = (b35)©55559) (Gys, )], [~ (034) ©66669 (G4, £) | are sixth detrition
coefficients for category 1, 2 and 3

[ ” 0 ” ] 93
dG,, @ (az4)(4)| +(az4) @ (Tys, 1) ” +(a35) " (T, t)H +(az,) %) (T3, t)|
ar - (Gaa)VGs — L) N@2.2.2) "3333) Gt
_|+(a13) o (T14't)||+(a16) e (T17,t)||+(a20) o (T21;t)| ]
[ (Ol () G5 366 _ .
dGys (@) DG, — (azs) |+(azs)  (Tys,t) |+(a29) > (ng,t)||+(a33) : (T33;t)| G
ar - G 24 _ - . -
| |+(a14)(1'1'1'1)(T14, t) ||+(a17)(2'2'2'2)(T17, t) | | +(az) 333 (T, t)| ]
[ ’ " ” " T 95
dGy @ (a26)(4)| +(az6) ™ (Tys, t)” +(a30) %) (Ty, t) | | +(a34) ) (T3, t)|
ac (@56)™ Gz = ) "N22.2.2) " NG.3.3.3) G2
| +(ajs) (T14,t) |+(a18) e (T17,t)||+(a22) o (T21»t)| ]

" (4) " (4) " (4) . . 96
Where|(az)® (Tys,t)|,|(azs) (Tas, )|, (aze) (Tzs,t)l are first augmentation

coef ficients for category 1,2 and 3

| +(azg) 5 (Tyo, t) | , | +(a39) 55 (Tyo, t) | , | +(az0) %) (Tyo, t) | are second augmentation
coefficient for category 1,2 and 3

| +(a3,)©0) (Ts3, t) | , | +(a33) %) (Ty3, t) | ,| +(a34) 0 (Ty3, 1) | are third augmentation
coefficient for category 1,2 and 3

| +(ay3) (T, £) |,|+(ai'4)(1'1'1'1)(7’14, t) I; +(ajs)
coefficients for category 1, 2,and 3
|+(a{6)(2'2'2'2)(T17, t) | |+(a{7)(2'2'2'2)(T17, t) |,|+(a{8)(2'2'2'2)(T17, t)| are fifth augmentation
coefficients for category 1, 2,and 3

|+(a30)3333(Tyy, )| [+(a51) 3333 (T, )], [+(a3,) B33 (T, )| are sixth augmentation
coefficients for category 1, 2,and 3

1,111

(Ty4,t)| are fourth augmentation

[ ” ” ” 97
dT,, b )(4)T (bz4)(4)|—(b24)(4)(627;t)l |—(b28)(5‘5‘)(531't)“— (baz)(6‘6‘)(635:t)|
o~ D2 25 — - - - 24
dt | |—(b13)(1‘1‘1‘1)(G, t)l I_(b16)(2'2'2'2)(619' t)“— (bzo)(3‘3‘3‘3)(623z t)l
[ \@® NG C 0 98
dlys (b, )T, — (b2s) "|=(bs5) " (Gy7,1) |—(bz9)(5‘5‘)(G31't)”—(baa)(6‘6‘)(635:t)| T,
dr s 24 _ - - 2
| |—(b14)(1’1’1’1)(5, t)l |—(b17)(2‘2‘2‘2)(G19: t)”— (b21)(3‘3‘3‘3)(623:t)|
[ " " " 99
dT, @ (b26)(4)|_(b26)(4) (Gy7, t)l |—(b30)(5‘5‘) (G31,1) “— (b31)* (G5, t)|
PG »\(LLLD "N2222) "(3333) 26
—(by5) (G,¢) I_(bm) e (G19:t)“—(b22) . (623,t)|
100

Where|— (b3) (G, t)|, —(ng)G)(Gn,t) ,|—(b£6)(4)(G27,t)|are first detrition
coef ficients for category 1,2 and 3
|—(b£8)(5'5') (Gs1, t)| ,|—(b£9)(5'5') (Gsq, t)|,|—(b§0)(5'5') (G, t)l are second detrition
coef ficients for category 1,2 and 3

www.iosrjournals.org 73 | Page



Internal Differentiation, Comparative Variability, Structural Morphology, Normative Aspect Of
Prognostication Of Ipse Dixit Np Hard Problems-A Totalistic Paradigmatic Statement

- - 7 ) . 101
|=(03)©%) (G35, D)|,| = (15) ¢ (G35, )|, |[ = (03) €5 (Gys, ) | are third detrition
coef ficients for category 1,2 and 3
" I " 1,1,1,1
~(bi) DG, O} [~ B DG, 0] | = (1) " 6, 0)
15
are fourth detrition coef ficients for category 1,2 and 3
= (b1 22D (Gro, D} | (b1 @22 (G1o, O] | = (1) 22D (1o, V)|
are fifth detrition coef ficients for category 1,2 and 3 102
|- (b3)®339) (Gya, O} |- (13433 (G5, O} |- (b3) 3332 (Gya, 1)
are sixth detrition coef ficients for category 1,2 and 3
, ” ” ” 103
A6 _ (g )G (aZB)(5)|+(a28)(5)(T29' t)||+(a24)(4'4')(T25't)||+(a32)(6‘6‘6)(T33; t)|
— = \lgg 29 - m o 28
a |+(a13)(1'1'1'1'1)(T14, t) ||+(a16)(2'2'2'2'2)(T17' t)H +(az) B33 (T, ) |
ERG "G v ) () " 3(666) - 104
dGyy (0,0)5G (azo)" )|+((129) )(T29't)| +(az) " (Tys, 1) |+(a33)( " (T33;t)| G
- 29 28 T 29
at | [+@) 3D Ty, O] +(a1) 22222 (T, B)| [ +(az ) 3339 (T, B
[ (@30) ) +(@30)® (T, )] [+(az) 4+ (Tys, )] [ +(a3) 00 (T3, )] | 10
dGay @y 30 30 29> 26 25 34 33/
= (azp)*Gy9 — L ~(LLLLD - - Gsp
dt +(a15) (T14,t) | +(ajg) @222 (T;;,t) || +(ay,)®3333)(Ty,, t)|
Where |+(a§8)(5)(T29, t) | , | +(a39)®) (Ty, t) | , | +(az)® (T, t)| are first augmentation 106
coef ficients for category 1,2 and 3
- . (44, -
And|+(a24)(4'4')(T25,t)|, +(a25)( )(Tzs,t) ,|+(a26)(4'4')(T25,t)| are second augmentation
coef ficient for category 1,2 and 3
| +(a3,) 00 (T;3, 1) | ,| +(az3) 000 (Ty,, t) | , | +(a34) 00 (T;3, 1) | are third augmentation
coef ficient for category 1,2 and 3 107
- - PINCERRE! .
+(ays) DT, O L[+ (a) D (T, O )| +(a ( )(T ,t)| are fourth augmentation
13 14 14 14 15 14
coefficients for category 1,2, and 3
|+(a)s) 22222 (T, )| [+(a;,) @222 (T, ) || +(a;s) @22 (T, t) | are fifth augmentation
coefficients for category 1,2,and 3
|+(a30) @333 (Tyy, O} | +(a5)B3333) (T, )] [+(a3,) ®3333 (T, )| are sixth augmentation
coefficients for category 1,2, 3
[ - - ; T 108
dT,g (b,) O (bzs)(s)l—(bzs)(s)(Gm;t)l |—(b24)(4‘4’)(627't)“—(baz)(6‘6‘6)(635:t)| T
5 = Dz 29 © - m o 28
dt = (i) VDG, D) [ =(b1e) 2222 (6o, D) || = (b30) 333 (Gys, D) |
[ (b O ® v ) " 666) _ 109
dlyy (byo) & Tyq — (b29) |—(b29) (G31't)| —(bys) " (Gyy,t) |—(b33) " (G3S:t)| T
— = (D9 28 29
at | (=) AV (G, O] | = (b)) 22222 (Gro, B)| |- (b5:) 433D (G, 1)
[ (b (5)|_ b2 Y& (G | |_ b Y@4) (G “_ b )(666) (G | 110
dT3, (bs30) (b30)™ (G31,t)| | =(by6) ™™ (Go7, 1) || = (b34) (Gss,t)
—= = (b3) Ty —
dt 304729 \(LLLLL) "N22222) "(33333) 30
| =(b15) (G, 0| |=(b1g) 22D (G0, ) || - (b3) 43339 (Gys, )|
111

where|— (bgs)(s)(631't)| ,|—(b£9)(5)(631:t)| .|—(b§0)(5)(G31't)|
are first detrition coef ficients for category 1,2 and 3
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| —(b3) 4 (Gyy, t)| ,

n N 44)
—(bys (G5, )

,|—(b§6)(4'4') (Gy7, t)| are second detrition

coef ficients for category 1,2 and 3

|—(b§2)(6'6'6)(635,t)|.|—(b§3)(6'6'6)(G35,t)|,|—(b§4)(6'6'6)(G35,t)| are third detrition

coef ficients for category 1,2 and 3

m - PINCERRES . -
|—(b13)(1'1'1'1'1)(G, t) |.|—(b14)(1'1'1'1'1)(G, t)| ) _(b15)( (G, t)| are fourth detrition coefficients "
for category 1,2, and 3
|—(b1"6)(2'2'2'2'2)(619, t) |,|—(b1"7)(2'2'2'2'2) (Gyo, t)|,|—(b{8)(2'2'2'2'2)(619, t)| are fifth detrition coefficients
for category 1,2, and 3
|— (byo) 33333 (6,3, 1) | |— (byy)B33333)(G,,, t)H— (byy) 33333 (G,,, t)| are sixth detrition coefficients
for category 1,2, and 3

[ O \® NG5S NS ] 113
dGs, ()G (as2) ’+(a32) (T33't)||+(a28) (T29,t)H+(a24) (Tzsrt)‘ c

= (asz 33~ 32

dt PNCEEERES) v (2,2,2,2,2,2) v (333333)

’+(a13) (T14't)H+(a16) (T17,t)H+(a20) (T21rt)‘

[ NG ANG) ANGES) PNCTYS) ] 114
dGss ()96 (as3) ’+(a33) (T33,t)||+(a29) (T29,t)H+(azs) (T25:t)‘ c
— = \asz3 32 33

dt PNCEEERED) v (2,2,2,2,2,2) + 1(333333)

’+(a14) (T14,t)H+(a17) (T17't)H+(a21) (T21:t)‘_

[ ING) ANG) " 7G555) N (G44) ] 115
dGsy (096 (as4) ’+(a34) (T33,t)||+(a30) (T29,t)H+(aze) (T25:t)‘ c

= (azq 33~ 34

dt " NOLLLLLD " N2222272) " \(333333)

""(‘115) (T14't)H+(a18) (T17,t)H+(a22) (T21:t)‘
|+(a§2)(6)(T33,t)|,|+(a§3)(6)(T33,t) |,|+(a§4)(6)(T33,t)| are first augmentation coef ficients 116
for category 1,2 and 3
| +(ayg) %> (Ty, t) | , | +(a29) > (Ty, t) | ,| +(a30) %% (Ty, t) | are second augmentation
coef ficients for category 1,2 and 3

" " 4,4'4') " . .
|+(a24)(4'4'4')(T25,t)|, +(a25)( (Tys,t) ,|+(a26)(4'4'4')(T25,t)| are third augmentation
coef ficients for category 1,2 and 3

- - ANCEEREE! .
+(ays) PO (T, O [+(a ) D (T, O [+ (a ( )(T ,t)| - are fourth augmentation

13 14 14 14 15 14
coefficients
| +(ais) @2222D(15, )] | +(aiy) #2222 (15, )} | +(aig) @2222(Ty;, t)| - fifth augmentation
coefficients
| +(a30)C33333 (T, )| | +(az1 )@33333 (T, D)} | +(az) @33333) (T, £)| sixth augmentation
coefficients

[ , " ” M ] 117
dTs, (b)) O (b32)(6)|—(b32)(6)(G35't)”—(bzs)(s‘s’s)(Gapt)“—(b24)(4‘4‘4‘)(627't)| T
7 T~ 032 33 © - m - 32

dt =) MG, )| | = (bye) @222 (G, 0)|| - (b3g) 33339 (G, 0|

[ , — — woN(4,4,4) 118
dls; (b33)©OT. (b33)(6)|—(b33)(6)(535't)”—(b29)(5‘5’5)(531:t)| - (b2s) (Gy7,1) T
— = (b33 32~ 33

a =1V G, 0] | (b)) 222222 (Gro, O] |- (b3) 333339 (Gys, D |
, W " " T 119
dTs, © (b34)(6)|—(b34)(6) (G35, 1) ”— (b30) (G, t)“— (b36) 4 (Gyy, t)|
dt = (b34) T33 - . 2(1,1,1,1,1,1) — — T34—
—(bss) (3] |—(b13)(2'2'2'2'2'2)(619. t)“- (by,) 533333 (G, t)|
120

|—(bgz)(@(GgS,t)|,|—(b§3)(6)(635,t)| ,|—(b§4)(6)(G35,t)| are first detrition coef ficients

for category 1,2 and 3
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|_(b£8)(5'5'5)(631, t)| .|—(b£9)(5'5'5)(G31, t)|,|—(b§0)(5'5'5)(G31, t)| are second detrition

coef ficients for category 1,2 and 3

[—(30%4 (G, O] |~ (b3s) ™ (627, O], [-(03)***) (G, )] are third detrition 121
coef ficients for category 1,2 and 3

|—(bf3)(1'1'1'1'1'1)(6' t) |.|—(bf4)(1'1'1'1'1'1)(G, t) | —(bl"s)(l'l'l'l'l'l)(G, t)| are fourth detrition

coefficients for category 1, 2, and 3

|=(b15) 222222 (Gq, )|, | = (b],)@2222D(Gyo, )], | = (b15) 222222 (G, )| are fifth detrition 122
coefficients for category 1, 2, and 3

|- (B50)B3333 (G5, )| |- () B335 (G5, D)} |- (b7,) 333339 (G5, 1) are sixth detrition

coefficients for category 1, 2, and 3
Where we suppose

AND on @D @ @ 123
(A) (a)®, (ai) '(ai) '(bi)(l)'(bi) '(bi) >0,
i,j =13,14,15
(B)  The functions (a;)™, (b)) are positive continuous increasing and bounded.

Definition of (), (r,)®:

. - 124
(@) (T, ) < @O® < (A )® 124
)V GH s ()P < BV < (B )
©)  lmp,(@)® (T, 1) = @)V 125
limg e (0 )V (6,8) = ()@
Definition of (A3 )™, (B3 )M :
Wherel(A13 YD, (B3 )D, (p)D, (n)(1)|are positive constants and [i = 13,14,15
They satisfy Lipschitz condition: 126
. , . - , 127
(@ YD (T4, ) = (@ )V (T34, O] < (Ryz YD|Tyy = Tyyle™ (i)t
128
b))V, ) = BV G, T < (i3 )VIIG — 6 [|e i)
With the Lipschitz condition, we place a restriction on the behavior of functions 129
a; ., t) and(a; ,t) . (Ty,,t) an ,t) are points belonging to the interva
(a; YD (Tyy, ©) and(a; )P (Tyy,t) . (Tyy, t) and (Ty4, t) are points belonging to the interval
[(R13)D, (M5 )D] . Itis to be noted that (a; )P (Ty4, t) is uniformly continuous. In the eventuality of
the fact, that if ( M5 )») = 1 then the function (a; )V (Ty4,t) , the first augmentation coefficient would
be absolutely continuous.
Definition of (M3 )@, (k3 )D : 130

(D) (M3 )D, (k13 )D, are positive constants

(ap® (D
(M13)D 7 (M43)D

Definition of ( P;3 )™, (043)® :
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(E) There exists two constants ( P; )™ and ( Q;5 )™ which together
with (M3 )D, (ky3)D, (4;3)D and (B3 )D and the constants
(ai)(l)l (a;)(l)' (bi)(l)' (bzf)(l)' (pi)(l)' (ri)(l)' i= 13'14'15'

satisfy the inequalities

1 ) ) R A
(M13)D [@)® + @)+ (Ai3)P + (P3)® (ki3)P]< 1

Gol GOP+ BV + (Bi)D + (015)® (kis)P] <1
Where we suppose
(F) (@)?P,(a)®,(a; )P, ()P, ()P, (b )P >0, ij=1617,18
(G) The functions (a; )®, (b; )@ are positive continuous increasing and bounded.
Definition of (p)®, (r;)@:
@)D(T7,0) < )@ < (dyg)”
(b )P (G, ) < ()P < (5P < (B )?
H  limg, e (@)@ (T17, 0) = ()@
limg_e (b, )@ ((Gio),t) = ()@
Definition of (A5 )@, (B )@ :
Where|( A16)@, (Bis )@, (p)®, (1)@ jare positive constants and

They satisfy Lipschitz condition:

1(a; YD (T, 0) = (@] )P (Tyy, )] < (i )P|Tyy — Tiple~(Ts) @t

1(b; )2 ((G19) ', 8) = (b )2 ((G19), Tyo)| < (16 YPI(Gro) — (o) [Je~M16) Pt

With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T}, t)

131

132

133

134

135

136

137

138

139

140

141

and(a; )® (Ty7,t) . (Ty7, £) And (Ty,, t) are points belonging to the interval [( k¢ )@, (My6)P] . It

is to be noted that (a; )@ (T}, t) is uniformly continuous. In the eventuality of the fact, that if
(M6 )® = 1 then the function (a; ) (T},,t) , the SECOND augmentation coefficient would be

absolutely continuous.
Definition of (M )@, (kg )@ :
0] (M )@, (k16 )@, are positive constants

@® _ep®
(M16)® 7 (M)

Definition of (P53 )®, (03 )@ :
There exists two constants ( P,z )® and ( 0,4 )® which together

with (M, )@, (k6 )P, (A1) Pand (B, )@ and the constants
(@)@, (@)@, (), B)®, @)@, ()@,1 = 161718,
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satisfy the inequalities

1

)@ | @)P + @)+ (A)® + (Pis)® (kg )P <1

N
(M16)®)

[ )@+ )P+ (Big)P + (016)? (kig)P] <1
Where we suppose
Q) (@)@, (@)@, (@), B)®, (B, (b )P >0, i,j=2021,22
The functions (a; )®, (b, )® are positive continuous increasing and bounded.
Definition of (p,))®, (r;)®:
@) (T, ) < PP < (Az)®
BHIPG ) < ()P < ()P < (By)P
limr, ., (a; )® (Tyy,0) = (p)®
limg_, (b, )® (G,t) = (1)®

Definition of ( A,y )®, ( By )@ :

Where|(A20 ), (By )@, )P, (1)@ | are positive constants and [i = 20,21,22

They satisfy Lipschitz condition:
(@ )P (Ty1,8) = (] )BTy, O] < (feag YO Tyy — Ty le o)

(b )G, 6) = (b YD (G, T)| < (po )P|G = G'[|e~ (200Dt

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )® (T, t)

and(a; ) (Tyy,t) . (Tyy,t) And (T, t) are points belonging to the interval [( &y )@, ( My )] . Itis
to be noted that (a; )® (T, t) is uniformly continuous. In the eventuality of the fact, that if ( M,, )@ =
1 then the function (a; )® (T, t) , the third augmentation coefficient would be absolutely continuous.

Definition of ( M, )®), (ky )@ :
(K) (M )®, (kyo )®, are positive constants

@® _e)®

(M20)®) 7 (Mp0)® <1

There exists two constants There exists two constants ( P,, )® and ( Q,, ) which together with

(M )@, (ko )@, (Ayo)Pand ( By, )@ and the constants
(@)@, (@)@, 1)@, )P, )P, ()P, i=120,21,22,
satisfy the inequalities

1

(M20)® [(@)® +(@)® + (A)® + (P )® (kyp)P]< 1

! =%y ! 5] A ~
(M20)® [ ()@ + B)® + (Byo )@ + (Q20)® (kpp)®] <1

Where we suppose
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L @, @), (@)®, B, bY@, (b )P >0, ij=242526
(M) The functions (a; ), (b; )™ are positive continuous increasing and bounded.
Definition of (p))®, ()®:
(a; )P (Ty5,8) < ()@ < (Ayy )P

B P (G t) < )P < (bW < (Byy )@

N)  limgy e (a] )@ (Tys,t) = ()@
limg_e (bli, )(4) ((G27), t) = (ri)u)

Definition of (A,, )®, (B, )™ :

Where | ( Ay, )@, (By )™, @)™, (1)®] are positive constants and [i = 24,25,26

They satisfy Lipschitz condition:

(] Y (Tys, t) = (a; )P (Tys, )] < (Kpg )P Tps — Tyg|e™(M2a) Dt
(b )P (G37), 8) = (0] YD ((Gor), T)I < (kgy YPNI(Gap) — ()|~ (M2t ) Pt

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )™ (Tjs, t)
and(a; )@ (Tys,t) . (Tys,t) and (Tys, t) are points belonging to the interval [( &y, )@, (M, )®] . Itis
to be noted that (a; ) (T,s, t) is uniformly continuous. In the eventuality of the fact, that if ( M,, )® =

4 then the function (a; ) (T,s,t) , the fourth augmentation coefficient would be absolutely
continuous.

Definition of (M, )®, (kyy )® :
(0) (M )@, (kyy )@, are positive constants

@® _e)®
(M24)® 7 (M4 ) <1

Definition of (P, )®, (P4 )@ :

(P) There exists two constants ( P,, )® and ( §,, )™® which together with
(M )®, (kp Y®, (Ay)Pand ( B,y )™ and the constants
(@)™, (@)@, ()@, (b)®, @)@, ()W, i = 24,2526,
satisfy the inequalities

! - ' N ~ ~
(Maq )® [ (ai)(4) + (ai)(4) + (A, )(4) + (P, )(4) (kys )(4)] <1

! Y ! D A ~
(M24)® [ ()@ + B)D + (B )@+ (Q24)® (ke )P <1

Where we suppose
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@ @, @), @)D, b)), GO, B >0, i,j = 28,2930 -
(R)  The functions (a; )®, (b; ) are positive continuous increasing and bounded.
Definition of (p,)®, ()®:
(a; ) (Tyo,8) < () < (Apg )®

()P ((Ga),t) < ()P < (b)) < (Byg)®

163
S)  lmp,o(@)® (T, t) = @)
lirnG—mo (bl” )(S) (G31: t) = (Tl)(S)
Definition of (A,g ), (Byg )™ :
Where|(,428 )®), (B ), )P, 1) | are positive constants and [i = 28,29,30
They satisfy Lipschitz condition: 164
(@i YO (Ty9,£) — (a; YO (Tag, )] < (kog )O|Tyg — Tygle~(M2s O
G (G51),8) = B ((G31), (Ts))] < (Rag YONI(G31) = (G31)' [le a2t
With the Lipschitz condition, we place a restriction on the behavior of functions (a; ) (T, t) 165
and(a; )® (Tye,t) . (Tye, t) And (Tyo, t) are points belonging to the interval [( &z ), (Mg )] . Itis
to be noted that (a; ) ® (Ty, t) is uniformly continuous. In the eventuality of the fact, that if ( M,g )® =
5 then the function (a; )® (Ty, t) , the fifth augmentation coefficient would be absolutely continuous.
Definition of ( M,g ), (kg )® : 166
) (M5 )®), (kg ), are positive 184constants
@)® _e)®
(M) 7 (Mpg)®
Definition of ( P,g ), (0,5 )™ : 167
(L) There exists two constants ( P,g ) and ( 0,5 ) which together with
(M), (kg )®), (Arg)®and ( B,g )™ and the constants
(@)®, (@)®, (b)), (b)), )™, ()®,i=28,29,30, satisfy the inequalities
1 ' ~ A~ ~
O L (@)® + (a)® + (A )® + (P )P (ks )] < 1
1 ’ ~ A~ ~
W[ (b)® + (bi)(s) + (Byg)® + (035)® (k)P <1
Where we suppose
(@)@, (@)@, (@)@, )@, B), (b )® >0, i,j=323334 168

V) The functions (a, )®, (b; )® are positive continuous increasing and bounded.
Definition of (p,)©, (r,)©:

(a; ) (T3, 8) < (p)© < (43,)@
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BOGes) ) < ()@ < B)© < (By)©

(W) limg, o (a; )® (T33,0) = (p)®
limg_,e, (bl )(6) ((635). t) = (ri)(ﬁ)

Definition of ( Az, )®, (B;, )© :

Where |(A32 ), (B3, )®, (p)®, 1)® | are positive constants and [i = 32,33,34

They satisfy Lipschitz condition:

(a; YO (T35, ) — (a] ) O (Ty3, 0] < (Kgp )O|Ty5 — Tisle (M)
1(b; )€ ((Gas)', ) = (b YO ((Gas), (Tzs))| < (ka3 YOI(Gs) — (Gag)'|[e (M52t

With the Lipschitz condition, we place a restriction on the behavior of functions (a; )® (Ty3, t)

and(a; )® (Ty3,t) . (T33,t) and (Tys, t) are points belonging to the interval [( ks, )©®, (Mj; )®] . Itis
to be noted that (a; )® (T35, t) is uniformly continuous. In the eventuality of the fact, that if ( M3, )© =
6 then the function (a; )® (T35, t) , the sixth augmentation coefficient would be absolutely continuous.

Definition of ( M3, )®, (k3, )© :

(M3, )©®, (k3, ), are positive constants
@® _wp®
(M32)©®) 7 (M32)® <

Definition of ( 2, )®, (05, )® :1

There exists two constants ( P;, ) and ( 05, )® which together with
(M3, )®, (k35 ), (A3,)@and ( B;, )©® and the constants

(@)@, (@)@, ()@, ()@, @)@, ()®,i =32,33,34,

satisfy the inequalities

! - ' A = ~
(M32)® [(@)® + (@) © + (A32) O+ (P)® (k3 )] < 1

! 72y ' D A ~
(M32)© [ ()@ +B)® + (B )@+ (Q32)® (kz) @] <1

Theorem 1: if the conditions (A)-(E)( first five conditions related to the system Boolean satisfiability
problem) above are fulfilled, there exists a solution satisfying the conditions

Definition of G;(0),T;(0) :

G0 < (Py) Ve TG0 =60 > 0]

T,(t) < (Qy3)Pe™m)Pt [T (0)=T) >0

If the conditions of second module pertaining to Knapsack problem and Hamiltonian Path Problem
above are fulfilled, there exists a solution satisfying the conditions
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Definition of G,(0),T;(0)

G(£) < (Pyg)@elMe)®

G,(0)=G">0
T,(0) < (Q16) @)Dt () =T >0

If the conditions pertaining to the third module Sub graph Isomorphism problem and Subset sum
problem above are fulfilled, there exists a solution satisfying the conditions

Gi(t) < (Pyy )PPt G (0) =6 >0
T,(t) < (Qz0)®e0)Pt 1,(0) =T? >0

If the conditions of the fourth module Subset Sum Problem and Clique problem above are fulfilled, there
exists a solution satisfying the conditions

Definition of _G;(0),T;(0) :

G.(t) < (B ) Petm® [G(0) = 60> 0]

T,(t) < (Qg0 )Wem0)Vt [T(0) =T >0

If the conditions pertaining to the module five namely Vertex Cover Problem and Independent Set
problem are fulfilled, there exists a solution satisfying the conditions

Definition of _G;(0), T;(0) :

GO < (Pg) e G 0) =60 > 0]

T,(t) < (Qp )@Vt I1,(0) =T >0

If the conditions pertaining to Dominating set problem and Graph Coloring Problem above are fulfilled,
there exists a solution satisfying the conditions

Definition of _G;(0),T;(0) :

G0 < ()™ [G0) =60 > 0]

T,(t) < (Q3,)@e2)Pt [1(0)=T) >0

Proof:

Consider operator A™ defined on the space of sextuples of continuous functions G;, T;: R, - R,
which satisfy

G(0) =GP, T;(0) = T2, G? < (P ), T < (013)D,
0<G;(t) -G < (P )(1)3(M13 YD
0T (t) — TP < (g3 ) Ve

By
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Gi3 () = Gfs + fot [(a13)(1)614 (sam) — ((‘1’13)(1) +a13) P (T (sa3), 5(13))) Gis (5(13))] dsqs)

— t ’ " 185
Gia(t) = Gy + fo [(a14)(1)613 (5(13)) - ((a14)(1) + (‘114)(1)(7'14 (5(13))' 5(13))) 014(5(13))] ds(i3)
ol — 0 ¢ (€] Y "y 186
Gi5(t) = Gys + fo [(a15) G1q (5(13)) - ((a15) + (as5) (T14(5(13)); S(13))) 015(5(13))] dsq3)
—_ t ’ ” 187
Ti3(t) = T103 + fo [(b13)(1)T14 (5(13)) - ((b13)(1) - (b13)(1)(G(s(13)), 5(13))) Ti3 (5(13))] ds(13)
T (O = T4 + [ [0 DT (5013) — (1D = i) (6(503,),59)) ) Taa (50| d 188
14(t) =Ty + 0 (b14)T13 5(13)) (b14) (b14) S13)),S13) 14\5(13) $(13)
— t ’ ” 189
Tis () = Tfs + [(ﬁ 15) DT (s3)) = ((b15)(1) — (b15)(G(sam), 5(13))) T15(5(13))] dsq3)
Where s (13 is the integrand that is integrated over an interval (0, t)
Consider operator A@® defined on the space of sextuples of continuous functions G;, T;: R, - R,
which satisfy
G(0)=G), T;(0) =T, G? < (P )P, T < (Q16)®, 190
0.<Gi(8) = G < (Prg)Del M) .
0<Ti(0) =T < (Qr )P M) 12
By 193
— t ’ "
Gi6(t) = G + |, [(a16)(2)Gl7 (sae)) — ((a16)(2) +a16)@(Ti7 (sae) ), 5(16))) Gis (5(16))] ds(16)
Gir (6) = G + J; @) PGis(s06) = (@P + @DP (T (s06)):5a7) ) G (sa6)) | d o
17(0) = Gy + 0 (a17)**G16(S(16) (a17)* + (a17) 17\81e6) )y S 17\S16) )| @S (16)
Gis (6) = Gfs + J; | (@) 617 (s06) = (@)@ + (@1)® (T17 (5061 506)) ) Grs (sa6)) | .
18(6) = Gig + 0 (a18)*’G17(S(16) (a18)* + (ass) 17\8@16) ), S(16) 18\5(16) /| 4S(16)
= t ’ " 196
Ti6(t) = T + fo [(b16)(2)T17 (5(16)) - ((b16)(2) - (b16)(2)(G(5(16))v 5(16))) T16(S(16))] ds16)
= t ’ " 197
T (6) =TY + fo [(b17)(2)T16 (5(16)) - ((b17)(2) - (b17)(2)(6(5(16)). 5(16))) T17(S(16))] ds16)
_ ¢ . " 198
Tig(t) =T + fo [(bls)(z)Tn (5(16)) - ((b18)(2) - (b18)(2)(G(5(16))v 5(16))) Tig (5(16))] ds16)
Where s(44) is the integrand that is integrated over an interval (0, t)
Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, - R, 199
which satisfy
G(0)=G), T;(0) =T, G? < (P )®, TP < (Q20)®, 200
0.< Gi() = GP < (Pyg )Pe(Ma0) 20
0<T,(8) = T < ( Qg9 )P M0 202
By 203

Gyo (t) = G + fot [(azo)(3)621 (s@o) = ((arzo)m +a20)®(To1 (520 5(20))) G2o (5(20))] ds(20)
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— t ’ ” 204
Gy (8) =GP + fo [(a21)(3)620 (5(20)) - ((‘121)(3) + (a21)(3)(T21 (5(20)), S(zo))) 621(5(20))] ds20)
— t ’ " 205
Gy (1) = Gy + fo [(azz)(3)621 (5(20)) - ((azz)m + (azz)(S)(Tm (5(20))' 5(20))) Gy, (5(20))] ds(z0)
— t ’ " 206
Ty (t) = Tzoo + fo [(bzo)(g)Tm (5(20)) - ((bzo)m - (bzo)(3)(G(s(20))' 5(20))) Tzo(s(zo))] ds(zo)
— t ’ " 207
T () = T201 + fo [(b21)(3)T20 (5(20)) - ((b21)(3) - (b21)(3)(G(s(20)), 5(20))) Ty (5(20))] ds(zo)
T =TO b, BT — ()3 = (b2 (g ) T ) d 208
2O =T + fo (b22) Ty (5(20)) (b22) (b22) ( (5(20))' Soy) ) 122 (5(20) S(20)
Where s,y is the integrand that is integrated over an interval (0, t)
Proof: Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, -
R, which satisfy
G;(0) = Gio , T:(0) = Tio ’ Gio < (1324 )(4) :Tio < (024 )(4), 209
0 < G,(£) = G < (Pyy )WeMat) 210
0 <Ty(6) = TP < (Qau )PelMa )™ A
By 212
— t ' "
G4 (t) = G2y + fo [(a24)(4)G25 (5(24)) - ((a24)(4) + az,)® (T25(5(24))' 5(24))) Goa (5(24))] dsz4)
Gos () = G5 + [ | (a25) P Ga (50)) = ((@25)® + (35)® (Tas (s20)): 5209 ) Gos (s20)) | d o
25(0) = G5 + J; [(azs)™ Goa(S2n) (azs)™™ + (azs) 25(S824) ), Sy ) ) G25\S24) )| @S (24)
~ t . " 214
Ga6 (t) = G + fo [(a26)(4) Gas (5(24)) - ((aze)(4) + (aze) ™ (T25(5(24)),5(24))) 626(5(24))] ds (24
= t ’ " 215
T () = T204 + fo [(b24)(4)T25 (5(24)) - ((b24)(4) - (b24)(4)(6(5(24)); 5(24))) Tos (5(24))] dsz4)
— t ! ” 216
Tps(t) = Tps + fo [(bzs)(4)T24 (5(24)) - ((bzs)(4) - (bzs)(4)(6(5(24))' 5(24))) T25(5(24))] dsz4)
— t . " 217
Ty6(t) = T + fo [(bze)(4)T25 (5(24)) - ((bZG)(4) — (b2e)® (6(5(24)), 5(24))) T26(5(24))] ds (24
Where s (54 is the integrand that is integrated over an interval (0, t)
Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, - R,
which satisfy
G(0) =G, T,(0) =T, G) < (P )™, T < (Q5)®, 218
0.< Gi() = GP < (Ppg )P Maa ) 28
0 < T,(6) = TP < (Qg5 )P M) 220
By 221
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Gog () = G + fot [(azs)(5)629 (ses) — ((‘1’28)(5) + a6) (oo (s2s)), 5(28))) Ghs (5(28))] ds(zs)
529 ® = 6209 + fot [(a29)(5)628 (5(28)) - ((a’29)(5) + (a’2’9)(5)(T29 (5(28))' 5(28))) Gy (5(28))] ds(za)
530 )= G??o + fot [(a30)(5)629 (5(28)) - ((aéo)(s) + (a;’O)(S)(ng (5(28))' 5(28))) Gs (5(28))] d5(28)

Tyg(t) = Ty + fot [(bzs)(S)T29 (5(28)) - (bye)® — (blzla)(s)(G(S(zg))' 5(28))) Tyg (5(28))] ds(zg)

Tyo(t) =T + fot [(b29)(5)T28 (5(28)) - ((bét))(S) - (b,2,9)(5)(G(S(28))' 5(28))) Ty (5(28))] ds(zg)

— t ’ "
T30 (t) = Tgp + fo [(b30)(5)T29 (s@s) — ((b30)(5) — (030)(G(se2s)), 5(28))) T3 (5(28))] ds(zs)
Where s,y is the integrand that is integrated over an interval (0, t)

Consider operator A® defined on the space of sextuples of continuous functions G;, T;: R, - R,
which satisfy

Gi(0) =G, Ti(0) =T, G < (Py)®, T < (Q2)®,

0 < Gi(t) — GY < ( Py, )©e(M22)t

0<Ti(t) = TP < (05, )®@e(Ms2)®

By

G2 () = G, + [ [(azz)(6)G33 (sa2) = ((aéz)(é) +a32) @ (T53 (532)), 5(32))) 632(5(32))] ds(s2)
Gy () = G + J; [(033)(6)032 (sG2)) = ((aés)(6) + (a33) @ (T35 (532)), 5(32))) G33(5(32))] ds(32)
Gy (8) = G + [(a34)(6)033 (s@2)) = ((a§4)(6) + (a34) @ (T3 (5(32))»5(32))) 634(5(32))] ds(32)

Ty, () = T3, + fot [(b32)(6)T33 (5(32)) - ()@ - (b’3’2)(6)(6(5(32)); 5(32))) Tsa (s (32))] ds(32)

Ty (t) = Td5 + fot [(b33)(6)T32 (5(32)) - ((b’33)(6) — (03)“(G(s@3)), 5(32))) Ts3 (5(32))] ds(32)

— t ' "
T34 (0) = T394 + fo [(b34)(6)T33 (5(32)) - ((b34)(6) - (b34)(6)(G(5(32))' 5(32))) T34(5(32))] ds 32
Where s (3, is the integrand that is integrated over an interval (0, t)

(@) The operator A™ maps the space of functions satisfying into itself .Indeed it is obvious that

t 5 (€
Gi3 () < G + [ [(‘113)(1) (0104"‘(1313 YDeMis) 5(13))] dsqaz) =
(a13) D (P13)D 12 YD
(1 + (a13)(1)t)6104 + (F13 ) (e( 130 — 1)

From which it follows that
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_(P13)M+6Y,

- ® W 5 ( —0—> 5
(Gy3 () — G~ (M3) D < LD 1((p YD 4 GY,)e M)+ (P )®

= (My3)D

(G?) is as defined in the statement of theorem 1
Analogous inequalities hold also for Gy, , Gis, T3, Tha, Tis

(b) The operator A maps the space of functions satisfying into itself .Indeed it is obvious that

t P )
Gs (8) < Gl + fi [(@016)@ (Gl +( Prg )@ M0)P5010))| sy = (1+ (ie) DE)GYy +

(a16) P (P16)® (e(ms YD _ 1)
(M16)®)

From which it follows that

(P16)D+6Y;
—(M16)@t ~ @)@ |5 (‘ 7 5
(G (£) — Gg)e™(Ms )™t < (MI:;)(Z) (P )@ + Gy )e €17 + (P )®

Analogous inequalities hold also for G, , Gig, Thg, T17, T1g

(@) The operator A ®) maps the space of functions satisfying into itself .Indeed it is obvious that

t 5 (3)
Gao(t) < G + [(azo)(3) (G201 +( Py )P M0) 5(20))] ds (20) =

(a20)®) Py )P 72N E))
(1+ (a20)®t)G3 + W(e( 2007 — 1)

From which it follows that

(P20)®+6%;
—(f ) @[, . <__h> R
(Goo () = G3p)e™ (M) < E (P YD 4+ G )e\  Th 4 (B )| 277

Analogous inequalities hold also for G,q , G2z, o, To1, T52 278

(b) The operator A™ maps the space of functions satisfying into itself .Indeed it is obvious that
t ~ 4)
Gaa (£) < Gy + [ [(a24)(4) (6205 +( Py )W) 5(24))] ds(za) =

0 (a20) P (Pq )H Mon Y@
(1+ (a2) 1) G35 + W(e( 20— 1)

From which it follows that

_ (P24)®+6Y5

- @ ®ern 5
(Gag () — G9y)e~(M2a)™t < L20) ((Py )W+ Gzos)e< 2s > + (P )(4)l

T (Mp4)®

(G?) is as defined in the statement of theorem 4

(c) The operator A maps the space of functions satisfying 35,35,36 into itself .Indeed it is obvious

that
t PN 5)
Gag(t) < G + [(‘128)(5) (GZ()9+(P28 )®eHae) S(ZS))] ds(zg) =

(a28)D) (Pr5)® ©)
(1+ (az)®t) Gy +%(e(ﬁzg) f- 1)
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From which it follows that

_(P2s)®+6Yy

ol (gt
(Gog (t) — G )e~(Mas YO o Laz8) (( Py )® + G209)e 629 + (P )(S)l

= (Mg )®

(G?) is as defined in the statement of theorem 1

(d) The operator A maps the space of functions satisfying 34,35,36 into itself .Indeed it is obvious
that

t 5 (6)
G32 (1) < G, + [, [(a32)(6) (G??3 +( Py, )@ Ms2) 5(32))] ds(z) =

6 0 o @2)®(P3)O (g y©®
(1+ (as2)@t)63s +W(9( 27— 1)

From which it follows that

(P32 Y®)+6%;

) ol ((Cmipeck)
(Gap () = G)e (M) @t < LD (B y® 4 60)e\ s ) 4 (B, )<6>l

= (M32)®

(G?) is as defined in the statement of theorem1

Analogous inequalities hold also for G5 , Gag, Tos, Tos, Tog

. _ (ap® »H®
It is now sufficient to take( L : < 1 and to choose

My3)D 7 (My3)D

(P;3)® and ( Q3 )™ large to have

[ (P13 )(1)+G?
@) | % 5 G -
(M13)(1) (P13)(1) + (( P13 )(1) +Gj0)e J < (P13 )(1)
[ (Q13)D+1)
GOSN I ‘( 0 > N A
(M13)D ((Qi:)® + 7}0)6 / +(013)P| < (Q13)®

In order that the operator A™ transforms the space of sextuples of functions G, , T; into itself

The operator AM is a contraction with respect to the metric

d ((G<1),T<1)), (G<z),T<2))) =

sup{max |Gi(1)(t) - Gi(z)(t)|e‘(M13)(1)f,max |Ti(1)(t) - ﬂ(z)(t)|e‘(ml3)(1)t}
i teR4 teR4
Indeed if we denote

Definition of G,T: (G, T) = AD(G,T)

It results
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~(1) ~(2) t (1) @1 =)D Mi)D
|Gis” — G2 | < fy(a1)P |Gy — Gy |le™ (M3 same (M) sz ds ) +
fot{(a'13)(1)|61(;) - 61(32,)|e_(M13)(1)5(13)e‘(ﬂm)(l)s(n) +

" 1 1
(a13)(1)(T1S,1):5(13))|G1(;) - 5523)|e—(1‘v713)( )5(13)9(M13)( )5(13) +

G1(§)|(a,1,3)(1)(T1%)'5(13)) - (a,1,3)(1)(T1(f)'5(13))| e_(mm(l)sm)e(nlg)(l)s(m}ds(n)

Where s ;3 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|6 — @ |e=(M)Dt < 253
o (@)D + @) + (A + (Py) D (ki) V) (6D, 7D; 6@, 7))

And analogous inequalities for G; and T;. Taking into account the result follows

Remark 1: The fact that we supposed (a;3)® and (b;3) depending also on t can be considered as not 254
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P5)®e ™1Vt gnd (’&13)(1)e(m13)(l)t
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it
suffices to consider that (a; )™ and (b; ), i = 13,14,15 depend only on T;, and respectively on

G (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not existany t where G; (t) =0and T; (t) =0 255
From the governing equations of the holistic system it results

G (t) = Gioe[—fot{(a;)(l)—(a! YD(T1a(sa3))513) s >0

T; (t) = Tioe(_(bg)(l)t) >0 fort>0
Definition of ((M3)®),, (M13)®), and ((My3)®), : 256
Remark 3: if G;5 is bounded, the same property have also G4 and G5 . indeed if

Gz < (M)W it follows d;ﬂ < ((My3)®), = (a1) PGy, and by integrating

¢
Gia < ((’1\7[13)(1))2 =Gy + 2(a14)(1)((/1\7113)(1))1/(01'14)(1)

In the same way , one can obtain

Gis < ((/M13)(1))3 = Gj5 + 2(‘115)(1)((/Mm)(l))z/(a;s)(l)

If Gy, or G;5 s bounded, the same property follows for G5, Gi5 and Gy3, Gy, respectively.

Remark 4: If G5 is bounded, from below, the same property holds for G, and G,5 . The proof is 257
analogous with the preceding one. An analogous property is true if G,, is bounded from below.

Remark 5: If T5 is bounded from below and lim,_,., ((b; )V (G(t), t)) = (b1)® then T}, — oo. 258
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Definition of (m)™® and ¢ :
Indeed let t; besothatfort >t

(b)) = (B HDGD), 1) < &, Ty3 (&) > (M)W

Then 2824 > (q,,)D (m)® — & T,, which leads to 259
@) m)® e—cit 0 ,—eqt —eqt 1.
Ty = (8—) (1 —e 1Y) + T e 41t If we take t such that e~1¢ = 5 it results
W)™ i . .
Ty, = (%) t= loggi By taking now &; sufficiently small one sees that Ty, is unbounded.
1

The same property holds for T;s if lim,_., (b;5)™ (G (£),t) = (by5)®

We now state a more precise theorem about the behaviors at infinity of the solutions of equations
solution to the governing equations of the global system

@?® @ -
(M10)D ’ (Me)D < 1 and to choose

It is now sufficient to take

(P )® and (01 )@ large to have

(P16 )(2)+G? 261
1w (PP + (PP +G0)e VY )< (P )@
262
(Q16)D+1)
©® |5 ‘( v > A ~
T10)® ((Q:16)® + T}O)e g +(016)?P| < (Q16)®
In order that the operator A transforms the space of sextuples of functions G, , T; into itself 263
The operator A is a contraction with respect to the metric 264
d (((Gw)(l); (T19)®), ((G:)®, (T19)(2))) =
sup{max |Gi(1)(t) - Gi(z)(t)|e_(M16)(2)f,max |Ti(1)(t) — ﬂ(z)(t)|e_(mlﬁ)(2)f}
i teR4 teR4
Indeed if we denote 265
Definition of Gig, Tig : ( Gro, Tig ) = A (Gro, Tro)
It results 266

G - 67| < f (@e)® |67 - Gg)|e_mlé)ms(memlﬁ)ms(lﬁ) dse) +
f{( 0@l6l - Gfé)|€_(m16)(2)s(1é)e_mlé)(z)s(lﬂ +
@)D (TP, 516)|6L — 62 ]e 1656 10 Pse) 4

(2) " ) —(T11)@ M) @
G, |( 16)(2)(T7 5(16))_((116)(2)(7"17 ,5(16))| e~ (M16)*’s(16) o (M16) S(l6)}ds(16)
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Where s 14 represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|610) = (G10)P e M10) Pt <
1 , _ - ~
ho® (@)@ + (@)@ + (A1) P + (P1) P (k1) @)d (((019)(1), (T1)Y; (619)®, (T19)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis (34,35,36) the result
follows

Remark 1: The fact that we supposed (a;5)® and (b;)® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P,q)@e(M16®t and (Q,4)@e(M16)?t
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it
suffices to consider that (a; )® and (b; )®,i = 16,17,18 depend only on T;, and respectively on
(G19)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0

From 19 to 24 it results

G, (t) > G?e[—fg{(a;)(z)—(a! YA(T17(s16))5016))}5016) | >0

T, (1) = Te-¢DP) > 0 fort >0

Definition of ((My6)®),, (M;6)@), and ((M;6)®), :

Remark 3: if G;4 is bounded, the same property have also G;; and G;g . indeed if

dG
d

Gie < (M)@ it follows —r< ((M6)®), = (a17)®Gy7 and by integrating

Gy < ((ﬁls)(z))z =G} + 2(a17)(2)((ﬂle)(Z))l/(ah)(Z)

In the same way , one can obtain

Gig =< ((/M16)(2))3 = G + 2(a15) P ((M16)?), /(a15)®

If Gy or G is bounded, the same property follows for G4, Gig and Gy, Gy7 respectively.

Remark 4: If G4 isbounded, from below, the same property holds for G;; and Gyg. The proof is
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T, is bounded from below and lim,_,., ((b; )® ((G9)(1),t)) = (b1;)@ then T;; — oo.
Definition of (m)® ande, :
Indeed let t, besothatfort >t,

(b17)@ = (b )P ((G19)(D, 1) < &5, Ty (t) > (M)P

dTq7
dt

Then

> (a;;)@ (m)® — g,T,, which leads to
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@ ()@ .
Ty, = (M) (1 —e82%) + TY e 2t If we take t such that e=52t = |t results
@ (m)@ . . . 276
Ty, = (w) t= logsi By taking now &, sufficiently small one sees that T;, is unbounded.
2

The same property holds for Tyg if lim,_, (b15)® ((G19)(0),t) = (b1g)@

We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to
42

3) b)@ 277
(a‘))(g) ,(;‘))(3) < 1 and to choose
20

It is now sufficient to take

(P )® and (Qy )® large to have
(P20)®)+6} 278
G

ol ()
o | (P)® + ()@ +G0e VT < (Py)®

(M30)®

(020)3)+1) 279

(I(T;zl(:;z) (( QZO )(3) + To)e ( g > + (on )(3) < (on )(3)

In order that the operator A® transforms the space of sextuples of functions G; , T; into itself

The operator A®) is a contraction with respect to the metric 280
d (@)D, (1)), ((62)P, (1)) ) =

_ 3) 1 2 _ 3)
Sup{rtr;gic |Gl.(1)(t) - Gi(z)(t)|e (M20) t,?:éﬂ%ic |Tl( (t) - Ti( )(t)|e (200t

Indeed if we denote 281

Definition of Gy3, T3 :( (Gy3), (Ty3) ) = A®((Gy3), (Ty3))

It results -
|G(1) G(2)| <f (azo)(g) |G(1) Gz(f)|e_(MZO)G)S(zo)e(mzo)G)S(zo) dsi +

f{(azo)(3)|0(1) Gz((z))|e_(m20)(3)s(20)e—(ﬂzo)ms(zo) +

@30) P (T, 500)) |62 = 62|~ P20 520 ¢ (F20) s

G(Z)K zo)(3)(Tz1 5(20)) (a;o)(3)(T21 5(20))| e~ (M20)s20) (M0 )S(ZO)}ds(zo)

Where s,y represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

|6 — G(Z)|e—(7W20)(3)t < 283

1 : ~ ~ ~
W((azo)@) + (a20)® + (Az0)® + (P2)® (hep0)®)d (((523)(1). (T23) W5 (Gy3)@, (T23)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows
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Remark 1: The fact that we supposed (a5,)® and (b,,)® depending also on t can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P,0)® e ™20t gnd (yq) @ eM20)®t
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it
suffices to consider that (a; )® and (b; )®,i = 20,21,22 depend only on T,; and respectively on
(G,3)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) =0and T; (t) =0

From 19 to 24 it results

G (t) = Gioe[—fot{(a;)(”—(a;’ Y(T21 (520))520))}520) | >0

T, () = TPe-tOP) > 0 fort >0
Definition of ((My)®),, (My0)®), and ((My0)®), :
Remark 3: if G, is bounded, the same property have also G,; and G,, . indeed if

Gyo < (My)® it follows d;’% < ((My0)®), = (a21)®G,; and by integrating

Gy < ((/MZO)G))Z =GH + 2(a21)(3)((’1\7[20)(3))1/(a’21)(3)

In the same way , one can obtain

Gop < ((/Mzo)(3))3 =Gjp + Z(azz)(3)((/1\7120)(3))2/(a'22)(3)

If G,; or G, isbounded, the same property follows for G,, , G,, and G, , G, respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,; and G,, . The proof is
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T,, is bounded from below and lim,_, ((b; )® ((G3)(£),£)) = (b31)® then Tp; — co.
Definition of (m)® and ;5 :

Indeed let t; be so that for t > ¢,

(by1)® — (bg,)(B)((ng)(t); t) < &, Ty (£) > (M)®

Then % > (a1)®(M)® — £5T,; which leads to

(a2)Pm)®

. ) (1—e 53t) + THe 3t If we take t such that e~#3¢ = % it results
3

T = (

((a21)(3)(7n)(3))
2

T,y = , t= loggi By taking now &3 sufficiently small one sees that T,; is unbounded.
3

The same property holds for Ty, if lim,_, (b3,)® ((Go3) (@), t) = (b2,)®
We now state a more precise theorem about the behaviors at infinity of the solutions:

@® _ep®

o )® My )® < 1 and to choose

It is now sufficient to take
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(P, )™ and (Q,, )@ large to have

(Pog )(4)+G](.) 292

@® | 5 _(—°_> p
@ |(Pe) @+ ((P)® 4 G)e N T )< (B )®

(M24)™®)

(Q24)D+1! 293

((Q2)® + 7}0)3_( g > +(Q20)P[ = (Q24)®

)@
(2424)(4)

In order that the operator A™ transforms the space of sextuples of functions G; , T; into itself 294

The operator A™ is a contraction with respect to the metric 295
d (((627)(1): (T27)(1)), ((G27)(2), (T27)(2))) =

i + "

Indeed if we denote 296
Definition of (G7), (T7) 1 ((Ga7), (Tz7) ) = AD((G27), (To7))
It results

|G~2(1) _ G~i(z)| < fot(a24)(4) |G2(;) _ GZ(? e~ (M20)Vs(24) o (M2)Ps 24 ds i) +

Sy (@) P15 - e~ (e Vs ¢

(@3) O (T3),500) |33 = 637 e Vsame M) Dsn

2 " 1 " 2 _ (€)] (€)]
62(4)|(a24)(4)(T2(5),S(24)) _ (a24)(4)(T2(5),s(24))| e~ (M24)™s(24) o (M24) S @D}ds (5
Where s (4, represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows

|(Go7)® — (027)(2)|€_(m24)(4)t = 297

1 ' —~ ~ ~
W((“M)G) + (a20)® + (A)® + (Po) @ () ®)d (((627)(1). (T:1)W; (6:71)@, (T27)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (a,,)® and (b,,)® depending also on t can be considered asnot 298
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (P,,)®e ™2™t gnd (Q,,)@e (M) Pt
respectively of R,.

If instead of proving the existence of the solution on R, we have to prove it only on a compact then it
suffices to consider that (a; )™ and (b; )*,i = 24,25,26 depend only on T,s and respectively on
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(G,7)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.
Remark 2: There does not existany t where G; (t) =0and T; (t) =0

From 19 to 24 it results

G, (t) > Gioe[—f(f{(aé)(‘*)—(a;' YD (T2 (52405 2a)) M5 2 | >0

T; (t) = Tioe(‘(bé)(4)t) >0 fort>0

Definition of ((’M24)(4))1' ((’M24)(4))2 and ((ﬁ24)(4))3 :

Remark 3: if G, is bounded, the same property have also G,5 and G, . indeed if

Gyy < (Myy)™ it follows d‘% < ((My)®), = (az5)® G5 and by integrating

Gos < (My)™), = G5 + 2(azs) P (Ma0)®), /(a5)™®

In the same way , one can obtain

Gz < ((W24)(4))3 =G + 2(a26)(4)((/M24)(4))2/(a,26)(4)

If G,5 or Gy s bounded, the same property follows for G,, , G,4 and G4, G5 respectively.

Remark 4: If G,, is bounded, from below, the same property holds for G,5; and G, . The proof is
analogous with the preceding one. An analogous property is true if G, is bounded from below.

Remark 5: If T,, is bounded from below and lim,_,., ((b; )™ ((G»;)(t),t)) = (by5)™® then Tps — oo,
Definition of (m)® and ¢, :

Indeed let t, be sothatfort >t,

(b2s)™ — (b YV ((Gy7) (1), 1) < &4, Ty (£) > (M)@

Then d;—is > (a5) @ (M)® — g, T, which leads to

O )@
Tys = (M) (1 —e#4t) + T e 54t If we take t such that e =4t = % it results
4
(az5) D) 2 . .. .
Tys = (f) t= logg— By taking now ¢, sufficiently small one sees that T,s is unbounded.
4

The same property holds for Ty if lim,_, (b36)® ((Go7)(®), t) = (bae)™®
We now state a more precise theorem about the behaviors at infinity of the solutions ;

Analogous inequalities hold also for G,q , Gz, Tog, Tag, T3

@® _®p®

g )® * (g )® < 1 and to choose

It is now sufficient to take 0

(Pg )® and (Q,5 )® large to have
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[ (P2g)®)+6} 305
(1;28)(5) (Pyg)® + (( Py )® + Gjo)e / < (P )®
[ (028)5)+71) 306

(b)® A _( 70 > N A
W) ® ((Q:3)® + 7}0)3 J +(Q28)®| < (Qp5)®
In order that the operator A® transforms the space of sextuples of functions G; , T; into itself
The operator A®) is a contraction with respect to the metric 307
d (((631)(1): (T31)(1)), ((G31)(2), (T31)(2))) =
sup{max |Gi(1)(t) - Gi(z)(t)|e‘m28)(5)‘,max |Tl.(1)(t) - E(Z)(t)|e‘(M28)(5)t}

i teER4 tER4

Indeed if we denote
Definition of (G3;), (T5) : ( (G31), (T31) ) = A(S)((G31), (T31)) 308
It results

~(1 ~(2 t 1 )|, — ®) ®)
|Gz(8) _ Gi( )| < fo (azg)(S) |G2(9) _ G2(9) e~ (M28)"5(28) o (M28)"s(28) dS(zs) +
Jy @)@ ]G3g) = G5 oM Psame(Fan) P
(@3) (T3, 50| Gz’ = G35 le™ P20 M)

2 " 1 " 2 — (5) )

Gz(g)|(a28)(5)(T2(9)rS(28)) _ (aZB)(S)(T2(9):S(28))| e~ (M28)™s28) o (M28) @8 }ds (29
Where s(,g) represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
|(G5)® — (031)(2)|€_(m28)(5)t = 309

m((azs)(s) + (a28)® + (Aze)® + (P2s)® () ®)d (((631)(1). (T:0)W; (G3)@, (T31)(2)))

And analogous inequalities for G; and T;. Taking into account the hypothesis (35,35,36) the result
follows

Remark 1: The fact that we supposed (z,5)® and (by5)® depending also on t can be considered as 310
not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition  necessary to prove the uniqueness of the solution bounded by

(2,)® eVt qnd (Q,5) e M2t respectively of R,.
If instead of proving the existence of the solution on R, , we have to prove it only on a compact then it
proving + p y p

suffices to consider that (a;)® and (b, )®,i = 28,29,30 depend only on T,y and respectively on
(G31)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.
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Remark 2: There does not existany t where G; (t) =0and T;(t) =0

G, (t) > Gioe[—fé{(aé)(s)—(ag )E)(Ta (5(28))528)) )5 28) | >0

T, () = T0e-0®) > 0 fort> 0

Definition of ((’1\7[28)(5))1, ((’117128)(5))2 and ((WZB)(S))3 :

Remark 3: if G, is bounded, the same property have also G,9 and G5 . indeed if
Gog < (M) it follows d‘% < ((My5)®), = (az9)® Gyq and by integrating

Gyo < ((’1\7128)(5))2 = Gjo + 2(a29)(5)((’Mzs)(s))l/(a’w)m

In the same way , one can obtain

Gy < ((er)(s))3 =G + 2(“30)(5)((/Mzs)(s))z/(also)(s)

If G,9 or G is bounded, the same property follows for G,g, G3o and G,g, G,q respectively.

Remark 4: If G,g is bounded, from below, the same property holds for G, and G;, . The proof is
analogous with the preceding one. An analogous property is true if G,q is bounded from below.

Remark 5: If T,g is bounded from below and lim,_,., ((b; )® ((G31)(t),t)) = (b9)® then Tpq — oo.
Definition of (m)® and & :
Indeed let t; be so that for t > ¢
(b29)® — (b YO ((G31) (1), £) < &5, Tog (1) > (M)
Then % > (a39)® (M) — &5 T,q which leads to

(a29)D(m)®)

(1—e™55) + The 55t If we take t such that e85t = L it results
& ) 29 2
5

Ty 2 (

Ty 2

G)(m)®
(M) t= logi By taking now &5 sufficiently small one sees that T, is unbounded.
The same property holds for Ty if lim,_, (b30)® ((G31)(®), t) = (b39)®

We now state a more precise theorem about the behaviors at infinity of the solutions;

Analogous inequalities hold also for Gs5 , Gs4, 735, Ta3, T3

: L @® _wp®
It is now sufficient to take( : ! < 1 and to choose

M35 )® 7 (M35 )(©®)

(P53, )® and (Q3, )® large to have

(P32)(®)+6?
@® | ; )| .5
W) © (P3)© + (( Py, )(6)‘*‘6}'0)9 / < (P3)®

311
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( (032 >(6>+T,‘-’> 318
(DI A o A A
(M132)© ((032)©+ 7}0)3 / +(032)® < (0:2)®
In order that the operator A transforms the space of sextuples of functions G, , T; into itself
The operator A is a contraction with respect to the metric 319
d(((63)D, (T3) D), ((G35)P, (T35)@) ) =
sup{max |Gi(1)(t) - Gi(z)(t)|e‘m32)(6)‘,max |Tl.(1)(t) - E(Z)(t)|e‘(M32)(6)t}
i teR4 teER4
Indeed if we denote
Definition of (Gas), (Tss) 1 ((Gss), (Tss) ) = A®((G35), (T35))
It results
320
G5 - Gi(2)| s fot(a32)(6) |63 - 652 e~ (M32)®s(32) ¢ (M32) Vs(az) ds(zz) +
Jy @) @165;" = 653 em M) Ve P 4
(@) O (T35, 502|635 = 63|20 e P2 P
2 " 1 " 2 _ (6) 6)
G3(2)|(a32)(6)(T3(3),S(32)) _ (a32)(6)(T3(3),s(32))| e~ (M32)'%532) o (M32) G2 }ds (32)
Where s (3, represents integrand that is integrated over the interval [0, t]
From the hypotheses it follows
|(G35)® = (G35)P|e~ M2t < s

1 ' —~ -~ —~
W((azz)@ + (@32)©@ + (A3)©@ + (P32) @ (k3p)@)d (((Gss)(l). (T35)®W; (G35), (T35)(2)))
And analogous inequalities for G; and T;. Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (az,)® and (b3,)® depending also on t can be considered asnot 322
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by (Ps,)®e ™3t gnd (Qs,)® e (M)t
respectively of R,.

If instead of proving the existence of the solution on R,, we have to prove it only on a compact then it
suffices to consider that (a;)® and (b; )®,i = 32,33,34 depend only on Ts; and respectively on
(Gs5)(and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G; (t) = 0and T; (t) =0 323

From governing equations it results
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G, (t) = Gioe[—fot{(a;)(é)—(a;’ )(6)(T33(5(32))'5(32))}‘15(32)] >0

T, () = T0e-0¥) > 0 fort> 0

Definition of ((M3,)®),, (M3,)©), and ((M3)®), :

Remark 3: if G5, is bounded, the same property have also Gs3 and Gs, . indeed if

Gy, < (M3)® it follows d(% < ((M3,)®), — (as3)® G35 and by integrating

Gss < (M) @), = G +2(a33) @ ((M3,) @), /(ass)®

In the same way , one can obtain

G3q < ((’M32)(6))3 =G + 2(a34)(6)((’M32)(6))2/(a’34)(6)

If G35 or G, is bounded, the same property follows for G;, , G4 and Gs, , G35 respectively.

Remark 4: If Gs, is bounded, from below, the same property holds for G;; and G5, . The proof is
analogous with the preceding one. An analogous property is true if G353 is bounded from below.

Remark 5: If T;, is bounded from below and lim,_,., ((b; )@ ((G35)(t),t)) = (b33)® then T33 — oo.
Definition of (m)® and & :
Indeed let t, be so that for t > t,

(b33)® — (bél)(G)((G%)(t), t) < &, T3 (£) > (M)©

Then % > (a33)©® (m)©® — g, T35 which leads to

6)(m)(®)
Ty3 = (M) (1 —e~*6t) + T e 6t If we take t such that e 66t = % it results
6
(a33)®m)©® 2 . .. .
T3 = (f) t= logg— By taking now &g sufficiently small one sees that T;5 is unbounded.
6

The same property holds for Ty, if lim,_, (b34)© ((G35)(®), t(£),t) = (b34)©
We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions

Theorem 2: If we denote and define

Definition of (07)®, (a)®, (z))®, ()@ :

@ o), (0)P, 1)WY, (x,)® four constants satisfying

—(02)® < —(a1)® + (a1)® = (a13) P (To , 1) + (a1) P (T4, 1) < —(0)P
—(1)® < =(b13)® + (1)P = (b13) P (G, £) = (b1) P (G, 8) < —(z)V

Definition of (v;)®, (v,)®, (u)®, (uy) P, v, u® :

324

325

326

327

328

329
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(b) By (v)® >0,1,)® < 0and respectively (u;)® >0, (u,)P < 0 theroots of the equations
2 2
(@)@ VP)" + @)DV = (a)® = 0and (b)) (®)" + @)Du? = (b)) =0

Definition of (¥,)@,, (1,)®, (i1,)®, (i1,) D : 330

By ()™ > 0, (,)® < 0 and respectively (7)™ > 0, (&1,)™ < 0 the roots of the equations
@DPEO) + @)V — (@)D = 0 and (5,)® @) + @) Pu® = Bi)® = 0

Definition of (m,)®, (m,)®, (u)®, (u)®, (vp)® :- 331
() Ifwe define (m)®, (m,)®, (u)®, (u)® by
(my)® = (Vo)m' (m)® = (v, if (Vo)(l) < ()W

(mz)(l) = (Vl)(l)' (m1)(1) = (171)(1) if (V1)(1) < (Vo)(l) < (171)(1),

0
and |(v)® = ﬁ

(mz)(l) = (Vl)(l):(mﬂ(l) = (Vo)(l): if (171)(1) < (Vo)(l)
and analogously 332
(Hz)(l) = (uo)(l)' (H1)(1) = (u1)(1): if (uo)(l) < (ul)(l)

(1)@ = W)W, ()W = @), if @)™ < (ue)® < @),

0
and | (ug)® =%
1

.p

()P = u)D, ()P = ()@, if @)P < (ue)™® where (u)®, (7)™
are defined above

Then the solution satisfies the inequalities 333
6 e(EDV-01))t < 6. () < 6L eV

where (p,)® is defined above

ﬁ e(VV-01)) < Gra (1) = )(1) G e Wt

((ml)“)((sl()igi((jf;m-(sZ)m) |e(@n@-w®) — =62t | 4 Gl e=6D M < G5() < 334
(mz)(l)(&lssl;((ll))i{i’ls)(1)) [eGDPt — e=@)Vt] 4 Gl (1) Py

|T1036(R1)(1)t < T < T103€((R1)(1)+(r13)(1))t I 235
(1 )(1) = Te @ < Ty () < Goym e (RDD+(r13)D)e 336
(#1)(1)E?;i;gii{()irls)(l)) e Rt _ e—(bis)(l)t] + Tlose—(b'ls)(l)t < Ty () < 337
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(a15)V7fy [ (®RDOD+13) D) _ —(Rz)(l)t] 0 ,—(R))Mt
D@D+ DR D) L ¢ tTise

Definition of ()@, (5,)®, (R)W, (R,)V:- 338
Where (S)® = (a;3)® (m,)® — (aj3)®
(52)(1) = (a15)(1) - (p15)(1)
(R)® = (b13) P () ® — (by3)™
(R)® = (b15)™W = (135)™

Behavior of the solutions 339

Theorem 2: If we denote and define
Definition of (6,)?,(6,)®,(t)?,(1,)@ : 340

d) 6))?,(0,)?, ()P, (1,)@® four constants satisfying

—(0)@ < —(a16)® + (a17)® — (a16) P (Ty7, 1) + (a17) P (Ty7, 1) < —(0)@ 341
—(1)® < =(b16)® + (b17)? = (b16) P ((Gro), t) = (b17) P ((G19), 1) < =(1)® 342
Definition of (v;)®, (v)®, (1)@, (uy)® : 343
By (v,)® >0, (v,)® < 0 and respectively (u)® > 0, (u,)® < 0 the roots 344
(e) of the equations (a17)(2)(v(2))2 + (6)PVv® — (a;6)P =0 345
@) (4, @)? @), @ 346
and (b14)®(u®)” + (t)Pu® — (b5)® = 0 and
Definition of (V,)®,, (1#,)®, (11,)@, (i1,)@ : 347
By (v))® >0, (v,)® < 0and respectively (ii,)® >0, (1,)® < 0 the 348
roots of the equations (a17)(2)(v(2))2 + (0)Pv@® — (a19)P =0 349
@ (1 @)? @@ _ @ — 350
and (by7)®(u®)" + (1)Pu® = (bye)® = 0
Definition of (m;)®, (m,)®, (u)@, (up)® :- 351
(f) Ifwe define (m)@, (m,)@, ()@, (1)@ by 352
(m)® = )@, ()@ = (1)@, if (v)® < (1)@ 333
(m)® = ()@, ()@ = @)@, if ()@ < (1))@ < ()2, 34
@ — G
and |(vp)* = ol
(mz)(z) = (Vl)(z): (m1)(2) = (Vo)(z)' if )% < (v)® 355
and analogously 356
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(12)® = )@, (u)® = W)®, if (we)® < (u)®

12)? = W)@, (u)® = @)? ,if )@ < (u)® < (@)?,

0
and|(uy)@® = %
17

(Mz)(z) = (ul)(z)' (H1)(2) = (uo)(z)' if (ﬁ1)(2) < (uo)(z) 357

Then the solution satisfies the inequalities 358

G?6e((51)(2)—(p16)(2))t < G(t) < G?Ge(sﬂ(z)t

(p)@ is defined by equation above 359
1 @ _(p,. )@ 1 @ 360
ng6e((sl) @16t < G, (1) < — G
(a18)Pa @ _(p; )@ (5@ —(5)®@ 361
PGP 20 =G0 ) [P =00 — o6t [ 4 et < Gig(0) <
(a18)Pa! @ (@)@ (@@
(mz)“)((lsgl)(z)—1(2'18)@) (B0 — e 4 Glgem
T e®DDt < T (1) < TR0 @+ ) %2
1 @) 1 ) ) 363
@ TheRU“E < Ty (t) < mTl()Ge((Rl) +(r16)?)t
(b18)PT1Y @ ()@ PAING)) 364
T [ = 4 T < T
(a18)D1Y @ @ —(R)@ —(R)@
(ﬂZ)(Z)((RI)(Z)+(T16;?2)+(R2)(2)) [e((Rl) o) — e t] + Trpe (27
Definition of (S,)@®, (S;)@®, (R)®, (R,)@:- 365
Where (S)® = (a15)® (m;)® — (a;6)® 366
(52)(2) = (a 18)(2) - (p18)(2)
(R)® = (b16)@ ()™ — (b16)® 367
(Rz)(z) = (bis)(z) - (7"18)(2)
Behavior of the solutions 368
Theorem 2: If we denote and define
Definition of (0,)®,(6,)®, (1)®, (1,)® :
(@) ) ,(0,)®, ()P, (1,)® four constants satisfying
—(0)® < —(a20)® + (@21)® = (@20)P (Ty1, 1) + (A21) Ty, 1) < —(01)®
~(@)® < =(b30)® + (121)® ~ (b30) P (G, ) = (b21)® ((Gz3), t) < ~(z)®
Definition of (v;)®, (v,)®, (u)®, (uy)® : 369

(b) By (v{)® >0,(1,)® < 0and respectively (u)® >0, (u,)® < 0 theroots of the equations
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(‘121)(3)(1’(3))2 + (0O = (a,))® =0
and (b,)® (u®)” + (1)Pu® — (by)® = 0 and
By (7)® > 0, (#,)® < 0 and respectively (i;)® >0, (7i,)® < 0 the
roots of the equations (a21)(3)(v(3))2 + (6,)®v® — (ay)® =0
and (b)) (u®)” + @)Pu® — (by)® =0
Definition of (ml)(3) , (mz)(3) , (#1)(3)' (.“2)(3) - 370
(© If we define (m;)®, (M), (u)®, (1) by
(mz)(S) = (Vo)(g)' (m1)(3) = (Vl)(3)' if (Vo)(3) < (V1)(3)

m)® = (1)®,(Mm)N® = )P, if ()P < (VI® < (1),

and |(v)® = o

(mz)(3) = (Vl)(3):(m1)(3) = (VO)G): if (171)(3) < (Vo)(s)

and analogously 371

) = @)@, ()P = @)@, if ()@ < ()™

_ . _ T3
1)® = wW)®, (1)@ = @) ,if W)® < W)™ < @)®, and|(u)® = %

(12)® = W)®, ()@ = W)@, if @) < (u))®

Then the solution satisfies the inequalities

GVt < G, () < GYHeDPt
p,)® is defined by equation above
L
1 @ ()@ 1 ®) 372
— G0 (VTP < Gy () < 55 Gy eV
(a22)®6% 613,13 PING) 0 - —(5)3 373
(PG -2 PG ®) [e(( D20 ) — g ] +Ghe DT < Gy (D) <
(m )(3)(&282))((?)6%1' ) [0V — e~ Pt] 4 G e ()P
2 1 —\u22
|T2009(R1)(3)t ST < Tzooe((Rl)B)ﬂrZO)O))t I o
1 @) 1 ®) ® 375
WTzooe(Rl) E< Ty (t) < mTzooe((Rl) +(r20)3))e
(G 376

R)Y®t _ —(béz)“)r] 0 (b))t
7 e e + 75,e" 022 <T,() <
“DB((R)B) = (by)3) [ 22 22( )

(a22)® 1 [ (RDOP+(r20)P)e _ —(Rz)(3)t] 0 ,—(Ry)®¢
WP (@D®+20) P+ (R)®) L ¢ e
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Definition of (5,)®, (5,)®, (R,)®, (R))®:- 3
Where (5)® = (a50)® (m)® — (az0)®
($)® = (a)® — (p22)®
(R)® = (b20)® (12)® — (b30)®

(Rz)(g) = (béz)(g) - (rzz)(S)

Behavior of the solutions 378

_If we denote and define

Definition of (0,)®, (6,)®, (t))®, (1,)® :

d) ()W, ()P, (1)P, (1)@ four constants satisfying

—(02)™ < —(a20)™ + (az5)® — (@20) P (Ts, ) + (a5) P (Tp5, 1) < —(0)@

—(@)® < =(b30)® + (b25)® = (b30) P ((G7), ) = (bp5) P ((G27), t) < =(z)®

Definition of (v;)®, (v))®, ()@, (up)®,v®,u® : 319

(e) By (v)® >0, (,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(@) (V@) + @)DV — (@)@ = 0
and (bys)® (u®)” + (1,)@u® — (b,,)® = 0 and

Definition of (7,)®,, (1,)®, (1))@, (i1,)® : 380

By (7)™ > 0, ()™ < 0 and respectively (;)® >0, (@i,)® < 0 the
roots of the equations (a,s)™® (v(‘”)2 + (0) DV — (4, )@ =0
and (by)® (u®)’ + (1) Pu® — (b,)® = 0
Definition of (m)®, (my)®, (1)@, (i)™, (v)™ :-

(f) If we define (m))® , (my)® , (u)®, (u)® by
(m)® = ()™, ()@ = ()@, if ()™ < (v)®
(m)® = W)W, (m)N® = @)W, if W)@ < (W)™ < [T)®,

0
and |(v))W = %
25

(mz)(4) = (V4)(4): (m1)(4) = (Vo)m' if (174)(4) < (Vo)(4)
and analogously 381
(#2)(4) = (uo)(4): (#1)(4) = (u1)(4)' if (uo)(4) < (u1)(4)

()™ = @)@, (u)® = @)™, if w)® < ()™ < @)™,

0
and | (uo)® = 2—0‘5*

()™ = @)@, ()@ = W)™, if @)™ < (u)™ where (u)®, (@)™
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are defined
Then the solution satisfies the inequalities 382
68,6000t < G, (1) < Gy eSO

where (p,)™ is defined by equation above

[CO ) (©)] 383
ﬁG24 e (DM -@2)™M)t < G,s (1) < )(4) GY et
(a26)® 63, )@ —(p24)®)e —(5))®¢ ] 0 ,—(S)®t 384
((ml)(‘*)((51)(4)—(pz4)(4)—(52)(4)) [e( VI e * e < Gy (0) <

(@26)46240(m2)4(S1)4—(a26)4e(S1)4t—e—(a26)4t+ G260e—(a26")4¢

385

T2043(R1)(4)t <T@ < Tz(zte((Rl)G)Jr(r“)G))t

T24e(R1)( e < T (t) < T3, e(RD®+(r2) W)t 386

(u1 )(4) (4)

387

(b26) TS O] (b @ (b )@
P R P - et — =020V | 4 7, =020 < Ty (1) <

(az26) 1, [ (R)®+(ra)®)e _ —(RZ)(4)f] 0 ,—(R)®t
@@ ((R)®+(r2) D+ (RH®) | ¢ * Toee

Definition of (S))®, ($;)®, (R)™, (R))™:- 588
Where (S)® = (az4)® (mz)™® — (a24)®
($2)® = (az)™ — (P26)™
(R = (by)® (1)@ — (b4)™
(R)™ = (b26)™® — (16)™

Behavior of the solutions 389

_If we denote and define

Definition of (0,)®,(6,)®, (1)®, (1,)® :

@ ()%, (6,)®,(1,)®,(1,)® four constants satisfying

—(02)® < —(a29)® + (a39)® — (a29)®(T9, 1) + (a29)® (Tp9 , 1) < —(1)®

—(12)® < =(b2)® + (b39) = (b26)P((G31), t) = (b29) P ((G1), t) < —(x)®

Definition of (v;})®, (v,)®, (1), (uy)®,v®,u® : 390

(h) By (v)® >0,(,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(azg)(s)(V(S))z +(0)Pv® = (a5)® =0
and (by0)® (™)’ + (1)SuU® — (byg)® = 0 and
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Definition of (¥,)®,, (1,)®, (i1,)®, (i1,)® : 301

By (7)® > 0, (#,)® < 0 and respectively (i;)® >0, (7i,)® < 0 the
roots of the equations (azg)(S)(v(S))2 + (6,)Ov® — () =0
and (by9)® ()" + () Ou® = (by)® = 0
Definition of (m,)®, (m,)®, (u)®, (), (vp)® -

(i) 1f we define (m)®, (my)®, (u)®, (1) by
(mz)(s) = (Vo)(s)' (m1)(5) = (Vl)(s)' if (Vo)(S) < (V1)(5)
(m)® = @)@, (m)® = )P, if 1)® < ) < (W),

0
and |(vy)® = %
2

el

(mz)(s) = (Vl)(s):(mO(S) = (Vo)(s): if (171)(5) < (Vo)(S)
and analogously 392
(.uz)(s) = (uo)(s): (H1)(5) = (u1)(5): if (uo)(s) < (ul)(s)

()™ = (u1)(5) 1)® = @)@, if w)® < w)® < @)®,
and [ (ug)® = T—S

(12)® = @)®, () = ()@, if @) < (up)® where (u)®, (@)
are defined respectively

Then the solution satisfies the inequalities 393
63,00t < Gy (1) < Glpen

where (p,)® is defined by equation above

1 ENOIPING) NO) 394
W pe(GDP @20 < 6o (1) < )(s)G eV

(a30)®)63g SO —(p26))e _ o —(5)Ot 0 (5 ®¢ 395
((ml)@((sl)@—(pzs)<5>—<82)<5>) [ — =60 [t G0 < G0 (0) <

(230)5G280(m2)5(51)5—(a30)5e(S1)5t—e—(a30)5¢+ G300e—(a30")5¢

(75, e®0®t < Ty (6) < T eED+0)®)e | 396
(11 )(5) The®0™t < g (0) S® (5) Tiye(BO 2O 397
(#1)(5)E?;iigiié()iéo)(@) e e_(bé())mt] + T300€_(bé°)(5)t STa(t) < 58
(uz)“’)((ng?:)ojii:%@+(zzz)(s)) [e((Rl)(S)WZS)(S))t - e_(RZ)(S)t] + T e Rt

Definition of (5,)®, (5,)®, (R})®, (R,)®:- 399
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Where (51)® = (az5)® (mz)® — (a)®
(52)(5) = (aao)(s) - (p30)(5)
(Rl)(S) = (bzs)(s)(ﬂz)(s) - (bés)(s)

(Rz)(s) = (béo)(s) - (r30)(5)

Behavior of the solutions 400

_If we denote and define

Definition of (6,)©, ()@, ()@, (,)® :

Q) (@)D, (6,)®,(1)®,(1,)® four constants satisfying

—(0)© < —(a3)® + (a33)® — (a3)@ (T35, t) + (a33) (T3, t) < —()®@

—(1)® < —(b3,) @ + (b33)® = (b3) @ ((G35), ) — (b33) @ ((G35),8) < = (1)

Definition of (v;)©, (v,)©®, (u;)©, (uy)©@,v®,u® : 401

(k) By (v)® >0, (1,)® < 0and respectively (u;)® >0, (u,)® < 0 theroots of the equations
(a33)(6)(V(6))2 +(0)Ov® — (a3)® = 0
and (b)) © (u®)” + (1,)©u® — (b;,)® = 0 and

Definition of (¥,)©,, (1,)©, (i1,)®, (i1,)© : 402

By (#,)® > 0, (#,)® < 0 and respectively (u1;)® >0, (%i,)® < 0 the
roots of the equations (az3)® (1/(6))2 + (0)Ov© — (az)©® =0
and (bs3)® (u®)" + (@) Ou® = (b3)® = 0
Definition of (m)©, (m;)®, (11)®, (1)@, (v)® :-

() 1f we define (my)® , (7)© , (1)@, (u)® by
(m)® = )@, (m)® = ()®@, if (v)® < (v)®

(m)® = W)@, (Mm@ = @)@, if v)® < ()@ < (7)®,

1]
and |(vy)©® = %
33

(mz)(G) = (Vl)(G): (ml)(G) = (Vo)(G); if (171)(6) < (Vo)(6)
and analogously 403
(#2)(6) = (uo)@: (#1)(6) = (u1)(6)' if (uo)(e) < (u1)(6)

1)@ = W)@, (1)® = @)@ ,if W)@ < (w)® < @),
TO
and|(up)©® = %

(12)® = @)@, (1)@ = W)@, if @) < (up)® where (u)®, (@;)®
are defined respectively
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Then the solution satisfies the inequalities
Gé’ze((sl)(a)_(p”)(@)t S G5(2) < G3oze(51)(6)‘

where (p,)® is defined by equation above

G2,e(DO-w2)®) < G, (1) st

)(6) )(6)

( (a39) 63,

(DO =3 @) _
(m1)O((51)O—(p32)O)—(52)©®)

e_(SZ)@t ] + 63949_(52)(6)t < Gy (0) <

404

6
G32 (51)( )¢ 405

406

(@34)66320(m2)6(S1)6—(a34)6e(S1)6t—e—(a34)6t+ G340e—(a34)6¢

|T3023(R1)(6)t <Ts(0) < T3oze((R1)(6)+(7“32)(6))t |

79 e*F®t < T, (1) < =®

(u1 )(6) (6)

(b34)©TS,
u)® (RO —(b34)®)

Rt _

(a30)©1
(12) O (RO +(r32) O +(R2)(®)

Definition of (), (5;)®, (R)®, (R)®:-
Where (5))© = (a3,)® (my)©® — (az2)®
($2)® = (a3)® — (p3)©
(R)® = (b3)®@ (1) ® — (b3)®

(Rz)(G) = (b§4)(6) - (7”34)(6)
Proof : From Governing equations we obtain

dv( )

Y — 13

Deflnltlon of v :-
- Gl4

It follows

dv®

— ((a14)(1)(v(1))2 + (o) Dy — (a13)(1)) <

From which one obtains

Definition of ()@, (vy)® :-

(@) For 0 < |(vy)® =@ < ()W < @)@

'S

www.iosrjournals.org

Tse ((R1) O +(r3z) @)t

e_(b34)(6)t] + T304€_(b34)(6)t S T3 (0) <

407

408

409

[e((Rl)(GM(rgz)@)t - e—(Rz)@t] +TY e~ Rt

410

411

= (ay3)" - ((a13)(1) - (a14)(1) + (a13)® (T, t)) — (a1)® (T14, VD — (a1) v ®

- ((a14)(1)(v(1))2 + (o) MV — (013)(1))
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1D +@D @y W~ @DD(@DO-w0®) ]
1+(0)We " @D(@DD-00D)]

_ wW-wp®

e
O = D6 ®

vA() >

it follows (vy)® < v () < (vy)®

In the same manner , we get 412

@)D+ D @) De [-@1D (M- D) ¢]

W = DV -e®
r @ @D E D) ] |

) oD -
vi(t) < T o) W-®

From which we deduce (vy)® < vV (t) < (¥,)P

63 413

< (¥,)™® we find like in the previous case,
14

(b) If 0< (V)P < (v)® =

@)D+ D) De [~ 10D (v M-z D) ]
1+(0)WDe [~@1D (@M -wM)¢]

()W < < v <

FD+OD @y W@ (T -2 D) ]

< (v, )V
1+(@We[~@D(EDW-E2W) ] = W)

0 414
© 1f 0< w)® < @)D <|(v)® =L | we obtain

0
G1g

TD+OD (7 De["@1D (DD -2 D) ]

< (€Y)
14O W@ D (@D -2 M) ] < (vo)

) < V(@) <

And so with the notation of the first part of condition (c) , we have

Definition of vV (¢t) :-

m)® < VO () < m)®, |vO(e) = 228
14

In a completely analogous way, we obtain

Definition of u™®(¢t) :-

()D < uD (@) < (u)®, [uD() = T13(t)
T14(t)

Now, using this result and replacing it in concatenated equations of global system we get easily the result
stated in the theorem.

Particular case :

If (a}3)® = (ay,) @D, then (6))® = (6,)® and in this case (v,)® = (#,)@ if in addition (v,)® =
(v)® then v (t) = (v,)™ and as a consequence G5 (t) = (vo) PG4 (t) this also defines (v,)™® for
the special case

Analogously if (b13)® = (b1,)D, then (t))® = (1,)® and then

(u)® = (@) Pif in addition (uy)® = (u)® then T3 (t) = (ug)PTy, (t) This is an important
consequence of the relation between (v;)® and (¥,), and definition of (u,)™.

Proof : From the concatenated set of global governing equations we obtain 415
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dv®

Definition of v® :- y@ = G16
G17

It follows

dv @

2
~(@N@?) + @)V = (0)®) <
From which one obtains

Definition of (#,)®, (v))® :-

0
(d) For0< (v)® =2 < ()@ < (7@
17

o (a16)® — ((a,w)(z) — (7))@ + (arlr())(Z)(Tlﬁt)) = (a17) P (Ty7, Ov P — (a;,)Pv@

1)@ +(0)D (vy)@el~@DP (DD -0 @)

@_(y )@
@ - @) — o)
P T Y SR I A O s )
it follows (1))@ < v@(t) < (v)@
In the same manner , we get
v () < @@ @@ (EVD-c2®) ] ©® = 2@
= @ e PE )] | )@@

From which we deduce (vy)® < v@(t) < ()@

0
e) If 0< (1)@ < (v)®@ =8 < (%)@ we find like in the previous case,
' 0 GY; 1
01D+ D vy @ [P (e DP-02 @) ]
1+(c)(2)e[*(a17)(2)((v1)(2),@2)(2)) ]

)@ < < V(@) <

T O+ )@l @P (DD -2@) ]
14+©) @[~ @B (TP -T2 @) ]

< @)?

0
M o< ()P <@)® < (v)® =g% , We obtain
17

)(2)+(E)(2)(Vz)(2)e [*(a 17)(2)((71)(2)7(72)(2)) t]

@ < ,@ () <01
)™ = VPO = 14© @[ @B (DD -T@) ]

< ()@

And so with the notation of the first part of condition (c) , we have

Definition of v® (¢t) :-

m)® < v () < ()@, |vA(e) = 2o
17

In a completely analogous way, we obtain

Definition of u®@(t) :-

www.iosrjournals.org

416

417

< (@) + ()@ — (@)?)

418

419

420

421

422

423

424
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T16(t)
)® < u® () < )@, |u® ) =755

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.

Particular case :

425

If (a16)® = (aj;)?, then (6,)@® = (6,)@ and in this case (v;)?® = (#,)@ if in addition (vy)?® =
(v)) @ then v (t) = (v,)@ and as a consequence G (t) = (Vo) PGy, (t)

Analogously if (b;s)® = (b1;)@, then (1,)® = (1,)@ and then

(u)@® = () @if in addition (ug)@® = ()@ then T4 (t) = (ug) P Ty, () This is an important

consequence of the relation between (v;)® and (¥,)®

Proof : From Global equations we obtain

dv®

Definition of v® :- v® = zﬂ
21

It follows

dv®

- ((a21)(3)(v(3))2 + (0) v — (azo)(3)) <

From which one obtains

G, _
(@) For0 < (v)® = ﬁ <(v)® < (1)@

aw (azo)(3) - ((aéo)(3) - (a'21)(3) + (ago)(s)(Tm' t)) - (a’2’1)(3)(T21' t)V(S) - (a21)(3)v(3)

P+ @y @@ (DD -0 @) ]
14(0) @[ @D (DD -00®) ]

v®(t) > C lo®

_ 0D®-®

— ®-p®

it follows (v)® < v®(t) < (v))®

In the same manner , we get

T+ @y P~ @DP(EDO-2®) ]

3) <
VR < 1+ @[ @D (EDD-T2®) ]

, (5)(3) =

TP -e®

)@ -)®

Definition of (¥,)® :-

From which we deduce (vy)® < v®(t) < (#,)®

0
() If 0< ()P < ()® = % < (1)@ we find like in the previous case,

W)@+ By @el~ @D (DP-02)®) ]
140 @~ @2D® (DB -2 3)) ]

m)® < <v®@) <

T +O® @yl @D (TDO-2)®) ]
14O @~ @2DP(DE-T2)3)) ]

< @)®

0
(© If 0< ()P < @)D < (v))® =22, we obtain
2

=

www.iosrjournals.org

426

427

s - ((a21)(3)(v(3))2 + (0) v — (azo)(3))

428

429

430

431
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@O+ @@l @D (@D -2®)¢]
11(O® el @D (D -2P)) <]

)@ < v () < < (v)®

And so with the notation of the first part of condition (c) , we have

Definition of v®)(t) :-

(m)® < vO®) < )@, |vO@) = 2
21

In a completely analogous way, we obtain

Definition of u®(t) :-

1) < u®© < (WP, (v =23
21

Now, using this result and replacing it in Global Equations we get easily the result stated in the theorem.
Particular case :

If (a30)® = (az)®, then (6,)® = (6,)® and in this case (v;)® = (¥,)® if in addition (v,)® =
(vy)® then v®(t) = (v,)® and as a consequence G,y (t) = (Vo) G,y (£)

Analogously if (by)® = (by;)®,then (1))@ = (1,)® and then

(u)® = (@) ®if in addition (uy)® = (u)® then T,y () = (uy)® Ty, (t) This is an important
consequence of the relation between (v;)® and (#,)®

Proof : From Global equations we obtain 432

dv@® / / " "
:t = (az)® - ((a24)(4) = (az5)® + (a24) P (Tys, t)) = (a5) P (Tys, OV — (a5) Vv ®

Definition of v® :- v® = ﬁi‘*
25

It follows
dv(®

2 2
~ (@)D (@) + (@)D - (0,)®) £ 2= < = ((@5)P (VD) + (6)Pv® — (@) @)
From which one obtains

Definition of (¥,)®, (v)® :-

0
(d) For 0 <|(w)® =2t < (v)® < (7))@

G5
v (1) = D@ HOW el @2 O (EDO-00D) ] €)@ = V-0 ®
= 4+(C)(4)e[—(azs)(4)((1/1)(4)_(1/0)(4)) t] ) o) ®—wy®
it follows (V)™ < v®(t) < (v))@
In the same manner , we get
v () < @O +OD @l 2P (E0D-w2®)¢] (€)@ = T
< 4+©(4)e[—(a25)(4)(@1)(4)_(;2)(4))t] ' wo)®—TH®
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From which we deduce (v)® < v®(t) < (7))@

9 o . 433
() If 0< ()W < ()® = % < (1)@ we find like in the previous case,
25
() D (@ =@
)@ — COPOWy®el e P02 ®) ] VO () <
P R RN I =
B} ) D (F B @@
ENWOHOW W02V (EVD-02 M) @)@
1+ (OWe @29 (@EDD-G®) ] T N
0 434
(M If 0< @)® < @)@ <|(w)® =Z , we obtain
25
@) 4 (@) @) o[~ @25) P (DB ) ]
@ < ,@ < 0 +H(OW (@) e < (4)
D)™ < v () < 1+(D(4)e[_(azs)(4)((;1)(4)_(;2)(4))t] < (Vo)
And so with the notation of the first part of condition (c) , we have
Definition of v®(t) :-
) ) @ | ,@(p) = f24©
(my)™ < v () < m)™, |v¥ (D) )
In a completely analogous way, we obtain
Definition of u™®(¢t) :-
@ < ,@(p) < ) @ (p) = 4
)@ < u®@(0) < ()@, |uP () =25
Now, using this result and replacing it in Global equations we get easily the result stated in the theorem.
Particular case :
If (a34)® = (a,5)®, then (0,)® = (0,)® and in this case (v;)® = (¥,)® if in addition (vy)® =
v en vi¥(t) = (v and as a consequence t)=(v t) this also defines (v
@ then v (1) o)™ and Goa 0)®Gas (1) this also def 0)®
for the special case .
nalogously if (by,)™® = (b,:)™®,then (7)™ = (,)® and then
Anal lyif (by)® = (by)@,th W )@ and th
(u)® = (@) @if in addition (uy)® = (u)® then T, (t) = (u)®T,s (t) This is an important
consequence of the relation between (v;)® and (v;,)®, and definition of (uy)®.
435

Proof : From concatenated set of equations we obtain

dv(® , , . B

pra (az)® — ((‘128)(5) — (a29)® + (a26)® (T, t)) — (a30)® (Ty9, OVE) = (a39) PV
Definition of v :- v® = Gz
G29

It follows

2 dv®)
- ((azg)(s)(V(S)) +(0) v — (azs)(s)) <=

s - ((‘129)(5)("(5))2 + (o) Pv® — (‘128)(5))

From which one obtains
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Definition of (¥;)®, (v)® :-

%) _
(@) For0<|(v)® = ng <W)® < @)®

V(S)(t) > (v1)(5)+(C)(5)(vz)(5)g[‘(az9)(5)((v1)(5)—(v0)(5)) t] (C)(S) _ ) ®
T 5@ (eD®-00®)] ’ v0)®-)®
it follows (v))® < v®(t) < (v)®
In the same manner , we get 436
V(S)(t) < (71)(5)+(5)(5)(Vz)(5)g[‘(a29)(5)((171)(5)—(172)(5))t] (C_‘)(S) _ T —)®
>~ 5+(E)(5)e[—(azg)(S)((171)(5)—(172)(5)) t] ’ (VO)(S)_(VZ)(S)

From which we deduce (v,)® < v®(t) < (7)™

0 nd ke . 437
() If 0<()® < (® = g% < (#,)® we find like in the previous case,
29
(vl)(5)+(c)(5)(‘/2)(5)e[_(“29)(5)((V1)(5)—(v2)(5)) t]
1+(0)®e"@29P (e DO-02)®) ]

v)® < < vO@®) <

TDO OO @y~ @2 (DO -2 ]
1408 e[~ @29P (DO -TE)) o]

< @)@

0 438
() If 0<@)® < @) <|(w)® =2 , we obtain
2

©

TDO+OO @O~ @2 (-2 ]
1408 e[~ @29P (DO -T2 ®)) ¢]

wv)® < vO(@) < < (v)®

And so with the notation of the first part of condition (c) , we have
Definition of v (t) :-

(mz)(S) < V(S)(t) < (m1)(5): V(S)(t) _ Gpg(t)
G29(t)

In a completely analogous way, we obtain
Definition of u®(¢t) :-

(1)® < u® @) < ()@, [u® (@) = T28(t)
T29(t)

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :

If (a28)® = (ay9)®, then (6,)® = (0,)® and in this case (v;)® = (#,)® if in addition (v,)® =
(vs)® then v (1) = (v,)® and as a consequence G,g (t) = (V) G,o(t) this also defines (v,)®
for the special case .

Analogously if (byg)® = (by)®, then (1,)® = (1,)® and then
(u)® = (i1;)®if in addition (uy)® = (u;)® then Thg () = (u) P Tyo (t) This is an important
consequence of the relation between (v;)® and (¥,)®, and definition of (uy)®.
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Proof : From Global equations we obtain 439

dv(e') ’ ’ " "
Frie (az)® — ((a32)(6) — (a33)© + (a3,)© (T3, t)) — (a33)© (T33, )v® — (a33)Ov®

Definition of v(©® :- y(© = G2
G33

It follows

2 dv©) 2
~ (@)@ (@) + (@) OO = (a5)@) < == < = (@)@ (V@) + (0) OV = (a5)®)

From which one obtains

Definition of (#;)®, (v ¢)© :-

. GY _
() For0<|m)® =g < )@ < @)@

©(t) > DO+ O )@ @3 O (D00 @) ] 0©® = GO=00®
Ry e ) N (GO O R 10
it follows (v))® < v©®(¢) < (v,)©®
In the same manner , we get 440

TDO+(0) O ) ©[~@3)O(TDO-2®) ]

©© = DO -(v)®
1@ @ O] ] |

®
MO ~ 0)®-wp®

From which we deduce (v)©® <v©®(t) < (#,)®

0 ind fike i 441
K) If 0< (1)® < (v))® =52 < (%,)©® we find like in the previous case,
' 0 GY 1
33
("1)(6)+(C)(6)(v2)(6)e[*(a33)(6)((1/1)(6),(1/2)(6))t]
1+(c)(6)e[*(a33)(6)(@1)(6),@2)(6)) ]

v)® < < vO@) <

TDO+(O)O @ ©e @33 (TDO-2®) ]
14(0)©)|~@3)O (DO -T2 ) ¢]

N o< @)®<@)® <|(v)® =

< (@)®

N ) 442
==, we obtain
G3

)

T+ O () ©e @33 (TDO -2 @) ]
14(0)®)[~@3) (DO -2 (@) (]

(v)® < vO () < < (v)©

And so with the notation of the first part of condition (c) , we have
Definition of v® (¢) :-

m)® < vO () < ()@, |vO () = 23
33

In a completely analogous way, we obtain
Definition of u®(t) :-
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T3, (t)
)@ < w0 < )@, | =225

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.
Particular case :

If (a3,)® = (a33)©, then (0,)©® = (0,)@ and in this case (v;)©® = (¥,)©® if in addition (v,)©® =
]Evl)(:]) then _v|(6) (£) = (v,)® and as a consequence G, (t) = (vo)©® G5 (t) this also defines (v,)©

or the special case .
Analogously if (b3,)® = (b33)®,then (7,)©® = (1,)© and then

(u)® = (;)@if in addition (u)® = (uy)® then Ty, (t) = (uy)®Ts3 (t) This is an important
consequence of the relation between (v;)® and (v,)®, and definition of (uy)©.
We can prove the following 443
Theorem 3: If (a; )P and (b, )V are independent on t , and the conditions

( 13) 14 13 14

(a’13)(1)(a'14)(1) - (a13)(1)(a14)(1) + (a13)(1)(p13)(1) + (a’14)(1)(p14)(1) + (p13)(1)(2914)(1) >0
(b,13)(1)(b,14)(1) - (b13)(1)(b14)(1) > 0 ’

(b,13)(1)(b,14)(1) - (b13)(1)(b14)(1) - (b13)(1)(ﬁ4)(1) - (b14)(1)(7”14)(1) + (7”13)(1)(7’14)(1) <0
with (py3)®, (1)@ as defined are satisfied , then the system

13 14

If (a; )P and (b; )@ are independent on t , and the conditions

(a16)@(@17)@ — (a16)@(a;7,)® < 0 444
(a16) @ (a17)@ = (a16) P (a17)@ + (a16) P (16)® + (@17) P 017)P + (016) P (17)@ > 0
(b16) @ (b17)@ — (b1s) @ (by)@ >0,

(bis)(z)(bi7)(2) - (b16)(2)(b17)(2) - (blle)(Z)(rn)(Z) - (b17)(2)(7”17)(2) + (7”16)(2)(7"17)(2) <0 445
with (pye)@, (1,)® as defined are satisfied , then the system

P16 17

2 1f (a; )P and (b; )® are independent on ¢ , and the conditions 446

ay0)® (a1)® — (ay9)®(a,1)® <0

( 20) 21 20 21

(a20)®(a21)® = (a20)® (@210 + (a20)® (020)® + (a2 @21)P + (P20) (21)® > 0

(b20)® (b21)® = (b20)® (b)) > 0,

(b20)® (b31)® = (b20)® (1)@ = (b30) P (121)® — (b)) (121)P + (r0) ) (151)® < 0

with ()@, (1,)® as defined are satisfied , then the system

We can prove the following 447

If (a; )P and (b; )™ are independent on t , and the conditions
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(a24)® (a35)® — (a24)®(az5)® < 0

(aza)® (aés)(4) — (a20)® (a25)™ + (a0)® (P2)® + (alzs)m @25)® + (024)® (025)™ > 0

(b22)™ (by5)® — (b24)® (bp5)™ > 0,

(b'24)(4) (bés)m - (b24)(4) (bzs)(4) - (bé4)(4) (Tzs)(4) - (blzs)m (Tzs)m + (T24)(4) (7"25)(4) <0

with (py)™, (,5)® as defined are satisfied , then the system

If (a; )P and (b; )™ are independent on ¢ , and the conditions 448
(a28)®(a29)® = (a29)®(a9)™ < 0

(a28)® (a29) ) = (a28)® (a29)® + (a28)® (P25)® + (a20)® (P29)™ + (P25)® (026)® > 0
(b28) ™ (b29)® = (b35)® (b29)® >0,

(b28)® (b29)) = (b25) P (b29)® = (b)) (129)® — (b29) ) (r29)® + (r26) ™ (r29)® < 0

with (p,g)®, (159)® as defined are satisfied , then the system

If (a; )@ and (b; )© are independent on ¢t , and the conditions 449
(a32) @ (a33)® — (a32)®(az3)® <0

(a32)®(@33)©@ = (a3) @ (a33)©@ + (a32) @ (32)® + (a33) @ (330 + (032) @ (p33)® > 0

(b32)® (b33)© = (b3,)© (b33)® >0,

(béz)(G) (bé3)(6) - (b32)(6) (b33)(6) - (béz)(G) (7”33)(6) - (b’33)(6) (7”33)(6) + (7”32)(6) (7"33)(6) <0

with (p3)©, (133)© as defined are satisfied , then the system Boolean satisfiability problem and N
puzzle

(13614 = [(a1)® + (@13)P(T1)]Gis = 0 4%0
(1) V613 = [(a1)® + (@)D (T1)]Giy = 0 451
(015) D614 = [(a1)® + (@15) P (T1)]Gys = 0 452
(by3) VT = [(b13)® = (b13) P (6) Ti3 = 0 493
(b1) VT3 — [(b1)® = (b1) P (G) T4 = 0 454
(b15) VT4 = [(bys)® = (b15) P (6) Tys = 0 495
has a unique positive solution , which is an equilibrium solution for the system
(016)P 617 — [(a16)® + (@1) P (T17)]Gis = 0 456
(@17)P616 = [(@)® + (@)D ()]G = 0 o7
458

|
o

(a18)PGy7 — [(@19)@ + (a15) P (T17)]Gig =
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(b16)(2)Tl7 - [(b,16)(2) - (b,1,6)(2)(G19) 1Tig=0 459
(b17)PTis — [(017)P = (1) P (G19) ITy7 = 0 460
(b1g) P Ty7 — [(b15)® — (b15) P (G1o) ITys = 0 461
has a unique positive solution , which is an equilibrium solution for the system 462
(a20)® G,y — [(aéo)(g) + (ago)(g)(Tm)]Gzo =0 463
(a)® &g — [(a’21)(3) + (a£1)(3)(T21)]G21 =0 464
(az)® Gy — [(aéz)(g) + (agz)(g)(Tm)]Gzz =0 465
(b20)®Ty; — [(b30)® — (b20)®(Gp3) 1Ty = 0 466
(b21)® Ty = [(021)P = (b21)®(G3) [Toy = 0 467
(b32)OTy1 — [(b32)® — (b22) P (G3) 1Ty, = 0 468

has a unique positive solution , which is an equilibrium solution for the system

(a20) PG5 — [(@24)™ + (a24) ™ (T25)]Gpq = 0 469
(a25) PGy — [(a25)™® + (as) P (Tys5)|Gos = 0 470
(a26) ™G5 — [(a26)™ + (a26) P (Tp5)]Go6 = 0 471
(b24)(4)T25 - [(bé4)(4) - (bg4)(4)((G27)) 1T =0 412
(bys) P Toy — [(b35)® — (b35) P ((G27)) 1Tos = 0 473
(bae) P Tos — [(b26)™® — (b26) P ((G27)) 1Ty = 0 474

has a unique positive solution , which is an equilibrium solution for the system

(a28)® Gyo — [(a26)® + (a36)®(T19)]Gr = 0 475
(a20)® G5 — [(a29)® + (a39)®(Ty9)]Gro = 0 476
(a30)® Gyo — [(@50)® + (a30)®(T29)]G3p = 0 477
(bzs)(s)ng - [(bés)(s) - (bgs)(s)(531) 1T = 0 478
(b29)(5)T28 - [(bé9)(5) - (bg9)(5)(531) 1T =0 479
(b3o)(5)T29 - [(béo)(s) - (bgo)(s)(Gm) T30 = 0 480

has a unique positive solution , which is an equilibrium solution for the system
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(a32) @G5 — [(a32)® + (a3,) @ (T33)]G3, = 0 481
(033)(6)632 - [(a§3)(6) + (a;3)(6)(T33)]G33 =0 482
(034)(6)633 - [(a§4)(6) + (a;4)(6) (T33)]G34 =0 483
(b32)(6)T33 - [(béz)(@ - (bgz)(@ (G35) T3, = 0 484
(b33)©Tsp — [(b33)© — (b33) @ (G35) T35 = 0 485
(b33)©Ts3 = [(034)© = (b34) @ (G35) T34 = 0 486

has a unique positive solution , which is an equilibrium solution for the system

Proof: 487
(@) Indeed the first two equations have a nontrivial solution G5, Gy, if

F(T) =

(a,1,3)(1)(a14)(1)”— (a13) P (a1)® + (a13) P (a1) P (T14) + (a1) P (a13) V(1) +

(a13) P (T14) (a14) P (T14) = 0

_Indeed the first two equations have a nontrivial solution G4, G;; if 488
F(Tyo) =

(a16)? (@17)® = (a16) P (@17) @ + (a16) @ (a17) P (T17) + (a17)P (a16) P (Ty7) +

(a16) P (T17) (a17) P (Ty7) = 0

_(a) Indeed the first two equations have a nontrivial solution G,,, G,; if 489
F(Ty) =

(a20)® (a21)® = (a20)®(a21)® + (a20)® (@21)® (Tp1) + (a21)P (a30) P (T1) +

(a20)® (T31)(a51) ) (T31) = 0

_(a) Indeed the first two equations have a nontrivial solution G,4, G,5 if 490
F(Ty;) =

(a24)® (az5)® - (a20)® (a25)™ + (a24)® (a35)® (Ts) + (a25)® (a24)® (T5) +

(a24)® (Ty5) (@, )P (Tz5) = 0

_(a) Indeed the first two equations have a nontrivial solution G,g, G,9 if

F(T3) =

(a28)® (a29) ) = (a28)® (a29)® + (a28)® (a20) P (Tz9) + (a20) (a28) ) (Tpo) +

(a28)® (T39) (a29) ) (T39) = 0

_(a) Indeed the first two equations have a nontrivial solution Gs,, G35 if 491

F(T35) =
(a32)® (a33)® — (a32)@ (a33)® + (24,) @ (a33)© (T33) + (a33) @ (a3,) @ (T33) +
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(a32) @ (T33)(a33) @ (T33) = 0

Definition_and uniqueness of Ty, :-

After hypothesis f(0) < 0, f(c0) > 0 and the functions (a, )’ (T;,) being increasing, it follows that there
exists aunique Ty for which f(Ty,) = 0. With this value , we obtain from the three first equations

_ (a13)M614 Gie = (a15) D614
[(@13)D+(ai3)D(11y)] ’ 15 [(a15) D+(ay5)D(T5y)]

613

Definition_and uniqueness of T, :-

After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; )® (T;,) being increasing, it follows that there
exists aunique T;; for which f(T;5) = 0. With this value , we obtain from the three first equations

(a18)@G17
[(a18)@+(aip)D(T17)]

(a16)PG17
[(a16)P+(a1)P(Ti7)]

Gl6 = G18 =

Definition_and uniqueness of T; :-

After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; ) (T,) being increasing, it follows that there
exists a unique Ty; for which f(T5;) = 0. With this value , we obtain from the three first equations

(a20)®6y4 G = (a22)® Gy
[(@20)®+(az0)®(131)] ' 22 [(a22)® +(az)®(T31)]

Gy =

Definition and uniqueness of T,s :-

After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; )™ (T,s) being increasing, it follows that there
exists aunique T,z for which f(T,:) = 0. With this value , we obtain from the three first equations

(az6)WGys
[(a26)®+(aze)®(755)]

(a24) W65
[(a24)® +(az4) D (T35)] '

624 = G26 =

Definition_and uniqueness of T;, :-

After hypothesis f(0) < 0, f(e0) > 0 and the functions (a; ) (T,) being increasing, it follows that there
exists a unique Ty, for which f(T5,) = 0. With this value , we obtain from the three first equations

(a30)® 69
[(a30)®)+(az0) 5 (T59)]

(a28)®6Gz9
[(a28)®)+(az)®)(T55)] '

Gg = Gz =

Definition_and uniqueness of T35 :-

After hypothesis £(0) < 0, f(e0) > 0 and the functions (a; ) (T33) being increasing, it follows that there
exists a unique Ty; for which f(T53) = 0. With this value , we obtain from the three first equations

(a34)® 633
[(a34)® +(a34)©(T33)]

_ (a32)®633
[(a32)®+(a3)®)(133)] '

G, G3y =

(e) By the same argument, the equations of global system admit solutions G;3, G;4 if
@(G) = (b13) P (b1)® = (b13) P (b)) —

[(513) @ (1) P (G) + (b1)® (b13) V()] +(b13) P (6) (b1) P (G) = 0
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Where in G(G;3, Gy4, G15), Gy3, G1s must be replaced by their values from 96. It is easy to see that ¢ isa
decreasing function in G,, taking into account the hypothesis ¢(0) > 0, ¢() < 0 it follows that there exists a
unique Gy, such that ¢(G*) =0

(f) By the same argument, the equations 92,93 admit solutions G4, G, if

¢(Gyo) = (bia)(z)(bln)(z) - (b16)(2)(b17)(2) -

[(516)® (b17)P(G1o) + (b17)P (b16) P (G19)]+(b16) P (G19) (b17) P (Gy9) = 0

Where in (Gy4)(Gyg, G17, G1g), Gy, Gig Must be replaced by their values from 96. It is easy to see that ¢ isa
decreasing function in G, taking into account the hypothesis ¢@(0) > 0, (o) < 0 it follows that there exists a
unique Gj, such that @((G,4)*) =0

(9) By the same argument, the equations of the global system admit solutions G, G, if
@(Gy3) = (béo)(3)(bé1)(3) - (bzo)(3)(bz1)(3) -
[(620)® (b21)®(G23) + (b21)® (b20) P (G23) ]+ (b20) P (G23) (b21) P (G3) = 0

Where in G,3(G,g, G21, Ga2), Gog, G2, must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,; taking into account the hypothesis ¢(0) > 0, (o) < 0 it follows that there exists a
unique Gy, such that @ ((G,3)*) =0

(h) By the same argument, the equations of the global system admit solutions G,,, G5 if
@(Gy7) = (bé4)(4) (bés)(4) - (b24)(4) (bzs)(4) -
[(b20)® (b35) P (Gy7) + (b35) ™ (b30) ™ (Go7) | +(b3) P (G27) (b3s) P (Go7) = 0

Where in (G57)(Gay4, G2, Go6), Goy, Gog Must be replaced by their values . It is easy to see that ¢ is a decreasing
function in G5 taking into account the hypothesis ¢(0) > 0, () < 0 it follows that there exists a unique
G35 such that ¢ ((G,7)*) =0

(i) By the same argument, the global equations admit solutions G,g, G,q if

@(Gsy) = (bés)(s)(bé9)(5) - (bzs)(s)(bZt))(S) -
[(628) 5 (b26) ) (G31) + (b29)® (b2) (G31)]+(b25) S (G31) (b39) S (G31) = 0

Where in (G31)(G,g, Ga9, G39), Gog, Gso must be replaced by their values from 96. It is easy to see that ¢ is a
decreasing function in G,4 taking into account the hypothesis @(0) > 0, ¢(c0) < 0 it follows that there exists a
unique Gy4 such that ¢((G31)*) =0

(j) By the same argument, the global equations admit solutions G;,, G35 if
¢(Gss) = (b32)(6) (b33)(6) — (b3) @ (b33)® —

[(béz)(ﬁ) (b33)©(G35) + (b33)© (b3)® (G35)]+(b§2)(6) (G35)(b33)®(G35) =0

Where in (G35)(Gsy, G33, G34), Gso, G, must be replaced by their values from 96. It is easy to see that ¢ isa
decreasing function in G55 taking into account the hypothesis @(0) > 0, @() < 0 it follows that there exists a
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unique G35 such that ¢ (G*) =0
Finally we obtain the unique solution of the global system:

Gy, givenby @ (G*) = 0, Ty given by f(T7,) = 0 and

G = (a13)M6iy G = (a15) V614

B 7 [@1)D+@D(15,)] 7 718 7 [(@h) D+ D(T14)]
T* = (b13)VTfy T = (b15) D1y

BT e ®@-01M6EH] 1 T T 19 W=b15) D (6]

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

Gi; givenby @((Gy9)") = 0, Ty; givenby f(T;7) = 0 and

G = — (316)(?(317 Gt = — (318)(5)G§7
16 7 @)@ +@1)A(Ti7)] T8 T [@19)P+@19) P (Tiy)]
b1 )@ T b1a)@)T*
Ty, = (b16)\“’T17 L T = (b1g)\“’T17

T 1)@ -01)P(G19)Y)] [(b18)@—(b15)P ((619))]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

Gy givenby @((Gp3)*) = 0, T givenby f(T;;) = 0 and

G = (220063 G = (a22)634
207 (0200 +@)®(13)] T TP T [(a22)®+(az)®(15)]
(b20)PT5 (b22) 15
Ty = Iy, =

[(b20)®~(b30)P(G23M] [(b22)®)~(b22)®) (G237)]
Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution

G;s givenby ¢(G,;) = 0, Ty5 givenby f(T;s) = 0 and

G* — (a24)(4) GZ*S G* — (aZG)G)GES
27 [(a)®+@)@(T55)] ' 20 T [(az6)®+aze)@(T55)]
T = (b24) T35 T = (b26) T35
2T 2@ =)@ ((G2)0] 7 20T [(h2e) P —(b26) P (G27)7)]

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution
Gy given by @((G31)*) = 0, Tyy givenby f(T5,) = 0 and

G = — (azg)(i)ﬁz*«a Gi = — (a3o)(i)059
28 7 [(azg)®D+@z)®(Tso)] ' 30 T [(a30)®+(az0)®)(T5)]
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T — (b28)B)T5g TE — (b30)®) T3 516
28 7 ()@ ()P (G3)N] 1 30 T [(h30)®—(b30)D((G31)9)]

Obviously, these values represent an equilibrium solution
Finally we obtain the unique solution 517

G35 givenby ¢((Gs5)*) = 0, T55 givenby f(T53) = 0 and

Gr = (a32)®© 633 G = (a34)©)633
32 7 [(ag)®+@3)®(135)] ' 3 T [(a30) @ +(az0) O (T55)]

T: — (b32)©)133 T — (b34)©T33 518
32 7 {3 © -3 @ ((G35))] 7 T3 T (03O -(03)©((635)")]

Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS 519

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (a; )*’ and (b, )®¥
Belong to CW( R,) then the above equilibrium point is asymptotically stable.

Proof:_Denote
Definition of G;, T; :-

Gi=Gi*+(Gi lTi=Ti*+Ti
2@ )@ .., a0 )V
ﬁ(TM) = (@)@ —r—(G") =5y

Gj

Then taking into account equations of global system neglecting the terms of power 2, we obtain

B , . 520
w = —((@1)® + P13)P)Gy3 + (a13)V Gy = (q13) V61T,

B , . 521

e —((@)® + @) P)Gyy + (01) VG35 — (q1) VG Ty

B , . 522
dtls = (@) + @15)P)Gis + (a15) DGy = (q15) VG5 Ty

n , . 523

713 = —((b13)® = () D) T3 + (1) DTy + X215 (503 136G )

N , . 524

714 = (1)Y= ) D) Ty + b)) VT3 + 22135000y T4 G;)

N , . 525

715 = —((b15)® = () D) Ty5 + (1) DTy + X213 (a5 15 G;)

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to
C@(R,) then the above equilibrium point is asymptotically stable

_Denote 526
Definition of G;, T; :-

Gl:G;k‘}'Gl lTl=Tl*+Tl 527
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a (b ) 528

““”) L(15) = (@)@ 2222 (G)7) =5,

taking into account equations (global) and neglecting the terms of power 2, we obtain

4G 529
_16 = —((@16)® + (P16)P)Gys + (a16) P Gyy — (q16) P Gi6 Ty
4G , \ 530
TN = —((@17)® + (P17)P)Gy7 + (a17) PGy — (q17) PG5, T4y
dG 531
d_lg = —((@18)® + (P13)P)Gyg + (a18) P Gyy — (q1) P Gig T4y
dT 532
_16 = _((b16)(2) - (r16)(2))T16 + (b)) DTy, + Z} 16(5(16)(1)T16(G )
dT : . 533
?17 = _((b17)(2) - (T17)(2))T17 + (b)) DT + 2}216(5(17)0)T17«:7j)
dT 534
d_lg = _((b18)(2) - (T18)(2))T18 + (b18)(2)T17 + Z] 16(5(18)(])T18(G )

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )®® Belong to 535
C®(R,) then the above equilibrium point is asymptotically stable.
_Denote
Definition of G;, T; :-

GizGi*+Gi ’Ti=Ti*+Ti
] ab; )®
(a21) (T3) = (CI21)(3) ( ) ——((G3)") = Sij

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 536
G 537
—t= ~((220)® + (P20)P) G + (a20)P Gy — (420)P G50 T2
G 538
—= ~((a20)® + (P20)P) G2 + (a21)P G — (421)P 631 Ty
G 539
- = ~((a22)® + (P22)P) Gz + (a22)P Gy — (422)P 63, Ty
dT . 540
i = —((020)® = (r20)®) Ty + (b20) P Ty, + Z,Zizo(s(zo)(j)Tzo(Gv)
dT 541
d_Zl = —((b2)® - (r21)(3))'ﬂ"21 + (b)) Ty + Z, 20(5(21)U)T21G )
dT 542
d_zz = _((bzz)(3) - (rzz)(g))Tzz + (b)®Ty + Z, 20(5(22)(1)T22(G )

If the conditions of the previous theorem are satisfied and if the functions (zz: Y and (b; )® Belong to 543
C®(R,) then the above equilibrium point is asymptotically stable.

+

_Denote
Definition of G;, T; :- 544
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Gl‘:Gl‘*+Gl‘ 17-'i=7'i*+r]rl‘

0(b )

Alar )@ .
%(Tzs) = (CI25)(4) ((G27) )=

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

m& = —((a24)(4) + (1024)(4))((324 + (a2)MGy5 — (q24) W G34Ts .
d:‘,zs . ((azs)(4) + (st)(4))st + (azs)m)@m _ (qzs)( )stTzs 546
d:% —((@26)® + (026)™) G + (a26) PG5 — (426) VG365 "
dT“ = —((b24)® — (124)P) Ty + (bpg) P Ty5 + ¥ 24(5(24)(,)T24(G ) o
des = ((bzs)(4) - (Tzs)(4))T25 + (bzs)(4)T24 + Z] 24(5(25)(1)7'25(GT ) o
dI% = —((b26)™ — (ry6) ) T26 + (bye) PTy5 + Z] 24(5(26)(1)7'26(GT )

If the conditions of the previous theorem are satisfied and if the functions (a; )® and (b; )® Belong to 550

C®(R,) then the above equilibrium point is asymptotically stable.

_Denote

Definition of G;, T; :- 551
G =G +G T =T +T,;

B(b )( )

9(az)® .
%(Bﬂ =(q20)® , ——=—((G)) =y

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

dG 552

d_zs = _((azs)(s) + (st)(S))st + (azs)(s)(Gw - (CI28)( )GZST29

dG 553

d_zg = —((@20)® + (029)) Gp9 + (a20) P G — (420) G399

dG 554

_d30 = —((a30)(5) + (p30)(5))(G30 + (a30)(5)(G29 - (Q30)( )G30T29

dT 555

d—ZS = _((bzs)(s) - (rzs)(s))Tzs + (bzs)(s)Tm + Z] 28(5(28)(1)T28(G' )

dT 556
dzg = —((b20)® = (120) ) Tpg + (b29) P + %2 Las (s oo Gy )

dT 557

d_30 = —((b30)® = (130)®) T30 + (b30) FTo9 + E225(5(30y) T30 G )

If the conditions of the previous theorem are satisfied and if the functions (a; ) and (b; )® Belong to
C®(R,) then the above equilibrium point is asymptotically stable.

_Denote
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Definition of G;, T; :- 558
GiZGi*‘l'(Gi 1Ti=Ti*+Ti
9az)® o, (b )® )
%(T%) =(q3)® a—c;j((G35) ) =s;

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

dg% = —((a32)® + (032) @) Gz + (a32) @ G33 — (435)© G5, T 559
d% = —((a33)® + (p33)©) G35 + (a33)©Gay — (q33) G645 Ts3 560
dg% = —((@3)® + (3)®) G4 + (a34) @G35 — (434) @634 T3 561
dj% = —((b3)® = (132) @) T3y + (b3;) ©Ts3 + L4, (5G9 92 G;) 562
d:% = _((b,33)(6) - (T33)(6))T33 + (b33)(6)T32 + 213132 (5(33)0)T3*3 Gj) 563
dj% = —((030)©@ — (13) @) T34 + (b3) T3 + AP (5(34)U)T3*4Gj) 564

The characteristic equation of this system is

(DD + (1) = Eis) VNP + (@15)P + (p15)P)

[(((/1)(1) + (a13)® + @13)P) (1) V6is + (@)D (@1) 61 )]

(((/1)(1) + (b13)® = (1) D) suayan T +(b14)(1)5(13),(14)T1*4)

+ (((/1)(1) + (a1)® + (P14)(1))(CI13)(1)G1*3 + (a13)(1)(q14)(1)6{‘4)

(((/1)(1) + (1) = (1)) s,z Tia + (b14)(1)5(13),(13)T1*3)

(((/1)(1))2 + (@)™ + (@) + ) + (1)) (A)(l)) 65
(WD) + (B + (i) = (1) + (3)D) WD)

+ (((/1)(1))2 + ((a1)® + (@) + (p13)® + (1) D) (A)(l)) (415) VG5

+H(DD + (a1)V + (01)V) (@) (@1) VG + (a12) P (a15) P (q13)VG13)

(((/1)(1) + (b13)® = (1) V)saay a5 T +(b14)(1)5(13),(15)T1*3)} =0

+
((/1)(2) + (b1g)® — (7”18)(2)){((/1)(2) + (a19)® + (P18)(2))

[(((/1)(2) +(a16)® + (016)?) (417)PGi7 + (a17)(2)(Q16)(2)G16)]
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(DD + (b1)® = (116)P)sar,anTir +b1)Psae,an T )

+ (D + @) + (1) P)(16) D6 + (a16) P (@) PG )

(@D + B10)® = (1) @)sun a6 Tir + 1) Psae,a6)Tis)

(W) + (@)@ + @P + Pi)@ + (P1)?) D)

(WD) + (1)@ + b1 ~ (1)@ + (1)@) WD)

+((WD) + (@)@ + @)? + P1e)® + @)®) WD) (415) PGy
+HDP + (@19)P + (P16)@) (1) (@17)PGi7 + (a17)P (a16) P (q16) P Gig)

(((/1)(2) + (b16)® = (16)®)sa7),am Ti7 +(b17)(2)5(16),(18)Tf6)} =0
+

(DD + B2)® = ()P (WD + (@) + (2)®)

(WD + @) + @20)®) @20)P 631 + (021)P (020065 )|

(DD + 200 = (20)D) 5120 51 +B2) D50 200 T51 )

+ (DD + @) + ©0P) @20) P60 + (a20)P(421) D65, )

(D + B2 = (20)P) 52120051 + 21)D5 20,200 o)

(W) + (@)@ + (@) + @0)® + (p2)P) D)

(W) + (B0 + B3)® — (20)@ + () P) D)

+ (D) + (@)@ + @) + @) + 0:)P) WD) (42)P6
(DD + (a20)® + 020)P) ((22)P (4200651 + (321)P (02)P (920)PG30)

(((/1)(3) + (20)® — (20)®)521),02) T2 +(b21)(3)5(20),(22)T2*0)} =0
+

(D + (b26)™® = ()PP + (az6)® + (026)?)
[(((/1)(4) + (@20)® + (024))(G25) P G35 + (@z5)® (q24)(4)62*4)]

(((/1)(4) + (bo)™ = (20)®) 525,25 Tis +(b25)(4)5(24),(25)T2*5)
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+ (D@ + @)@ + @2)P) @) PG5 + (a20)® (@) PG5)

(DD + B3P = (20052500 Tss + (b2s)Dsae0)T51)
(WD) + (@)@ + @)@ + P2)® + (25)®) WD)

(WD) + (B2)® + (bi5)® = ()@ + (15)®) DP)
+ (WD) + (@)@ + (@)@ + @20)® + 25)®) D®) (26) PG
+H(DD + (@20)P + 02)P) ((a26) P (G25) P G35 + (a25) P (a26) P (q24) P G54)

(((/1)(4) + (byg)® — (T24)(4))5(25),(26)T2*5 +(b25)(4)5(24),(26)T2*4)} =0

.
(DO + (30)® = )OS + (az0)® + (p30)®)

(DS + @) + 226)) (426) PG5 + (29) (426)°655 )|

(D + () = (12)) 529,290 o +(b29)P 528,250 T )
+ (DS + (@30)® + (P26)P) (@26)® G35 + (@26) (426) G55

(D + B2)® = (2)) 529, 28955 + (b29) 5o, 20T )
(W) + (@)@ + (@2)® + (P2)® + (20)@) D)

(W) + (B + (b30)® = () + (120)®) W)
+((@W®) + (@) + (@) + @) + @2)P) D) (430) G0
(DO + (az6)® + (026)) ((a30)®(420) S G + (a29) (@30)® (426) ) G35)

(((/1)(5) + (b26)® — (126)®)5(29),30) T3 +(b29)(5)s(28),(30)T2*8)} =0

+

(DO + (b30)® = ()N + (a30)@ + (p3)®)
[(((/1)(6) +(a32)©@ + (132) @) (433) @G53 + (a33) @ (a32) @65, )]
(((/1)(6) + (b32)® = (r3)©) 533,33 T3 +(b33)(6)5(32),(33)T3*3)

+ (((/1)(6) +(a33)®@ + (p33)©) (@32) @ 632 + (a32)© (Q33)(6)G3*3)
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((W© + 1) ® = (353,60 Ts + (b33) @5 T )
((W®)" + (@)@ + (@)@ + P3)@ + (3)@) W)

((W®)" + (B5)® + (bin)® = (3)@ + (13)@) D®)
+((D®) + (@)@ + @)@ + Ps)@ + 23)@) D®) (q5) @G
+((D@ + (@3)@ + (032)@) ((a34)@ (433)© G35 + (a33)@ (a34) @ (g32) @ G32)

(((/1)(6) + (b32)©@ = (132)©)5(33),3) T53 +(b33)(6)5(32),(34)T3*2)} =0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this
proves the theorem.
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