Internal Differentiation, Comparative Variability, Structural Morphology, Normative Aspect Of Prognostication Of Ipse Dixit Np Hard Problems-A Totalistic Paradigmatic Statement

$^1\mathrm{DR}$ K N
 PRASANNA KUMAR, $^2\mathrm{PROF}$ B S KIRANAGI AND 3 PROF C S BAGEWADI

¹Post doctoral researcher, Dr KNP Kumar has three PhD's, one each in Mathematics, Economics and Political science and a D.Litt. in Political Science, Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India

²UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India

³Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu university, Shankarghatta, Shimoga district, Karnataka, India

ABSTRACT: We develop a progressive comparable to Bank's General Ledger, and call it a General Theory of all the problems under the head of NP hard problems. Problems have their variables. For instance "Travelling Sales man problem" can have various different cities. Based upon parameters classification is done and stability analysis, asymptotic stability and Solutional behaviour of the equations are investigated We eschew from stating any primary predications, coextensive representations, predicational anteriority of the Problems attributed to space constraints. In consideration to the parametric based classification and there is both ontological consonance, primordial exactitude, and phenomenological testimony as one finds in Bank's ledgers. General Ledger is in fact the statement of all inflows and outflows, such a one as that occurs in problems, and theories in some conditions, like for example the conservation of energy breaking down in Hawking's radiation. Emphasis is laid on the fact that for instance a travelling salesman makes some move and then retracts to redress his move or starts another move to further his final destination. And this destination is General Ledger.-The General Theory Of all the NP (hard) problems. It is a journey, a journey to find the final balance which probably never ends like an account never closes. So we are on to the journey KEY WORDS: Roolean satisfiability Problem N Puzzle Knapsack Problem Hamiltonian Path

KEY WORDS: Boolean satisfiability Problem, N Puzzle, Knapsack Problem, Hamiltonian Path problem, Travelling Salesman Problem

I. INTRODUCTION:

As stated in the abstract we will not give any introduction, inconsideration to the leviathans' material and humungous literature on each subject matter for fear of missing woods for trees. On the other hand, for the interested reader the literature provides a rich receptacle, repository and treasure-trove of knowledge, And also because of space constraints. We note that the NP (HARD) problems are classified as follows:

- 1) Boolean satisfiability Problem
- 2) N Puzzle
- 3) Knapsack Problem
- 4) Hamiltonian Path problem
- 5) Travelling Salesman Problem
- 6) Sub graph Isomorphism Problem
- 7) Subset Sum problem
- 8) Clique Problem
- 9) Vertex Cover Problem
- 10) Independent Set problem
- 11) Dominating set problem.
- 12) Graph Coloring Problem

implications of inflation, money depression, depreciation of the currency, implications of Policies, philosophies and programs of the Government, each problem has certain parameters. That Gravity is constant does not mean it does not depend upon the masses of individual particles and there is no total gravity. Stratification is done based on the parameters of each problem and then consummated with the other to form a monolithic Diaspora for building the Model, which essentially as said is a progressive, nay a General Theory Of all the ways and means in which the problem can be solved be it by invocation or by abnegation and revocation of the action. Everything is recorded in the Computer and we draw up a Final General Ledger-nay The General Theory Of all NP (HARD) Problems. Essentially a prediction model, it as said analyses various other facets too.

GLOSSARY OF THE SYSTEM BOOLEAN SATISFIABILITY PROBLEM AND N PUZZLE

NOTATION:

 G_{13} : Category One Of Boolean Satisfiability Problem

 G_{14} : Category Two Of Boolean Satisfiability Problem

 G_{15} : Category Three Of Boolean Satisfiability Problem

 T_{13} : Category One Of N Puzzle

T₁₄: Category Two Of N Puzzle

 T_{15} : Category Three Of N Puzzle

GLOSSARY OF THE SYSTEM KNAPSACK PROBLEM AND HAMILTONIAN PATH PROBLEM:

 G_{16} : Category One Of Knapsack Problem

G₁₇: Category Two Of Knapsack Problem

 G_{18} : Category Three Of Knapsack Problem

 T_{16} : Category One Of Hamiltonian Path Problem

 T_{17} : Category Two Of Hamiltonian Path Problem

 T_{18} : Category Three Of Hamiltonian Path Problem

GLOSSARY OF THE SYSTEM:TRAVELLING SALESMAN PROBLEM AND SUBGRAPH ISOMERISM PROBLEM

 \mathcal{G}_{20} : Category One Of Travelling Salesman Problem

 G_{21} : Category Two Of Travelling Salesman Problem

 G_{22} : Category Three Of Travelling Salesman Problem

 T_{20} : Category One Of Sub graph Isomerism Problem

 T_{21} : Category Two Of Sub graph Isomerism Problem T_{22} : Category Three Of Sub graph Isomerism Problem GLOSSARY FOR THE SYSTEM: SUBSET SUM PROBLEM AND CLIQUE PROBLEM G_{24} : Category One Of Subset Sum Problem G_{25} : Category Two Of Subset Sum Problem G_{26} : Category Three Of Subset Sum Problem T_{24} : Category One Of Clique Problem T_{25} : Category Two Of Clique Problem T_{26} : Category Three Of Clique Problem GLOSSARY FOR THE SYSTEM: VERTEX COVER PROBLEM AND INDEPENDENT SET **PROBLEM** ______ G_{28} : Category One Of Vertex Cover Problem G_{29} : Category Two Of Vertex Cover Problem G_{30} : Category Three Of Vertex Cover Problem T_{28} : Category One Of Independent Set Problem T_{29} : Category Two Of Independent Set Problem T_{30} : Category Three Of Independent Set Problem GLOSSARY OF THE SYSTEM: DOMINATING SET PROBLEM AND GRAPH COLORING **PROBLEM** ====== G_{32} : Category One Of Dominating Set Problem G_{33} : Category Two Of Dominating Set Problem G_{34} : Category Three Of Dominating Set Problem T_{32} : Category One Of Graph Coloring Problem

 T_{33} : Category Two Of Graph Coloring Problem

 T_{34} : Category Three Of Graph Coloring Problem

ACCENTUATION COEFFICIENTS

$$(a_{13})^{(1)}, (a_{14})^{(1)}, (a_{15})^{(1)}, (b_{13})^{(1)}, (b_{14})^{(1)}, (b_{15})^{(1)} (a_{16})^{(2)}, (a_{17})^{(2)}, (a_{18})^{(2)} \\ (b_{16})^{(2)}, (b_{17})^{(2)}, (b_{18})^{(2)} \colon (a_{20})^{(3)}, (a_{21})^{(3)}, (a_{22})^{(3)}, (b_{20})^{(3)}, (b_{21})^{(3)}, (b_{22})^{(3)} \\ (a_{24})^{(4)}, (a_{25})^{(4)}, (a_{26})^{(4)}, (b_{24})^{(4)}, (b_{25})^{(4)}, (b_{26})^{(4)}, (b_{28})^{(5)}, (b_{29})^{(5)}, (b_{30})^{(5)}, \\ (a_{28})^{(5)}, (a_{29})^{(5)}, (a_{30})^{(5)}, (a_{32})^{(6)}, (a_{33})^{(6)}, (a_{34})^{(6)}, (b_{32})^{(6)}, (b_{33})^{(6)}, (b_{34})^{(6)} \\ \end{cases}$$

DISSIPATION COEFFCIENTS

$$(a'_{13})^{(1)}, (a'_{14})^{(1)}, (a'_{15})^{(1)}, (b'_{13})^{(1)}, (b'_{14})^{(1)}, (b'_{15})^{(1)}, (a'_{16})^{(2)}, (a'_{17})^{(2)}, (a'_{18})^{(2)}, (b'_{16})^{(2)}, (b'_{17})^{(2)}, (b'_{18})^{(2)}, (a'_{20})^{(3)}, (a'_{21})^{(3)}, (a'_{22})^{(3)}, (b'_{20})^{(3)}, (b'_{21})^{(3)}, (b'_{22})^{(3)}, (b'_{21})^{(3)}, (b'_{22})^{(3)}, (a'_{24})^{(4)}, (a'_{25})^{(4)}, (a'_{26})^{(4)}, (b'_{24})^{(4)}, (b'_{25})^{(4)}, (b'_{26})^{(4)}, (b'_{28})^{(5)}, (b'_{29})^{(5)}, (b'_{30})^{(5)}, (a'_{29})^{(5)}, (a'_{30})^{(5)}, (a'_{32})^{(6)}, (a'_{33})^{(6)}, (a'_{34})^{(6)}, (b'_{32})^{(6)}, (b'_{33})^{(6)}, (b'_{34})^{(6)}, (b'_{34})^{(6)}, (b'_{32})^{(6)}, (b'_{33})^{(6)}, (b'_{34})^{(6)}, (b'_$$

GOVERNING EQUATIONS OF THE SYSTEM BOOLEAN SATISFIABILITY PROBLEM AND N PUZZLE

The differential system of this model is now

$$\frac{dG_{13}}{dt} = (a_{13})^{(1)}G_{14} - \left[(a'_{13})^{(1)} + (a''_{13})^{(1)}(T_{14}, t) \right]G_{13}$$

$$\frac{dG_{14}}{dt} = (a_{14})^{(1)}G_{13} - \left[(a'_{14})^{(1)} + (a''_{14})^{(1)}(T_{14}, t) \right]G_{14}$$

$$\frac{dG_{15}}{dt} = (a_{15})^{(1)}G_{14} - \left[(a'_{15})^{(1)} + (a''_{15})^{(1)}(T_{14}, t) \right]G_{15}$$

$$\frac{dT_{13}}{dt} = (b_{13})^{(1)}T_{14} - \left[(b'_{13})^{(1)} - (b''_{13})^{(1)}(G, t) \right]T_{13}$$

$$\frac{dT_{14}}{dt} = (b_{14})^{(1)}T_{13} - \left[(b'_{14})^{(1)} - (b''_{14})^{(1)}(G, t) \right]T_{14}$$

$$\frac{dT_{15}}{dt} = (b_{15})^{(1)}T_{14} - \left[(b'_{15})^{(1)} - (b''_{15})^{(1)}(G, t) \right]T_{15}$$

$$\frac{dT_{15}}{dt} = (b_{15})^{(1)}(T_{14}, t) = \text{First augmentation factor}$$

GOVERNING EOUATIONS:OF THE SYSTEM KANPSACK PROBLEM AND HAMILTONIAN PATH PROBLEM

The differential system of this model is now

 $+(a_{13}^{"})^{(1)}(T_{14},t)$ = First augmentation factor

 $-(b_{13}^{"})^{(1)}(G,t) =$ First detritions factor

$$\frac{dG_{16}}{dt} = (a_{16})^{(2)}G_{17} - \left[(a'_{16})^{(2)} + (a''_{16})^{(2)}(T_{17}, t) \right]G_{16}$$

$$\frac{dG_{17}}{dt} = (a_{17})^{(2)}G_{16} - \left[(a'_{17})^{(2)} + (a''_{17})^{(2)}(T_{17}, t) \right]G_{17}$$

$$\frac{dG_{18}}{dt} = (a_{18})^{(2)}G_{17} - \left[(a'_{18})^{(2)} + (a''_{18})^{(2)}(T_{17}, t) \right]G_{18}$$

$$\frac{dT_{16}}{dt} = (b_{16})^{(2)}T_{17} - \left[(b'_{16})^{(2)} - (b''_{16})^{(2)}((G_{19}), t) \right]T_{16}$$
12

12

$$\frac{dT_{17}}{dt} = (b_{17})^{(2)}T_{16} - \left[(b_{17}')^{(2)} - (b_{17}'')^{(2)} ((G_{19}), t) \right] T_{17}$$
¹³

$$\frac{dT_{18}}{dt} = (b_{18})^{(2)}T_{17} - \left[(b_{18}')^{(2)} - (b_{18}')^{(2)} \left((G_{19}), t \right) \right] T_{18}$$

$$+(a_{16}^{"})^{(2)}(T_{17},t) = \text{First augmentation factor}$$

$$-(b_{16}^{"})^{(2)}((G_{19}),t)$$
 = First detritions factor

GOVERNING EQUATIONS: OF THE SYSTEM TRAVELLING SALESMAN PROBLEM AND SUBGRAPH ISOMERISM PROBLEM:

The differential system of this model is now

$$\frac{dG_{20}}{dt} = (a_{20})^{(3)}G_{21} - \left[(a_{20}')^{(3)} + (a_{20}'')^{(3)}(T_{21}, t) \right]G_{20}$$
¹⁷

$$\frac{dG_{21}}{dt} = (a_{21})^{(3)}G_{20} - [(a'_{21})^{(3)} + (a''_{21})^{(3)}(T_{21}, t)]G_{21}$$
18

$$\frac{dG_{22}}{dt} = (a_{22})^{(3)}G_{21} - [(a'_{22})^{(3)} + (a''_{22})^{(3)}(T_{21}, t)]G_{22}$$

$$\frac{dT_{20}}{dt} = (b_{20})^{(3)}T_{21} - \left[(b_{20}^{'})^{(3)} - (b_{20}^{''})^{(3)}(G_{23}, t) \right]T_{20}$$

$$\frac{dT_{21}}{dt} = (b_{21})^{(3)}T_{20} - \left[(b_{21}')^{(3)} - (b_{21}')^{(3)} (G_{23}, t) \right] T_{21}$$

$$\frac{dT_{22}}{dt} = (b_{22})^{(3)}T_{21} - \left[(b_{22}^{'})^{(3)} - (b_{22}^{''})^{(3)}(G_{23}, t) \right]T_{22}$$
²²

$$+(a_{20}^{"})^{(3)}(T_{21},t) = \text{First augmentation factor}$$

$$-(b_{20}^{"})^{(3)}(G_{23},t)$$
 = First detritions factor

GOVERNING EQUATIONS:OF THE SYSTEM SUBSET SUM PROBLEM AND CLIQUE PROBLEM

The differential system of this model is now

$$\frac{dG_{24}}{dt} = (a_{24})^{(4)}G_{25} - \left[(a'_{24})^{(4)} + (a''_{24})^{(4)}(T_{25}, t) \right]G_{24}$$
²⁵

$$\frac{dG_{25}}{dt} = (a_{25})^{(4)}G_{24} - \left[\left(a_{25}' \right)^{(4)} + \left(a_{25}'' \right)^{(4)} (T_{25}, t) \right]G_{25}$$
²⁶

$$\frac{dG_{26}}{dt} = (a_{26})^{(4)}G_{25} - \left[(a_{26}')^{(4)} + (a_{26}'')^{(4)}(T_{25}, t) \right]G_{26}$$
²⁷

$$\frac{dT_{24}}{dt} = (b_{24})^{(4)}T_{25} - \left[(b_{24}^{'})^{(4)} - (b_{24}^{''})^{(4)} ((G_{27}), t) \right] T_{24}$$
²⁸

$$\frac{dT_{25}}{dt} = (b_{25})^{(4)}T_{24} - \left[\left(b_{25}^{'} \right)^{(4)} - \left(b_{25}^{''} \right)^{(4)} \left((G_{27}), t \right) \right] T_{25}$$

$$\frac{dT_{26}}{dt} = (b_{26})^{(4)}T_{25} - \left[(b_{26}^{'})^{(4)} - (b_{26}^{''})^{(4)} ((G_{27}), t) \right] T_{26}$$

$$+(a_{24}^{"})^{(4)}(T_{25},t) =$$
 First augmentation factor

$$-(b_{24}^{"})^{(4)}((G_{27}),t) =$$
 First detritions factor

GOVERNING EQUATIONS:OF THE SYSTEM VERTEX COVER PROBLEM AND INDEPENDENT SET PROBLEM

The differential system of this model is now

$$\frac{dG_{28}}{dt} = (a_{28})^{(5)}G_{29} - \left[(a_{28}')^{(5)} + (a_{28}')^{(5)}(T_{29}, t) \right]G_{28}$$

$$\frac{dG_{29}}{dt} = (a_{29})^{(5)}G_{28} - \left[(a_{29}')^{(5)} + (a_{29}')^{(5)}(T_{29}, t) \right]G_{29}$$
34

$$\frac{dG_{30}}{dt} = (a_{30})^{(5)}G_{29} - [(a'_{30})^{(5)} + (a''_{30})^{(5)}(T_{29}, t)]G_{30}$$
35

$$\frac{dT_{28}}{dt} = (b_{28})^{(5)}T_{29} - \left[(b_{28}')^{(5)} - (b_{28}')^{(5)} ((G_{31}), t) \right] T_{28}$$
³⁶

$$\frac{dT_{29}}{dt} = (b_{29})^{(5)}T_{28} - \left[(b_{29}')^{(5)} - (b_{29}'')^{(5)} ((G_{31}), t) \right] T_{29}$$
³⁷

$$\frac{dT_{30}}{dt} = (b_{30})^{(5)}T_{29} - [(b_{30}^{'})^{(5)} - (b_{30}^{''})^{(5)}((G_{31}), t)]T_{30}$$
38

$$+(a_{28}^{"})^{(5)}(T_{29},t) =$$
 First augmentation factor

$$-(b_{28}^{"})^{(5)}((G_{31}),t) =$$
 First detritions factor

GOVERNING EQUATIONS:OF THE DOMINATING SET PROBLEM AND GRAPH COLORING PROBLEM:

The differential system of this model is now

$$\frac{dG_{32}}{dt} = (a_{32})^{(6)}G_{33} - [(a'_{32})^{(6)} + (a''_{32})^{(6)}(T_{33}, t)]G_{32}$$

$$\frac{dG_{33}}{dt} = (a_{33})^{(6)}G_{32} - \left[(a'_{33})^{(6)} + (a''_{33})^{(6)}(T_{33}, t) \right]G_{33}$$
⁴³

$$\frac{dG_{34}}{dt} = (a_{34})^{(6)}G_{33} - \left[(a'_{34})^{(6)} + (a''_{34})^{(6)}(T_{33}, t) \right]G_{34}$$

$$\frac{dT_{32}}{dt} = (b_{32})^{(6)}T_{33} - [(b_{32}')^{(6)} - (b_{32}')^{(6)}((G_{35}), t)]T_{32}$$
⁴⁵

$$\frac{dT_{33}}{dt} = (b_{33})^{(6)}T_{32} - [(b_{33}^{'})^{(6)} - (b_{33}^{''})^{(6)}((G_{35}), t)]T_{33}$$

$$\frac{dT_{34}}{dt} = (b_{34})^{(6)}T_{33} - \left[(b_{34}^{'})^{(6)} - (b_{34}^{''})^{(6)} ((G_{35}), t) \right] T_{34}$$

$$+(a_{32}^{"})^{(6)}(T_{33},t) =$$
 First augmentation factor

$$-(b_{32}^{"})^{(6)}((G_{35}),t) =$$
 First detritions factor

FINAL CONCATENATED GOVERNING EQUATIONS OF THE SYSTEM:

- 1. BOOLEAN SATISFIABILITY PROBLEM
- 2. N PUZZLE
- 3. KNAPSACK PROBLEM
- 4. HAMILTONIAN PATH PROBLEM
- 5. TRAVELLING SALESMAN PROBLEM
- 6. SUB GRAPH ISOMERISM PROBLEM

- 7. SUBSET SUM PROBLEM
- **8.** CLIQUE PROBLEM
- 9. VERTEX COVER PROBLEM
- 10. INDEPENDENT SET PROBLEM
- 11. DOMINATING SET PROBLEM
- 12. GRAPH COLORING PROBLEM

$$\frac{dG_{13}}{dt} = (a_{13})^{(1)}G_{14} - \begin{bmatrix} (a_{13}')^{(1)} + (a_{13}')^{(1)}(T_{14},t) \\ + (a_{24}')^{(4,4,4,4)}(T_{25},t) \\ + (a_{24}')^{(4,4,4,4)}(T_{25},t) \end{bmatrix} + (a_{23}')^{(5,5,5,5)}(T_{29},t) \end{bmatrix} + (a_{23}')^{(6,5,6,6)}(T_{33},t) \end{bmatrix} G_{13}$$

$$\frac{dG_{14}}{dt} = (a_{14})^{(1)}G_{13} - \begin{bmatrix} (a_{14}')^{(1)} + (a_{13}')^{(1)}(T_{14},t) \\ + (a_{25}')^{(4,4,4,6)}(T_{25},t) \end{bmatrix} + (a_{29}')^{(5,5,5,5)}(T_{29},t) \end{bmatrix} + (a_{23}')^{(6,5,6,6)}(T_{33},t) \end{bmatrix} G_{14}$$

$$\frac{dG_{15}}{dt} = (a_{15})^{(1)}G_{14} - \begin{bmatrix} (a_{15})^{(1)} + (a_{15}')^{(1)}(T_{14},t) \\ + (a_{25}')^{(4,4,4,6)}(T_{25},t) \end{bmatrix} + (a_{19}')^{(5,5,5,5)}(T_{29},t) \end{bmatrix} + (a_{23}')^{(6,5,6,6)}(T_{33},t) \end{bmatrix} G_{15}$$

$$\frac{dG_{15}}{dt} = (a_{15})^{(1)}G_{14} - \begin{bmatrix} (a_{15})^{(1)} + (a_{15}')^{(1)}(T_{14},t) \\ + (a_{20}')^{(4,4,4,4)}(T_{25},t) \end{bmatrix} + (a_{30}')^{(5,5,5,5)}(T_{29},t) \end{bmatrix} + (a_{30}')^{(6,5,6,6)}(T_{33},t) \end{bmatrix} G_{15}$$

$$\frac{dG_{15}}{dt} = (a_{15})^{(1)}G_{14} - \begin{bmatrix} (a_{15})^{(1)} + (a_{15}')^{(1)}(T_{14},t) \\ + (a_{10}')^{(1)}(T_{14},t) \end{bmatrix}, (a_{13}')^{(1)}(T_{14},t) \end{bmatrix} + (a_{19}')^{(5,5,5,5)}(T_{29},t) \end{bmatrix} + (a_{29}')^{(5,5,5,5,5)}(T_{29},t) \end{bmatrix} + (a_{29}')^{(5,5,5,$$

71 | Page

```
-(b_{13}^{"})^{(1,1,1,)}(G,t), -(b_{14}^{"})^{(1,1,1,)}(G,t), -(b_{15}^{"})^{(1,1,1,)}(G,t) are third detrition coefficients for
  category 1,2 and 3
     -(b_{24}^{"})^{(4,4,4,4,4,4)}(G_{27},t), -(b_{25}^{"})^{(4,4,4,4,4,4)}(G_{27},t), -(b_{26}^{"})^{(4,4,4,4,4,4)}(G_{27},t)  are fourth
      detrition coefficients for category 1, 2 and 3
                                                                                                                                                                                                                                                                                                                                                            92
       -(b_{28}^{"})^{(5,5,5,5,5,5)}(G_{31},t), -(b_{29}^{"})^{(5,5,5,5,5)}(G_{31},t), -(b_{30}^{"})^{(5,5,5,5,5)}(G_{31},t)  are fifth
    detrition coefficients for category 1, 2 and 3
    -(b_{32}^{"})^{(6,6,6,6,6)}(G_{35},t), -(b_{33}^{"})^{(6,6,6,6,6)}(G_{35},t), -(b_{34}^{"})^{(6,6,6,6,6)}(G_{35},t) are sixth detrition
  coefficients for category 1, 2 and
 \frac{dG_{24}}{dt} = (a_{24})^{(4)}G_{25} - \left[ \begin{array}{c} (a_{24}^{'})^{(4)} + (a_{24}^{''})^{(4)}(T_{25},t) \\ + (a_{13}^{''})^{(1,1,1,1)}(T_{14},t) \\ + (a_{16}^{''})^{(2,2,2,2)}(T_{17},t) \\ \end{array} \right] + (a_{20}^{''})^{(3,3,3,3)}(T_{21},t) \left[ \begin{array}{c} G_{24} \\ G_{24} \\ \end{array} \right]
                                                                                                                                                                                                                                                                                                                                                            93
\frac{dG_{25}}{dt} = (a_{25})^{(4)}G_{24} - \begin{bmatrix} (a_{25}^{'})^{(4)} + (a_{25}^{''})^{(4)}(T_{25},t) \\ + (a_{14}^{''})^{(1,1,1)}(T_{14},t) \\ + (a_{17}^{''})^{(2,2,2)}(T_{17},t) \\ + (a_{11}^{''})^{(3,3,3,3)}(T_{24},t) \end{bmatrix} G_{25}
                                                                                                                                                                                                                                                                                                                                                            94
                                                                                                                                                                                                                                                                                                                                                            95
\frac{dG_{26}}{dt} = (a_{26})^{(4)}G_{25} - \left[ \frac{(a_{26}^{'})^{(4)} \left| + (a_{26}^{''})^{(4)}(T_{25}, t) \right| \left| + (a_{30}^{''})^{(5,5)}(T_{29}, t) \right| \left| + (a_{34}^{''})^{(6,6)}(T_{33}, t) \right|}{\left| + (a_{15}^{''})^{(1,1,1,1)}(T_{14}, t) \right| \left| + (a_{18}^{''})^{(2,2,2,2)}(T_{17}, t) \right| \left| + (a_{22}^{''})^{(3,3,3,3)}(T_{21}, t) \right|} \right] G_{26}
 Where (a_{24}^{"})^{(4)}(T_{25},t), (a_{25}^{"})^{(4)}(T_{25},t), (a_{26}^{"})^{(4)}(T_{25},t) are first augmentation
                                                                                                                                                                                                                                                                                                                                                       96
   coefficients for category 1, 2 and 3
   |+(a_{28}^{"})^{(5,5,)}(T_{29},t)|, |+(a_{29}^{"})^{(5,5,)}(T_{29},t)|, |+(a_{30}^{"})^{(5,5,)}(T_{29},t)| are second augmentation
   coefficient for category 1, 2 and 3
  \boxed{+(a_{32}^{"})^{(6,6,)}(T_{33},t)}, \boxed{+(a_{33}^{"})^{(6,6,)}(T_{33},t)}, \boxed{+(a_{34}^{"})^{(6,6,)}(T_{33},t)} are third augmentation coefficient for category 1, 2 and 3
+(a_{13}^{"})^{(1,1,1,1)}(T_{14},t) +(a_{14}^{"})^{(1,1,1,1)}(T_{14},t) +(a_{15}^{"})^{(1,1,1,1)}(T_{14},t) are fourth augmentation coefficients for category 1, 2, and 3
  +(a_{16}^{"})^{(2,2,2,2)}(T_{17},t), +(a_{17}^{"})^{(2,2,2,2)}(T_{17},t), +(a_{18}^{"})^{(2,2,2,2)}(T_{17},t) are fifth augmentation
 coefficients for category 1, 2, and 3 +(a_{20}^{"})^{(3,3,3,3)}(T_{21},t), +(a_{21}^{"})^{(3,3,3,3)}(T_{21},t), +(a_{22}^{"})^{(3,3,3,3)}(T_{21},t) are sixth augmentation coefficients for category 1, 2, and 3
\frac{dT_{24}}{dt} = (b_{24})^{(4)}T_{25} - \begin{bmatrix} (b_{24}^{'})^{(4)} - (b_{24}^{''})^{(4)} (G_{27}, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} -(b_{28}^{''})^{(5,5,)} (G_{31}, t) \\ -(b_{18}^{''})^{(6,6,)} (G_{35}, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} -(b_{18}^{''})^{(2,2,2,2)} (G_{19}, t) \\ -(b_{20}^{''})^{(3,3,3,3)} (G_{23}, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1)} (G, t) \end{bmatrix} \begin{bmatrix} T_{24} - (b_{18}^{''})^{(1,1)} (G, t) \\ -(b_{18}^{''})^{(1,1)} (G, t) \end{bmatrix} 
                                                                                                                                                                                                                                                                                                                                                            97
\frac{dT_{25}}{dt} = (b_{25})^{(4)}T_{24} - \begin{bmatrix} (b_{25}^{'})^{(4)} - (b_{25}^{''})^{(4)}(G_{27},t) \end{bmatrix} - (b_{29}^{''})^{(5,5,)}(G_{31},t) \end{bmatrix} - (b_{33}^{''})^{(6,6,)}(G_{35},t) \end{bmatrix} T_{25}
                                                                                                                                                                                                                                                                                                                                                            98
\frac{dT_{26}}{dt} = (b_{26})^{(4)}T_{25} - \begin{bmatrix} (b_{26}^{'})^{(4)} \boxed{-(b_{26}^{''})^{(4)}(G_{27},t)} \boxed{-(b_{30}^{''})^{(5,5,)}(G_{31},t)} \boxed{-(b_{30}^{''})^{(6,6,)}(G_{35},t)} \\ \boxed{-(b_{10}^{''})^{(1,1,1,1)}(G,t)} \boxed{-(b_{10}^{''})^{(2,2,2,2)}(G_{10},t)} \boxed{-(b_{22}^{''})^{(3,3,3,3)}(G_{23},t)} \end{bmatrix} T_{26}
                                                                                                                                                                                                                                                                                                                                                            99
 Where [-(b_{24}^{"})^{(4)}(G_{27},t)], [-(b_{25}^{"})^{(4)}(G_{27},t)], [-(b_{26}^{"})^{(4)}(G_{27},t)] are first detrition coefficients for category 1,2 and 3
                                                                                                                                                                                                                                                                                                                                                          100
 -(b_{28}^{"})^{(5,5,)}(G_{31},t), -(b_{29}^{"})^{(5,5,)}(G_{31},t), -(b_{30}^{"})^{(5,5,)}(G_{31},t) are second detrition
 coefficients for category 1,2 and 3
```

```
-(b_{24}^{"})^{(4,4,)}(G_{27},t), -(b_{25}^{"})^{(4,4,)}(G_{27},t), -(b_{26}^{"})^{(4,4,)}(G_{27},t) are second detrition
 coefficients for category 1,2 and 3
  -(b_{32}^{"})^{(6,6,6)}(G_{35},t), -(b_{33}^{"})^{(6,6,6)}(G_{35},t), -(b_{34}^{"})^{(6,6,6)}(G_{35},t) are third detrition coefficients for category 1,2 and 3
   -(b_{13}^{"})^{(1,1,1,1,1)}(G,t), -(b_{14}^{"})^{(1,1,1,1,1)}(G,t), -(b_{15}^{"})^{(1,1,1,1,1)}(G,t) are fourth detrition coefficients
                                                                                                                                                                                                                    112
 for category 1,2, and 3
  -(b_{16}^{"})^{(2,2,2,2,2)}(G_{19},t), -(b_{17}^{"})^{(2,2,2,2,2)}(G_{19},t), -(b_{18}^{"})^{(2,2,2,2,2)}(G_{19},t) are fifth detrition coefficients
 -(b_{20}^{"})^{(3,3,3,3,3)}(G_{23},t), -(b_{21}^{"})^{(3,3,3,3,3)}(G_{23},t), -(b_{22}^{"})^{(3,3,3,3,3)}(G_{23},t) are sixth detrition coefficients for category 1,2, and 3
                                                                                                                                                                                                                    113
\frac{dG_{32}}{dt} = (a_{32})^{(6)}G_{33} - \begin{vmatrix} (a_{32}')^{(6)} + (a_{32}')^{(6)}(T_{33},t) \\ + (a_{13}')^{(1,1,1,1,1)}(T_{14},t) \end{vmatrix} + (a_{16}')^{(2,2,2,2,2,2)}(T_{17},t) \end{vmatrix} + (a_{20}')^{(3,3,3,3,3)}(T_{21},t) \end{vmatrix} G_{32}
\frac{dG_{33}}{dt} = (a_{33})^{(6)}G_{32} - \left[ \begin{array}{c} \left(a_{33}^{'}\right)^{(6)} + \left(a_{33}^{'}\right)^{(6)}(T_{33},t) \\ + \left(a_{14}^{''}\right)^{(1,1,1,1,1)}(T_{14},t) \\ + \left(a_{17}^{''}\right)^{(2,2,2,2,2)}(T_{17},t) \\ + \left(a_{21}^{''}\right)^{(3,3,3,3,3)}(T_{21},t) \\ \end{array} \right] G_{33}
                                                                                                                                                                                                                    114
\frac{dG_{34}}{dt} = (a_{34})^{(6)}G_{33} - \begin{bmatrix} (a_{34}^{'})^{(6)} + (a_{34}^{''})^{(6)}(T_{33},t) \end{bmatrix} + (a_{30}^{''})^{(5,5,5)}(T_{29},t) + (a_{26}^{''})^{(4,4,4)}(T_{25},t) \end{bmatrix} + (a_{30}^{''})^{(3,3,3,3,3)}(T_{34},t) + (a_{30}^{''})^{(3,3,3,3,3)}(T_{34},t) \end{bmatrix}
                                                                                                                                                                                                                    115
 [+(a_{32}^{"})^{(6)}(T_{33},t)], [+(a_{33}^{"})^{(6)}(T_{33},t)], [+(a_{34}^{"})^{(6)}(T_{33},t)] are first augmentation coefficients for category 1, 2 and 3
                                                                                                                                                                                                                    116
[+(a_{28}^{"})^{(5,5,5)}(T_{29},t)], [+(a_{29}^{"})^{(5,5,5)}(T_{29},t)], [+(a_{30}^{"})^{(5,5,5)}(T_{29},t)] are second augmentation coefficients for category 1,2 and 3
+(a_{24}^{"})^{(4,4,4,)}(T_{25},t), +(a_{25}^{"})^{(4,4,4,)}(T_{25},t), +(a_{26}^{"})^{(4,4,4,)}(T_{25},t) are third augmentation coefficients for category 1.2 and 3
 +(a_{13}^{"})^{(1,1,1,1,1)}(T_{14},t), +(a_{14}^{"})^{(1,1,1,1,1)}(T_{14},t), +(a_{15}^{"})^{(1,1,1,1,1)}(T_{14},t) - are fourth augmentation
 coefficients
 +(a_{18}^{"})^{(2,2,2,2,2,2)}(T_{17},t), +(a_{17}^{"})^{(2,2,2,2,2,2)}(T_{17},t), +(a_{18}^{"})^{(2,2,2,2,2,2)}(T_{17},t) - fifth augmentation
 +(a_{20}^{"})^{(3,3,3,3,3,3)}(T_{21},t), +(a_{21}^{"})^{(3,3,3,3,3,3)}(T_{21},t) +(a_{22}^{"})^{(3,3,3,3,3,3)}(T_{21},t) sixth augmentation
\frac{dT_{32}}{dt} = (b_{32})^{(6)}T_{33} - \begin{bmatrix} (b_{32}^{'})^{(6)} - (b_{32}^{''})^{(6)}(G_{35}, t) \\ - (b_{12}^{''})^{(1,1,1,1,1)}(G_{t}) \end{bmatrix} - (b_{28}^{''})^{(5,5,5)}(G_{31}, t) \begin{bmatrix} - (b_{24}^{''})^{(4,4,4)}(G_{27}, t) \\ - (b_{12}^{''})^{(3,3,3,3,3)}(G_{22}, t) \end{bmatrix} T_{32}
\frac{dT_{33}}{dt} = (b_{33})^{(6)}T_{32} - \begin{bmatrix} (b_{33}^{'})^{(6)} \boxed{-(b_{33}^{''})^{(6)}(G_{35},t)} \boxed{-(b_{29}^{''})^{(5,5,5)}(G_{31},t)} \boxed{-(b_{25}^{''})^{(4,4,4,)}(G_{27},t)} \end{bmatrix} T_{33}
                                                                                                                                                                                                                    118
\frac{dT_{34}}{dt} = (b_{34})^{(6)}T_{33} - \begin{bmatrix} (b_{34}^{'})^{(6)} - (b_{34}^{''})^{(6)} (G_{35}, t) \\ -(b_{15}^{''})^{(1,1,1,1,1)} (G, t) \end{bmatrix} - (b_{30}^{''})^{(5,5,5)} (G_{31}, t) \begin{bmatrix} -(b_{26}^{''})^{(4,4,4)} (G_{27}, t) \\ -(b_{15}^{''})^{(3,3,3,3,3)} (G_{23}, t) \end{bmatrix} T_{34}
                                                                                                                                                                                                                    119
 [-(b_{32}^{"})^{(6)}(G_{35},t)], [-(b_{33}^{"})^{(6)}(G_{35},t)], [-(b_{34}^{"})^{(6)}(G_{35},t)] are first detrition coefficients for category 1, 2 and 3
                                                                                                                                                                                                                    120
```

(A)
$$(a_i)^{(1)}, (a_i')^{(1)}, (a_i'')^{(1)}, (b_i)^{(1)}, (b_i')^{(1)}, (b_i'')^{(1)} > 0,$$

 $i, j = 13,14,15$

(B) The functions $(a_i^{"})^{(1)}$, $(b_i^{"})^{(1)}$ are positive continuous increasing and bounded.

<u>Definition of</u> $(p_i)^{(1)}$, $(r_i)^{(1)}$:

$$\left(a_{i}^{"}\right)^{(1)}(T_{14},t) \le (p_{i})^{(1)} \le (\hat{A}_{13})^{(1)} 124$$

$$(b_i')^{(1)}(G,t) \le (r_i)^{(1)} \le (b_i')^{(1)} \le (\hat{B}_{13})^{(1)}$$

$$\lim_{T_2 \to \infty} (a_i'')^{(1)} (T_{14}, t) = (p_i)^{(1)}$$

$$\lim_{G \to \infty} (b_i'')^{(1)} (G, t) = (r_i)^{(1)}$$

<u>Definition of</u> $(\hat{A}_{13})^{(1)}$, $(\hat{B}_{13})^{(1)}$:

Where
$$(\hat{A}_{13})^{(1)}$$
, $(\hat{B}_{13})^{(1)}$, $(p_i)^{(1)}$, $(r_i)^{(1)}$ are positive constants and $i = 13,14,15$

They satisfy Lipschitz condition:

$$|(a_{i}^{"})^{(1)}(T_{14},t) - (a_{i}^{"})^{(1)}(T_{14},t)| \le (\hat{k}_{13})^{(1)}|T_{14} - T_{14}^{'}|e^{-(\hat{M}_{13})^{(1)}t}$$

$$|(b_i'')^{(1)}(G',t) - (b_i'')^{(1)}(G,T)| < (\hat{k}_{13})^{(1)}||G - G'||e^{-(\tilde{M}_{13})^{(1)}t}$$

With the Lipschitz condition, we place a restriction on the behavior of functions $(a_i^{''})^{(1)}(T_{14},t)$ and $(a_i^{''})^{(1)}(T_{14},t)$ and (T_{14},t) are points belonging to the interval $[(\hat{k}_{13})^{(1)},(\hat{M}_{13})^{(1)}]$. It is to be noted that $(a_i^{''})^{(1)}(T_{14},t)$ is uniformly continuous. In the eventuality of the fact, that if $(\hat{M}_{13})^{(1)} = 1$ then the function $(a_i^{''})^{(1)}(T_{14},t)$, the first augmentation coefficient would be absolutely continuous.

Definition of
$$(\widehat{M}_{13})^{(1)}$$
, $(\widehat{k}_{13})^{(1)}$:

(D) $(\widehat{M}_{13})^{(1)}, (\widehat{k}_{13})^{(1)}, \text{ are positive constants}$ $\frac{(a_i)^{(1)}}{(\widehat{M}_{13})^{(1)}}, \frac{(b_i)^{(1)}}{(\widehat{M}_{13})^{(1)}} < 1$

<u>Definition of</u> $(\hat{P}_{13})^{(1)}$, $(\hat{Q}_{13})^{(1)}$:

(E) There exists two constants
$$(\hat{P}_{13})^{(1)}$$
 and $(\hat{Q}_{13})^{(1)}$ which together with $(\hat{M}_{13})^{(1)}$, $(\hat{k}_{13})^{(1)}$, $(\hat{A}_{13})^{(1)}$ and $(\hat{B}_{13})^{(1)}$ and the constants $(a_i)^{(1)}$, $(a_i')^{(1)}$, $(b_i)^{(1)}$, $(b_i')^{(1)}$, $(p_i)^{(1)}$, $(r_i)^{(1)}$, $i = 13,14,15$,

satisfy the inequalities

$$\frac{1}{(\hat{M}_{13})^{(1)}}[(a_i)^{(1)} + (a_i')^{(1)} + (\hat{A}_{13})^{(1)} + (\hat{P}_{13})^{(1)}(\hat{k}_{13})^{(1)}] < 1$$

$$\frac{1}{(\widehat{M}_{13})^{(1)}}[(b_i)^{(1)} + (b_i^{'})^{(1)} + (\widehat{B}_{13})^{(1)} + (\widehat{Q}_{13})^{(1)} (\widehat{k}_{13})^{(1)}] < 1$$

Where we suppose

(F)
$$(a_i)^{(2)}, (a_i')^{(2)}, (a_i'')^{(2)}, (b_i)^{(2)}, (b_i')^{(2)}, (b_i'')^{(2)} > 0, \quad i, j = 16,17,18$$

(G) The functions
$$(a_i^{"})^{(2)}$$
, $(b_i^{"})^{(2)}$ are positive continuous increasing and bounded.

Definition of $(p_i)^{(2)}$, $(r_i)^{(2)}$:

$$(a_i^{"})^{(2)}(T_{17},t) \le (p_i)^{(2)} \le (\hat{A}_{16})^{(2)}$$

$$(b_{i}^{"})^{(2)}(G_{19},t) \le (r_{i})^{(2)} \le (b_{i}^{'})^{(2)} \le (\hat{B}_{16})^{(2)}$$

(H)
$$\lim_{T_2 \to \infty} (a_i'')^{(2)} (T_{17}, t) = (p_i)^{(2)}$$

$$\lim_{G \to \infty} (b_i'')^{(2)} ((G_{19}), t) = (r_i)^{(2)}$$

Definition of
$$(\hat{A}_{16})^{(2)}, (\hat{B}_{16})^{(2)}$$
:

Where
$$(\hat{A}_{16})^{(2)}$$
, $(\hat{B}_{16})^{(2)}$, $(p_i)^{(2)}$, $(r_i)^{(2)}$ are positive constants and $i = 16,17,18$

They satisfy Lipschitz condition:

$$|(a_{i}^{"})^{(2)}(T_{17},t) - (a_{i}^{"})^{(2)}(T_{17},t)| \le (\hat{k}_{16})^{(2)}|T_{17} - T_{17}^{'}|e^{-(\hat{M}_{16})^{(2)}t}$$

$$|(b_{i}^{"})^{(2)}((G_{19})',t) - (b_{i}^{"})^{(2)}((G_{19}),T_{19})| < (\hat{k}_{16})^{(2)}||(G_{19}) - (G_{19})'||e^{-(\hat{M}_{16})^{(2)}t}$$
141

With the Lipschitz condition, we place a restriction on the behavior of functions $(a_i^{''})^{(2)}(T_{17},t)$ and $(a_i^{''})^{(2)}(T_{17},t)$ are points belonging to the interval $\left[(\hat{k}_{16})^{(2)},(\hat{M}_{16})^{(2)}\right]$. It is to be noted that $(a_i^{''})^{(2)}(T_{17},t)$ is uniformly continuous. In the eventuality of the fact, that if $(\hat{M}_{16})^{(2)}=1$ then the function $(a_i^{''})^{(2)}(T_{17},t)$, the SECOND augmentation coefficient would be absolutely continuous.

Definition of
$$(\widehat{M}_{16})^{(2)}, (\widehat{k}_{16})^{(2)}$$
:

(I)
$$(\hat{M}_{16})^{(2)}$$
, $(\hat{k}_{16})^{(2)}$, are positive constants

$$\frac{(a_i)^{(2)}}{(M_{16})^{(2)}} \ , \frac{(b_i)^{(2)}}{(M_{16})^{(2)}} < 1$$

Definition of $(\hat{P}_{13})^{(2)}$, $(\hat{Q}_{13})^{(2)}$:

There exists two constants $(\hat{P}_{16})^{(2)}$ and $(\hat{Q}_{16})^{(2)}$ which together with $(\hat{M}_{16})^{(2)}$, $(\hat{k}_{16})^{(2)}$, $(\hat{A}_{16})^{(2)}$ and $(\hat{B}_{16})^{(2)}$ and the constants $(a_i)^{(2)}$, $(a_i')^{(2)}$, $(b_i)^{(2)}$, $(b_i')^{(2)}$, $(p_i)^{(2)}$, $(r_i)^{(2)}$, i=16,17,18,

satisfy the inequalities

$$\frac{1}{(\widehat{\mathbf{A}}_{16})^{(2)}}[(\mathbf{a}_{i})^{(2)} + (\mathbf{a}_{i}')^{(2)} + (\widehat{\mathbf{A}}_{16})^{(2)} + (\widehat{\mathbf{P}}_{16})^{(2)}(\widehat{\mathbf{k}}_{16})^{(2)}] < 1$$

$$\frac{1}{(\widehat{M}_{16})^{(2)}}[(b_i)^{(2)} + (b_i')^{(2)} + (\widehat{B}_{16})^{(2)} + (\widehat{Q}_{16})^{(2)} (\widehat{k}_{16})^{(2)}] < 1$$

Where we suppose

(J)
$$(a_i)^{(3)}, (a_i^{'})^{(3)}, (b_i^{'})^{(3)}, (b_i^{'})^{(3)}, (b_i^{'})^{(3)} > 0, \quad i, j = 20,21,22$$

The functions $(a_i^{''})^{(3)}$, $(b_i^{''})^{(3)}$ are positive continuous increasing and bounded.

<u>Definition of</u> $(p_i)^{(3)}$, $(r_i)^{(3)}$:

$$(a_i'')^{(3)}(T_{21},t) \le (p_i)^{(3)} \le (\hat{A}_{20})^{(3)}$$

$$(b_i^{''})^{(3)}(G,t) \le (r_i)^{(3)} \le (b_i^{'})^{(3)} \le (\hat{B}_{20})^{(3)}$$

$$\lim_{T_2 \to \infty} (a_i^{"})^{(3)} (T_{21}, t) = (p_i)^{(3)}$$

$$\lim_{G \to \infty} (b_i^{"})^{(3)} (G, t) = (r_i)^{(3)}$$

Definition of
$$(\hat{A}_{20})^{(3)}$$
, $(\hat{B}_{20})^{(3)}$:

Where $(\hat{A}_{20})^{(3)}$, $(\hat{B}_{20})^{(3)}$, $(p_i)^{(3)}$, $(r_i)^{(3)}$ are positive constants and i = 20,21,22

They satisfy Lipschitz condition:

$$|(a_{i}^{"})^{(3)}(T_{21},t) - (a_{i}^{"})^{(3)}(T_{21},t)| \le (\hat{k}_{20})^{(3)}|T_{21} - T_{21}^{'}|e^{-(\hat{M}_{20})^{(3)}t}$$

$$|(b_i'')^{(3)}(G',t) - (b_i'')^{(3)}(G,T)| < (\hat{k}_{20})^{(3)}||G - G'||e^{-(\hat{M}_{20})^{(3)}t}$$

With the Lipschitz condition, we place a restriction on the behavior of functions $(a_i^{''})^{(3)}(T_{21},t)$ and $(a_i^{''})^{(3)}(T_{21},t)$ are points belonging to the interval $[(\hat{k}_{20})^{(3)},(\hat{M}_{20})^{(3)}]$. It is to be noted that $(a_i^{''})^{(3)}(T_{21},t)$ is uniformly continuous. In the eventuality of the fact, that if $(\hat{M}_{20})^{(3)} = 1$ then the function $(a_i^{''})^{(3)}(T_{21},t)$, the third augmentation coefficient would be absolutely continuous.

Definition of
$$(\widehat{M}_{20})^{(3)}, (\widehat{k}_{20})^{(3)}$$
:

(K) $(\hat{M}_{20})^{(3)}$, $(\hat{k}_{20})^{(3)}$, are positive constants

$$\frac{(a_i)^{(3)}}{(\tilde{M}_{20})^{(3)}}$$
, $\frac{(b_i)^{(3)}}{(\tilde{M}_{20})^{(3)}} < 1$

There exists two constants There exists two constants (\hat{P}_{20})⁽³⁾ and (\hat{Q}_{20})⁽³⁾ which together with (\hat{M}_{20})⁽³⁾, (\hat{k}_{20})⁽³⁾, (\hat{A}_{20})⁽³⁾ and (\hat{B}_{20})⁽³⁾ and the constants (a_i)⁽³⁾, (a_i')⁽³⁾, (b_i)⁽³⁾, (b_i')⁽³⁾, (p_i)

$$\frac{1}{(\hat{M}_{20})^{(3)}}[(a_i)^{(3)} + (a_i')^{(3)} + (\hat{A}_{20})^{(3)} + (\hat{P}_{20})^{(3)}(\hat{k}_{20})^{(3)}] < 1$$

$$\frac{1}{(\tilde{M}_{20})^{(3)}}[\ (b_i)^{(3)} + (b_i')^{(3)} + \ (\hat{B}_{20})^{(3)} + \ (\hat{Q}_{20})^{(3)} \ (\hat{k}_{20})^{(3)}] < 1$$

Where we suppose

150

(L)
$$(a_i)^{(4)}, (a_i')^{(4)}, (a_i'')^{(4)}, (b_i)^{(4)}, (b_i')^{(4)}, (b_i'')^{(4)} > 0, \quad i, j = 24,25,26$$

(M) The functions $(a_i^{"})^{(4)}$, $(b_i^{"})^{(4)}$ are positive continuous increasing and bounded.

<u>Definition of</u> $(p_i)^{(4)}$, $(r_i)^{(4)}$:

$$(a_i^{"})^{(4)}(T_{25},t) \le (p_i)^{(4)} \le (\hat{A}_{24})^{(4)}$$
$$(b_i^{"})^{(4)}((G_{27}),t) \le (r_i)^{(4)} \le (b_i')^{(4)} \le (\hat{B}_{24})^{(4)}$$

(N) $\lim_{T_2 \to \infty} (a_i^{"})^{(4)} (T_{25}, t) = (p_i)^{(4)}$ $\lim_{G \to \infty} (b_i^{"})^{(4)} ((G_{27}), t) = (r_i)^{(4)}$

<u>Definition of</u> $(\hat{A}_{24})^{(4)}$, $(\hat{B}_{24})^{(4)}$:

Where $(\hat{A}_{24})^{(4)}$, $(\hat{B}_{24})^{(4)}$, $(p_i)^{(4)}$, $(r_i)^{(4)}$ are positive constants and i = 24,25,26

They satisfy Lipschitz condition:

$$|(a_{i}^{"})^{(4)}(T_{25}^{'},t)-(a_{i}^{"})^{(4)}(T_{25},t)|\leq (\hat{k}_{24})^{(4)}|T_{25}-T_{25}^{'}|e^{-(\hat{M}_{24})^{(4)}t}$$

$$|(b_{i}^{"})^{(4)}((G_{27})^{'},t)-(b_{i}^{"})^{(4)}((G_{27}),T)|<(\hat{k}_{24})^{(4)}||(G_{27})-(G_{27})^{'}||e^{-(\tilde{M}_{24})^{(4)}t}$$

With the Lipschitz condition, we place a restriction on the behavior of functions $(a_i^{''})^{(4)}(T_{25}^{'},t)$ and $(a_i^{''})^{(4)}(T_{25},t)$ and (T_{25},t) and (T_{25},t) are points belonging to the interval $[(\hat{k}_{24})^{(4)},(\hat{M}_{24})^{(4)}]$. It is to be noted that $(a_i^{''})^{(4)}(T_{25},t)$ is uniformly continuous. In the eventuality of the fact, that if $(\hat{M}_{24})^{(4)} = 4$ then the function $(a_i^{''})^{(4)}(T_{25},t)$, the fourth **augmentation coefficient** would be absolutely continuous.

<u>**Definition of**</u> $(\widehat{M}_{24})^{(4)}, (\widehat{k}_{24})^{(4)}$:

(O)
$$(\widehat{M}_{24})^{(4)}$$
, $(\widehat{k}_{24})^{(4)}$, are positive constants

$$\frac{(a_i)^{(4)}}{(M_{24})^{(4)}}$$
, $\frac{(b_i)^{(4)}}{(M_{24})^{(4)}} < 1$

<u>Definition of</u> $(\hat{P}_{24})^{(4)}$, $(\hat{Q}_{24})^{(4)}$:

(P) There exists two constants (\hat{P}_{24})⁽⁴⁾ and (\hat{Q}_{24})⁽⁴⁾ which together with (\hat{M}_{24})⁽⁴⁾, (\hat{k}_{24})⁽⁴⁾, (\hat{A}_{24})⁽⁴⁾ and (\hat{B}_{24})⁽⁴⁾ and the constants (a_i)⁽⁴⁾, (a_i)⁽⁴⁾, (b_i)⁽⁴⁾, (b_i)⁽⁴⁾, (p_i)⁽⁴⁾, (r_i)⁽⁴⁾, i = 24,25,26, satisfy the inequalities

$$\frac{1}{(\hat{M}_{24})^{(4)}}[\,(a_i)^{(4)}+(a_i^{'})^{(4)}+\,(\hat{A}_{24})^{(4)}+\,(\hat{P}_{24})^{(4)}\,(\,\hat{k}_{24}\,)^{(4)}]<1$$

$$\frac{1}{(\hat{M}_{24})^{(4)}}[\ (b_i)^{(4)} + (b_i^{'})^{(4)} + \ (\hat{B}_{24})^{(4)} + \ (\hat{Q}_{24})^{(4)} \ (\hat{k}_{24})^{(4)}] < 1$$

Where we suppose

161

157

(Q)
$$(a_i)^{(5)}, (a_i')^{(5)}, (a_i'')^{(5)}, (b_i)^{(5)}, (b_i')^{(5)}, (b_i'')^{(5)} > 0, \quad i, j = 28,29,30$$

(R) The functions $(a_i^n)^{(5)}$, $(b_i^n)^{(5)}$ are positive continuous increasing and bounded. **Definition of** $(p_i)^{(5)}$, $(r_i)^{(5)}$:

$$(a_i'')^{(5)}(T_{29},t) \le (p_i)^{(5)} \le (\hat{A}_{28})^{(5)}$$

$$(b_{i}^{"})^{(5)}((G_{31}),t) \leq (r_{i})^{(5)} \leq (b_{i}^{'})^{(5)} \leq (\hat{B}_{28})^{(5)}$$

163

(S)
$$\lim_{T_2 \to \infty} (a_i^{"})^{(5)} (T_{29}, t) = (p_i)^{(5)}$$
$$\lim_{G \to \infty} (b_i^{"})^{(5)} (G_{31}, t) = (r_i)^{(5)}$$

<u>Definition of</u> $(\hat{A}_{28})^{(5)}$, $(\hat{B}_{28})^{(5)}$:

Where
$$(\hat{A}_{28})^{(5)}$$
, $(\hat{B}_{28})^{(5)}$, $(p_i)^{(5)}$, $(r_i)^{(5)}$ are positive constants and $i = 28,29,30$

They satisfy Lipschitz condition:

164

$$|(a_{i}^{"})^{(5)}(T_{29}^{'},t)-(a_{i}^{"})^{(5)}(T_{29},t)|\leq (\hat{k}_{28})^{(5)}|T_{29}-T_{29}^{'}|e^{-(\hat{M}_{28})^{(5)}t}$$

$$|(b_i^{"})^{(5)}((G_{31})',t)-(b_i^{"})^{(5)}((G_{31}),(T_{31}))| < (\hat{k}_{28})^{(5)}||(G_{31})-(G_{31})'||e^{-(\hat{M}_{28})^{(5)}t}|$$

With the Lipschitz condition, we place a restriction on the behavior of functions $(a_i^{''})^{(5)}(T_{29},t)$ and $(a_i^{''})^{(5)}(T_{29},t)$ and (T_{29},t) are points belonging to the interval $[(\hat{k}_{28})^{(5)},(\hat{M}_{28})^{(5)}]$. It is to be noted that $(a_i^{''})^{(5)}(T_{29},t)$ is uniformly continuous. In the eventuality of the fact, that if $(\hat{M}_{28})^{(5)} = 5$ then the function $(a_i^{''})^{(5)}(T_{29},t)$, the fifth **augmentation coefficient** would be absolutely continuous.

<u>Definition of</u> $(\widehat{M}_{28})^{(5)}, (\widehat{k}_{28})^{(5)}$:

$$(M_{28})^{(5)}, (k_{28})^{(5)}.$$

$$(T) \qquad (\widehat{M}_{28})^{(5)}, (\widehat{k}_{28})^{(5)}, \text{ are positive 184constants}$$

$$\frac{(a_i)^{(5)}}{(\widehat{M}_{28})^{(5)}}, \frac{(b_i)^{(5)}}{(\widehat{M}_{28})^{(5)}} < 1$$

Definition of $(\hat{P}_{28})^{(5)}, (\hat{Q}_{28})^{(5)}$:

167

(U) There exists two constants
$$(\hat{P}_{28})^{(5)}$$
 and $(\hat{Q}_{28})^{(5)}$ which together with $(\hat{M}_{28})^{(5)}$, $(\hat{k}_{28})^{(5)}$, $(\hat{A}_{28})^{(5)}$ and $(\hat{B}_{28})^{(5)}$ and the constants $(a_i)^{(5)}$, $(a_i')^{(5)}$, $(b_i)^{(5)}$, $(p_i)^{(5)}$, $(r_i)^{(5)}$, $i = 28,29,30$, satisfy the inequalities

$$\frac{1}{(\hat{M}_{28})^{(5)}}[(a_i)^{(5)} + (a_i')^{(5)} + (\hat{A}_{28})^{(5)} + (\hat{P}_{28})^{(5)}(\hat{k}_{28})^{(5)}] < 1$$

$$\frac{1}{(\hat{M}_{28})^{(5)}}[\ (b_i)^{(5)} + (b_i^{'})^{(5)} + \ (\hat{B}_{28})^{(5)} + (\hat{Q}_{28})^{(5)} \ (\hat{k}_{28})^{(5)}] < 1$$

Where we suppose

(
$$a_i$$
)⁽⁶⁾, (a_i')⁽⁶⁾, (a_i'')⁽⁶⁾, (b_i)⁽⁶⁾, (b_i')⁽⁶⁾, (b_i'')⁽⁶⁾ > 0, $i,j = 32,33,34$
(V) The functions (a_i'')⁽⁶⁾, (b_i'')⁽⁶⁾ are positive continuous increasing and bounded.
Definition of (p_i)⁽⁶⁾, (r_i)⁽⁶⁾:

$$(a_i^{"})^{(6)}(T_{33},t) \le (p_i)^{(6)} \le (\hat{A}_{32})^{(6)}$$

$$(b_{i}^{"})^{(6)}((G_{35}),t) \leq (r_{i})^{(6)} \leq (b_{i}^{'})^{(6)} \leq (\hat{B}_{32})^{(6)}$$

169

(W)
$$\lim_{T_2 \to \infty} (a_i^{"})^{(6)} (T_{33}, t) = (p_i)^{(6)}$$
$$\lim_{G \to \infty} (b_i^{"})^{(6)} ((G_{35}), t) = (r_i)^{(6)}$$

<u>Definition of</u> $(\hat{A}_{32})^{(6)}$, $(\hat{B}_{32})^{(6)}$:

Where
$$(\hat{A}_{32})^{(6)}$$
, $(\hat{B}_{32})^{(6)}$, $(p_i)^{(6)}$, $(r_i)^{(6)}$ are positive constants and $i = 32,33,34$

They satisfy Lipschitz condition:

170

$$|(a_i'')^{(6)}(T_{33}',t) - (a_i'')^{(6)}(T_{33},t)| \le (\hat{k}_{32})^{(6)}|T_{33} - T_{33}'|e^{-(\hat{M}_{32})^{(6)}t}$$

$$|(b_i'')^{(6)}((G_{35})',t)-(b_i'')^{(6)}((G_{35}),(T_{35}))|<(\hat{k}_{32})^{(6)}||(G_{35})-(G_{35})'||e^{-(\tilde{M}_{32})^{(6)}t}$$

With the Lipschitz condition, we place a restriction on the behavior of functions $(a_i^{''})^{(6)}(T_{33},t)$ and $(a_i^{''})^{(6)}(T_{33},t)$ and (T_{33},t) and (T_{33},t) are points belonging to the interval $[(\hat{k}_{32})^{(6)},(\hat{M}_{32})^{(6)}]$. It is to be noted that $(a_i^{''})^{(6)}(T_{33},t)$ is uniformly continuous. In the eventuality of the fact, that if $(\hat{M}_{32})^{(6)} = 6$ then the function $(a_i^{''})^{(6)}(T_{33},t)$, the sixth **augmentation coefficient** would be absolutely continuous.

Definition of
$$(\hat{M}_{32})^{(6)}, (\hat{k}_{32})^{(6)}$$
:

$$(\widehat{M}_{32})^{(6)}$$
, $(\widehat{k}_{32})^{(6)}$, are positive constants
$$\frac{(a_i)^{(6)}}{(\widehat{M}_{32})^{(6)}}, \frac{(b_i)^{(6)}}{(\widehat{M}_{32})^{(6)}} < 1$$

Definition of
$$(\hat{P}_{32})^{(6)}$$
, $(\hat{Q}_{32})^{(6)}$:1

173

There exists two constants (\hat{P}_{32})⁽⁶⁾ and (\hat{Q}_{32})⁽⁶⁾ which together with (\hat{M}_{32})⁽⁶⁾, (\hat{k}_{32})⁽⁶⁾, (\hat{A}_{32})⁽⁶⁾ and (\hat{B}_{32})⁽⁶⁾ and the constants (a_i)⁽⁶⁾, (a_i')⁽⁶⁾, (b_i)⁽⁶⁾, (b_i')⁽⁶⁾, (p_i)⁽⁶⁾, (p_i)⁽⁶⁾, (p_i)⁽⁶⁾, p_i)⁽⁶⁾, p_i 0, p_i 1, p_i 2, p_i 3, p_i 3, p_i 4, satisfy the inequalities

$$\frac{1}{(\hat{M}_{22})^{(6)}}[(a_i)^{(6)} + (a_i')^{(6)} + (\hat{A}_{32})^{(6)} + (\hat{P}_{32})^{(6)}(\hat{k}_{32})^{(6)}] < 1$$

$$\frac{1}{(\hat{M}_{32})^{(6)}}[(b_i)^{(6)} + (b_i')^{(6)} + (\hat{B}_{32})^{(6)} + (\hat{Q}_{32})^{(6)} (\hat{k}_{32})^{(6)}] < 1$$

Theorem 1: if the conditions (A)-(E)(first five conditions related to the system Boolean satisfiability problem) above are fulfilled, there exists a solution satisfying the conditions

<u>Definition of</u> $G_i(0)$, $T_i(0)$:

$$G_i(t) \leq \left(\, \hat{P}_{13} \, \right)^{(1)} e^{(\, \hat{M}_{13} \,)^{(1)} t} \ \, , \boxed{ \ \, G_i(0) = G_i^{\, 0} > 0 }$$

$$T_i(t) \leq (\hat{Q}_{13})^{(1)} e^{(\hat{M}_{13})^{(1)} t} \quad , \quad \boxed{T_i(0) = T_i^0 > 0}$$

If the conditions of second module pertaining to Knapsack problem and Hamiltonian Path Problem above are fulfilled, there exists a solution satisfying the conditions

Definition of $G_i(0)$, $T_i(0)$

$$G_i(t) \le (\hat{P}_{16})^{(2)} e^{(\hat{M}_{16})^{(2)}t}$$
, $G_i(0) = G_i^0 > 0$

$$T_i(t) \le (\hat{Q}_{16})^{(2)} e^{(\hat{M}_{16})^{(2)}t}$$
 , $T_i(0) = T_i^0 > 0$

If the conditions pertaining to the third module Sub graph Isomorphism problem and Subset sum problem above are fulfilled, there exists a solution satisfying the conditions

$$G_i(t) \le (\hat{P}_{20})^{(3)} e^{(\tilde{M}_{20})^{(3)}t}$$
 , $G_i(0) = G_i^0 > 0$

$$T_i(t) \le (\hat{Q}_{20})^{(3)} e^{(\hat{M}_{20})^{(3)} t}$$
 , $T_i(0) = T_i^0 > 0$

If the conditions of the fourth module Subset Sum Problem and Clique problem above are fulfilled, there exists a solution satisfying the conditions

<u>Definition of</u> $G_i(0)$, $T_i(0)$:

$$G_i(t) \le (\hat{P}_{24})^{(4)} e^{(\tilde{M}_{24})^{(4)}t}$$
, $G_i(0) = G_i^0 > 0$

$$T_i(t) \le (\hat{Q}_{24})^{(4)} e^{(\hat{M}_{24})^{(4)}t}$$
 , $T_i(0) = T_i^0 > 0$

If the conditions pertaining to the module five namely Vertex Cover Problem and Independent Set problem are fulfilled, there exists a solution satisfying the conditions

<u>Definition of</u> $G_i(0)$, $T_i(0)$:

$$G_i(t) \leq \left(\, \hat{P}_{28} \, \right)^{(5)} e^{(\, \vec{M}_{28} \,)^{(5)} t} \ \ \, , \quad \, G_i(0) = G_i^{\, 0} > 0$$

$$T_i(t) \le (\hat{Q}_{28})^{(5)} e^{(\hat{M}_{28})^{(5)}t}$$
 , $T_i(0) = T_i^0 > 0$

If the conditions pertaining to Dominating set problem and Graph Coloring Problem above are fulfilled, there exists a solution satisfying the conditions

<u>Definition of</u> $G_i(0)$, $T_i(0)$:

$$G_i(t) \leq \left(\, \hat{P}_{32} \, \right)^{(6)} e^{(\, \hat{M}_{32} \,)^{(6)} t} \ \, , \boxed{ \ \, G_i(0) = G_i^{\, 0} > 0 }$$

$$T_i(t) \le (\hat{Q}_{32})^{(6)} e^{(\hat{M}_{32})^{(6)}t}$$
 , $T_i(0) = T_i^0 > 0$

Proof: 180

Consider operator $\mathcal{A}^{(1)}$ defined on the space of sextuples of continuous functions G_i , $T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0$$
, $T_i(0) = T_i^0$, $G_i^0 \le (\hat{P}_{13})^{(1)}$, $T_i^0 \le (\hat{Q}_{13})^{(1)}$,

$$0 \le G_i(t) - G_i^0 \le (\mathcal{P}_{13})^{(1)} e^{(\tilde{M}_{13})^{(1)} t}$$
¹⁸²

$$0 \le T_i(t) - T_i^0 \le (\hat{Q}_{13})^{(1)} e^{(\hat{M}_{13})^{(1)} t}$$
¹⁸³

$$\bar{G}_{13}(t) = G_{13}^{0} + \int_{0}^{t} \left[(a_{13})^{(1)} G_{14}(s_{(13)}) - \left((a_{13}^{'})^{(1)} + a_{13}^{''} \right)^{(1)} \left(T_{14}(s_{(13)}), s_{(13)} \right) \right] G_{13}(s_{(13)}) ds_{(13)}$$

$$\bar{G}_{14}(t) = G_{14}^{0} + \int_{0}^{t} \left[(a_{14})^{(1)} G_{13}(s_{(13)}) - \left((a'_{14})^{(1)} + (a''_{14})^{(1)} \left(T_{14}(s_{(13)}), s_{(13)} \right) \right) G_{14}(s_{(13)}) \right] ds_{(13)}$$

$$(185)$$

$$\bar{G}_{15}(t) = G_{15}^0 + \int_0^t \left[(a_{15})^{(1)} G_{14}(s_{(13)}) - \left((a_{15}')^{(1)} + (a_{15}'')^{(1)} (T_{14}(s_{(13)}), s_{(13)}) \right) G_{15}(s_{(13)}) \right] ds_{(13)}$$
¹⁸⁶

$$\bar{T}_{13}(t) = T_{13}^0 + \int_0^t \left[(b_{13})^{(1)} T_{14}(s_{(13)}) - \left((b_{13}^{'})^{(1)} - (b_{13}^{''})^{(1)} (G(s_{(13)}), s_{(13)}) \right) T_{13}(s_{(13)}) \right] ds_{(13)}$$
187

$$\bar{T}_{14}(t) = T_{14}^0 + \int_0^t \left[(b_{14})^{(1)} T_{13} (s_{(13)}) - \left((b_{14}^{'})^{(1)} - (b_{14}^{''})^{(1)} (G(s_{(13)}), s_{(13)}) \right) T_{14} (s_{(13)}) \right] ds_{(13)}$$
188

$$\overline{T}_{15}(t) = T_{15}^{0} + \int_{0}^{t} \left[(b_{15})^{(1)} T_{14}(s_{(13)}) - ((b_{15}')^{(1)} - (b_{15}'')^{(1)} (G(s_{(13)}), s_{(13)}) \right] T_{15}(s_{(13)}) \right] ds_{(13)}$$

$$(189)$$

Where $s_{(13)}$ is the integrand that is integrated over an interval (0, t)

Consider operator $\mathcal{A}^{(2)}$ defined on the space of sextuples of continuous functions G_i , $T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0$$
, $T_i(0) = T_i^0$, $G_i^0 \le (\hat{P}_{16})^{(2)}$, $T_i^0 \le (\hat{Q}_{16})^{(2)}$,

$$0 \le G_i(t) - G_i^0 \le (\hat{P}_{16})^{(2)} e^{(\hat{M}_{16})^{(2)} t}$$
¹⁹¹

$$0 \le T_i(t) - T_i^0 \le (\hat{Q}_{16})^{(2)} e^{(\hat{M}_{16})^{(2)} t}$$
¹⁹²

$$\bar{G}_{16}(t) = G_{16}^{0} + \int_{0}^{t} \left[(a_{16})^{(2)} G_{17}(s_{(16)}) - \left((a'_{16})^{(2)} + a''_{16} \right)^{(2)} \left(T_{17}(s_{(16)}), s_{(16)} \right) \right] G_{16}(s_{(16)}) ds_{(16)}$$

$$\bar{G}_{17}(t) = G_{17}^0 + \int_0^t \left[(a_{17})^{(2)} G_{16}(s_{(16)}) - \left((a_{17}')^{(2)} + (a_{17}'')^{(2)} \left(T_{17}(s_{(16)}), s_{(17)} \right) \right) G_{17}(s_{(16)}) \right] ds_{(16)}$$
194

$$\bar{G}_{18}(t) = G_{18}^{0} + \int_{0}^{t} \left[(a_{18})^{(2)} G_{17}(s_{(16)}) - \left((a_{18}')^{(2)} + (a_{18}'')^{(2)} \left(T_{17}(s_{(16)}), s_{(16)} \right) \right) G_{18}(s_{(16)}) \right] ds_{(16)}$$
¹⁹⁵

$$\bar{T}_{16}(t) = T_{16}^0 + \int_0^t \left[(b_{16})^{(2)} T_{17}(s_{(16)}) - \left((b_{16}^{'})^{(2)} - (b_{16}^{''})^{(2)} \left(G(s_{(16)}), s_{(16)} \right) \right) T_{16}(s_{(16)}) \right] ds_{(16)}$$
196

$$\bar{T}_{17}(t) = T_{17}^0 + \int_0^t \left[(b_{17})^{(2)} T_{16} (s_{(16)}) - \left((b_{17}^{'})^{(2)} - (b_{17}^{''})^{(2)} (G(s_{(16)}), s_{(16)}) \right) T_{17} (s_{(16)}) \right] ds_{(16)}$$
197

$$\bar{T}_{18}(t) = T_{18}^0 + \int_0^t \left[(b_{18})^{(2)} T_{17}(s_{(16)}) - \left((b_{18}')^{(2)} - (b_{18}'')^{(2)} \left(G(s_{(16)}), s_{(16)} \right) \right) T_{18}(s_{(16)}) \right] ds_{(16)}$$
198

Where $s_{(16)}$ is the integrand that is integrated over an interval (0, t)

Consider operator $\mathcal{A}^{(3)}$ defined on the space of sextuples of continuous functions G_i , $T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0$$
, $T_i(0) = T_i^0$, $G_i^0 \le (\hat{P}_{20})^{(3)}$, $T_i^0 \le (\hat{Q}_{20})^{(3)}$,

$$0 \le G_i(t) - G_i^0 \le (\hat{P}_{20})^{(3)} e^{(\hat{M}_{20})^{(3)} t}$$

$$0 \le T_i(t) - T_i^0 \le (\hat{Q}_{20})^{(3)} e^{(\hat{M}_{20})^{(3)} t}$$

$$\bar{G}_{20}(t) = G_{20}^{0} + \int_{0}^{t} \left[(a_{20})^{(3)} G_{21} \left(s_{(20)} \right) - \left((a_{20}^{'})^{(3)} + a_{20}^{''} \right)^{(3)} \left(T_{21} \left(s_{(20)} \right), s_{(20)} \right) \right] G_{20} \left(s_{(20)} \right) \right] ds_{(20)}$$

$$\bar{G}_{21}(t) = G_{21}^{0} + \int_{0}^{t} \left[(a_{21})^{(3)} G_{20}(s_{(20)}) - \left((a_{21}^{'})^{(3)} + (a_{21}^{''})^{(3)} \left(T_{21}(s_{(20)}), s_{(20)} \right) \right) G_{21}(s_{(20)}) \right] ds_{(20)}$$

$$\bar{G}_{22}(t) = G_{22}^{0} + \int_{0}^{t} \left[(a_{22})^{(3)} G_{21}(s_{(20)}) - \left((a_{22}')^{(3)} + (a_{22}')^{(3)} \left(T_{21}(s_{(20)}), s_{(20)} \right) \right) G_{22}(s_{(20)}) \right] ds_{(20)}$$

$$\bar{T}_{20}(t) = T_{20}^{0} + \int_{0}^{t} \left[(b_{20})^{(3)} T_{21}(s_{(20)}) - ((b_{20}')^{(3)} - (b_{20}')^{(3)} (G(s_{(20)}), s_{(20)}) \right] T_{20}(s_{(20)}) ds_{(20)}$$

$$\bar{T}_{21}(t) = T_{21}^{0} + \int_{0}^{t} \left[(b_{21})^{(3)} T_{20}(s_{(20)}) - \left((b_{21}^{'})^{(3)} - (b_{21}^{''})^{(3)} (G(s_{(20)}), s_{(20)}) \right) T_{21}(s_{(20)}) \right] ds_{(20)}$$

$$\overline{T}_{22}(t) = T_{22}^{0} + \int_{0}^{t} \left[(b_{22})^{(3)} T_{21}(s_{(20)}) - ((b_{22}')^{(3)} - (b_{22}')^{(3)} (G(s_{(20)}), s_{(20)}) \right] T_{22}(s_{(20)}) ds_{(20)}$$

Where $s_{(20)}$ is the integrand that is integrated over an interval (0, t)

Proof: Consider operator $\mathcal{A}^{(4)}$ defined on the space of sextuples of continuous functions G_i , $T_i: \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0$$
, $T_i(0) = T_i^0$, $G_i^0 \le (\hat{P}_{24})^{(4)}$, $T_i^0 \le (\hat{Q}_{24})^{(4)}$,

$$0 \le G_i(t) - G_i^0 \le (\hat{P}_{24})^{(4)} e^{(\hat{M}_{24})^{(4)} t}$$

$$0 \le T_i(t) - T_i^0 \le (\hat{Q}_{24})^{(4)} e^{(\hat{M}_{24})^{(4)} t}$$

$$\bar{G}_{24}(t) = G_{24}^{0} + \int_{0}^{t} \left[(a_{24})^{(4)} G_{25}(s_{(24)}) - \left((a_{24}^{'})^{(4)} + a_{24}^{''} \right)^{(4)} \left(T_{25}(s_{(24)}), s_{(24)} \right) \right] G_{24}(s_{(24)}) ds_{(24)}$$

$$\bar{G}_{25}(t) = G_{25}^{0} + \int_{0}^{t} \left[(a_{25})^{(4)} G_{24}(s_{(24)}) - \left((a_{25}^{'})^{(4)} + (a_{25}^{''})^{(4)} \left(T_{25}(s_{(24)}), s_{(24)} \right) \right) G_{25}(s_{(24)}) \right] ds_{(24)}$$

$$\bar{G}_{26}(t) = G_{26}^{0} + \int_{0}^{t} \left[(a_{26})^{(4)} G_{25}(s_{(24)}) - \left((a_{26}^{'})^{(4)} + (a_{26}^{''})^{(4)} \left(T_{25}(s_{(24)}), s_{(24)} \right) \right) G_{26}(s_{(24)}) \right] ds_{(24)}$$

$$\bar{T}_{24}(t) = T_{24}^0 + \int_0^t \left[(b_{24})^{(4)} T_{25}(s_{(24)}) - \left((b_{24}^{'})^{(4)} - (b_{24}^{''})^{(4)} \left(G(s_{(24)}), s_{(24)} \right) \right) T_{24}(s_{(24)}) \right] ds_{(24)}$$

$$\bar{T}_{25}(t) = T_{25}^0 + \int_0^t \left[(b_{25})^{(4)} T_{24} (s_{(24)}) - \left((b_{25}^{'})^{(4)} - (b_{25}^{''})^{(4)} (G(s_{(24)}), s_{(24)}) \right) T_{25} (s_{(24)}) \right] ds_{(24)}$$

$$\overline{T}_{26}(t) = T_{26}^{0} + \int_{0}^{t} \left[(b_{26})^{(4)} T_{25}(s_{(24)}) - ((b_{26}')^{(4)} - (b_{26}')^{(4)} (G(s_{(24)}), s_{(24)}) \right] T_{26}(s_{(24)}) ds_{(24)}$$

Where $s_{(24)}$ is the integrand that is integrated over an interval (0, t)

Consider operator $\mathcal{A}^{(5)}$ defined on the space of sextuples of continuous functions G_i , $T_i \colon \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0$$
, $T_i(0) = T_i^0$, $G_i^0 \le (\hat{P}_{28})^{(5)}$, $T_i^0 \le (\hat{Q}_{28})^{(5)}$,

$$0 \le G_i(t) - G_i^0 \le (\hat{P}_{28})^{(5)} e^{(\hat{M}_{28})^{(5)} t}$$

$$0 \le T_i(t) - T_i^0 \le (\hat{Q}_{28})^{(5)} e^{(\hat{M}_{28})^{(5)} t}$$

$$\bar{G}_{28}(t) = G_{28}^{0} + \int_{0}^{t} \left[(a_{28})^{(5)} G_{29}(s_{(28)}) - \left((a_{28}')^{(5)} + a_{28}'' \right)^{(5)} \left(T_{29}(s_{(28)}), s_{(28)} \right) \right] G_{28}(s_{(28)}) ds_{(28)}$$

$$\bar{G}_{29}(t) = G_{29}^{0} + \int_{0}^{t} \left[(a_{29})^{(5)} G_{28}(s_{(28)}) - \left((a_{29}^{'})^{(5)} + (a_{29}^{''})^{(5)} \left(T_{29}(s_{(28)}), s_{(28)} \right) \right) G_{29}(s_{(28)}) \right] ds_{(28)}$$

$$= \frac{1}{2} \left[(a_{29})^{(5)} G_{28}(s_{(28)}) - \left((a_{29}^{'})^{(5)} + (a_{29}^{''})^{(5)} \right) \left(T_{29}(s_{(28)}), s_{(28)} \right) \right] ds_{(28)}$$

$$\bar{G}_{30}(t) = G_{30}^0 + \int_0^t \left[(a_{30})^{(5)} G_{29}(s_{(28)}) - \left((a_{30}')^{(5)} + (a_{30}'')^{(5)} (T_{29}(s_{(28)}), s_{(28)}) \right) G_{30}(s_{(28)}) \right] ds_{(28)}$$

223

$$\bar{T}_{28}(t) = T_{28}^0 + \int_0^t \left[(b_{28})^{(5)} T_{29}(s_{(28)}) - \left((b_{28}^{'})^{(5)} - (b_{28}^{''})^{(5)} (G(s_{(28)}), s_{(28)}) \right) T_{28}(s_{(28)}) \right] ds_{(28)}$$

$$\bar{T}_{29}(t) = T_{29}^0 + \int_0^t \left[(b_{29})^{(5)} T_{28} (s_{(28)}) - \left((b_{29}^{'})^{(5)} - (b_{29}^{''})^{(5)} (G(s_{(28)}), s_{(28)}) \right) T_{29} (s_{(28)}) \right] ds_{(28)}$$

$$\overline{T}_{30}(t) = T_{30}^{0} + \int_{0}^{t} \left[(b_{30})^{(5)} T_{29} (s_{(28)}) - \left((b_{30}^{'})^{(5)} - (b_{30}^{''})^{(5)} (G(s_{(28)}), s_{(28)}) \right) T_{30} (s_{(28)}) \right] ds_{(28)}$$

226

Where $s_{(28)}$ is the integrand that is integrated over an interval (0, t)

Consider operator $\mathcal{A}^{(6)}$ defined on the space of sextuples of continuous functions G_i , $T_i \colon \mathbb{R}_+ \to \mathbb{R}_+$ which satisfy

$$G_i(0) = G_i^0$$
, $T_i(0) = T_i^0$, $G_i^0 \le (\hat{P}_{32})^{(6)}$, $T_i^0 \le (\hat{Q}_{32})^{(6)}$,

$$0 \le G_i(t) - G_i^0 \le (\hat{P}_{32})^{(6)} e^{(\hat{M}_{32})^{(6)} t}$$

$$0 \le T_i(t) - T_i^0 \le (\hat{Q}_{32})^{(6)} e^{(\hat{M}_{32})^{(6)} t}$$
²²⁹

$$\bar{G}_{32}(t) = G_{32}^0 + \int_0^t \left[(a_{32})^{(6)} G_{33}(s_{(32)}) - \left((a_{32}')^{(6)} + a_{32}'' \right)^{(6)} (T_{33}(s_{(32)}), s_{(32)}) \right] ds_{(32)}$$

$$\bar{G}_{33}(t) = G_{33}^{0} + \int_{0}^{t} \left[(a_{33})^{(6)} G_{32}(s_{(32)}) - \left((a_{33}')^{(6)} + (a_{33}')^{(6)} (T_{33}(s_{(32)}), s_{(32)}) \right) G_{33}(s_{(32)}) \right] ds_{(32)}$$

$$\bar{G}_{34}(t) = G_{34}^0 + \int_0^t \left[(a_{34})^{(6)} G_{33}(s_{(32)}) - \left((a_{34}')^{(6)} + (a_{34}')^{(6)} (T_{33}(s_{(32)}), s_{(32)}) \right) G_{34}(s_{(32)}) \right] ds_{(32)}$$

$$\bar{T}_{32}(t) = T_{32}^{0} + \int_{0}^{t} \left[(b_{32})^{(6)} T_{33} (s_{(32)}) - \left((b_{32}^{'})^{(6)} - (b_{32}^{''})^{(6)} (G(s_{(32)}), s_{(32)}) \right) T_{32}(s_{(32)}) \right] ds_{(32)}$$

233

$$\bar{T}_{33}(t) = T_{33}^0 + \int_0^t \left[(b_{33})^{(6)} T_{32} (s_{(32)}) - \left((b_{33}')^{(6)} - (b_{33}')^{(6)} (G(s_{(32)}), s_{(32)}) \right) T_{33} (s_{(32)}) \right] ds_{(32)}$$

$$\overline{T}_{34}(t) = T_{34}^{0} + \int_{0}^{t} \left[(b_{34})^{(6)} T_{33} (s_{(32)}) - \left((b_{34}^{'})^{(6)} - (b_{34}^{''})^{(6)} (G(s_{(32)}), s_{(32)}) \right) T_{34} (s_{(32)}) \right] ds_{(32)}$$

235

Where $s_{(32)}$ is the integrand that is integrated over an interval (0, t)

(a) The operator $\mathcal{A}^{(1)}$ maps the space of functions satisfying into itself. Indeed it is obvious that

$$G_{13}(t) \le G_{13}^0 + \int_0^t \left[(a_{13})^{(1)} \left(G_{14}^0 + (\hat{P}_{13})^{(1)} e^{(\hat{M}_{13})^{(1)} s_{(13)}} \right) \right] ds_{(13)} =$$

$$\left(1+(a_{13})^{(1)}t\right)G_{14}^{0}+\tfrac{(a_{13})^{(1)}(\tilde{P}_{13})^{(1)}}{(\tilde{M}_{13})^{(1)}}\left(e^{(\tilde{M}_{13})^{(1)}t}-1\right)$$

From which it follows that

$$(G_{13}(t)-G_{13}^0)e^{-(\tilde{M}_{13})^{(1)}t} \leq \frac{(a_{13})^{(1)}}{(\tilde{M}_{13})^{(1)}} \left[\left((\hat{P}_{13})^{(1)}+G_{14}^0 \right) e^{\left(-\frac{(\hat{P}_{13})^{(1)}+G_{14}^0}{G_{14}^0} \right)} + (\hat{P}_{13})^{(1)} \right]$$

 (G_i^0) is as defined in the statement of theorem 1

Analogous inequalities hold also for G_{14} , G_{15} , T_{13} , T_{14} , T_{15}

(b) The operator $\mathcal{A}^{(2)}$ maps the space of functions satisfying into itself. Indeed it is obvious that

$$G_{16}(t) \leq G_{16}^{0} + \int_{0}^{t} \left[(a_{16})^{(2)} \left(G_{17}^{0} + (\hat{P}_{16})^{(6)} e^{(\hat{M}_{16})^{(2)} s_{(16)}} \right) \right] ds_{(16)} = \left(1 + (a_{16})^{(2)} t \right) G_{17}^{0} + \frac{(a_{16})^{(2)} (\hat{P}_{16})^{(2)}}{(\hat{M}_{16})^{(2)}} \left(e^{(\hat{M}_{16})^{(2)} t} - 1 \right)$$

From which it follows that

$$(G_{16}(t) - G_{16}^{0})e^{-(\tilde{M}_{16})^{(2)}t} \leq \frac{(a_{16})^{(2)}}{(\tilde{M}_{16})^{(2)}} \left[\left((\hat{P}_{16})^{(2)} + G_{17}^{0} \right) e^{\left(-\frac{(\hat{P}_{16})^{(2)} + G_{17}^{0}}{G_{17}^{0}} \right)} + (\hat{P}_{16})^{(2)} \right]$$

Analogous inequalities hold also for G_{17} , G_{18} , T_{16} , T_{17} , T_{18}

(a) The operator $\mathcal{A}^{(3)}$ maps the space of functions satisfying into itself. Indeed it is obvious that

$$G_{20}(t) \le G_{20}^0 + \int_0^t \left[(a_{20})^{(3)} \left(G_{21}^0 + (\hat{P}_{20})^{(3)} e^{(\hat{M}_{20})^{(3)} s_{(20)}} \right) \right] ds_{(20)} =$$

$$\left(1+(a_{20})^{(3)}t\right)G_{21}^{0}+\frac{(a_{20})^{(3)}(\hat{P}_{20})^{(3)}}{(M_{20})^{(3)}}\left(e^{(\hat{M}_{20})^{(3)}t}-1\right)$$

From which it follows that

$$(G_{20}(t) - G_{20}^{0})e^{-(\tilde{M}_{20})^{(3)}t} \le \frac{(a_{20})^{(3)}}{(\tilde{M}_{20})^{(3)}} \left[((\hat{P}_{20})^{(3)} + G_{21}^{0})e^{\left(-\frac{(\hat{P}_{20})^{(3)} + G_{21}^{0}}{G_{21}^{0}}\right)} + (\hat{P}_{20})^{(3)} \right] 277$$

Analogous inequalities hold also for G_{21} , G_{22} , T_{20} , T_{21} , T_{22} 278

(b) The operator $\mathcal{A}^{(4)}$ maps the space of functions satisfying into itself .Indeed it is obvious that $G_{24}(t) \leq G_{24}^0 + \int_0^t \left[(a_{24})^{(4)} \left(G_{25}^0 + (\hat{P}_{24})^{(4)} e^{(\hat{M}_{24})^{(4)} S_{(24)}} \right) \right] ds_{(24)} =$

$$\left(1+(a_{24})^{(4)}t\right)G_{25}^{0}+\tfrac{(a_{24})^{(4)}(\tilde{P}_{24})^{(4)}}{(\tilde{M}_{24})^{(4)}}\left(e^{(\tilde{M}_{24})^{(4)}t}-1\right)$$

From which it follows that

$$(G_{24}(t)-G_{24}^0)e^{-(\tilde{M}_{24})^{(4)}t} \leq \frac{(a_{24})^{(4)}}{(\tilde{M}_{24})^{(4)}} \left[\left((\hat{P}_{24})^{(4)} + G_{25}^0 \right) e^{\left(-\frac{(\hat{P}_{24})^{(4)} + G_{25}^0}{G_{25}^0} \right)} + (\hat{P}_{24})^{(4)} \right]$$

 (G_i^0) is as defined in the statement of theorem 4

(c) The operator $\mathcal{A}^{(5)}$ maps the space of functions satisfying 35,35,36 into itself .Indeed it is obvious

$$G_{28}(t) \le G_{28}^0 + \int_0^t \left[(a_{28})^{(5)} \left(G_{29}^0 + (\hat{P}_{28})^{(5)} e^{(\hat{M}_{28})^{(5)} s_{(28)}} \right) \right] ds_{(28)} =$$

$$\left(1+(a_{28})^{(5)}t\right)G_{29}^0+\tfrac{(a_{28})^{(5)}(\tilde{p}_{28})^{(5)}}{(\tilde{M}_{28})^{(5)}}\left(e^{(\tilde{M}_{28})^{(5)}t}-1\right)$$

From which it follows that

$$(G_{28}(t) - G_{28}^{0})e^{-(\tilde{M}_{28})^{(5)}t} \leq \frac{(a_{28})^{(5)}}{(\tilde{M}_{28})^{(5)}} \left[((\hat{P}_{28})^{(5)} + G_{29}^{0})e^{\left(-\frac{(\hat{P}_{28})^{(5)} + G_{29}^{0}}{G_{29}^{0}}\right)} + (\hat{P}_{28})^{(5)} \right]$$

 (G_i^0) is as defined in the statement of theorem 1

(d) The operator $\mathcal{A}^{(6)}$ maps the space of functions satisfying 34,35,36 into itself .Indeed it is obvious that

$$G_{32}(t) \le G_{32}^{0} + \int_{0}^{t} \left[(a_{32})^{(6)} \left(G_{33}^{0} + (\hat{P}_{32})^{(6)} e^{(\hat{M}_{32})^{(6)} s_{(32)}} \right) \right] ds_{(32)} =$$

$$\left(1 + (a_{32})^{(6)} t \right) G_{33}^{0} + \frac{(a_{32})^{(6)} (\hat{P}_{32})^{(6)}}{(\hat{M}_{32})^{(6)}} \left(e^{(\hat{M}_{32})^{(6)} t} - 1 \right)$$

From which it follows that

$$(G_{32}(t)-G_{32}^0)e^{-(\tilde{M}_{32})^{(6)}t} \leq \frac{(a_{32})^{(6)}}{(\tilde{M}_{32})^{(6)}} \left[\left((\hat{P}_{32})^{(6)}+G_{33}^0 \right) e^{\left(-\frac{(\hat{P}_{32})^{(6)}+G_{33}^0}{G_{33}^0} \right)} + (\hat{P}_{32})^{(6)} \right]$$

 (G_i^0) is as defined in the statement of theorem 1

Analogous inequalities hold also for G_{25} , G_{26} , T_{24} , T_{25} , T_{26}

It is now sufficient to take
$$\frac{(a_i)^{(1)}}{(M_{13})^{(1)}}$$
, $\frac{(b_i)^{(1)}}{(M_{13})^{(1)}} < 1$ and to choose

 $(\widehat{P}_{13})^{(1)}$ and $(\widehat{Q}_{13})^{(1)}$ large to have

$$\frac{(a_i)^{(1)}}{(\widehat{\mathcal{P}}_{13})^{(1)}} \left[(\widehat{P}_{13})^{(1)} + ((\widehat{P}_{13})^{(1)} + G_j^0) e^{-\left(\frac{(\widehat{P}_{13})^{(1)} + G_j^0}{G_j^0}\right)} \right] \le (\widehat{P}_{13})^{(1)}$$

$$\frac{(b_i)^{(1)}}{(\tilde{M}_{13})^{(1)}} \left[\left((\hat{Q}_{13})^{(1)} + T_j^0 \right) e^{-\left(\frac{(\hat{Q}_{13})^{(1)} + T_j^0}{T_j^0}\right)} + (\hat{Q}_{13})^{(1)} \right] \le (\hat{Q}_{13})^{(1)}$$

In order that the operator $\mathcal{A}^{(1)}$ transforms the space of sextuples of functions G_i , T_i into itself

The operator $\mathcal{A}^{(1)}$ is a contraction with respect to the metric

$$d((G^{(1)},T^{(1)}),(G^{(2)},T^{(2)})) =$$

$$\sup_{i} \{ \max_{t \in \mathbb{R}_{+}} \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{13})^{(1)}t}, \max_{t \in \mathbb{R}_{+}} \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{13})^{(1)}t} \}$$

Indeed if we denote 252

Definition of
$$\tilde{G}, \tilde{T}: (\tilde{G}, \tilde{T}) = \mathcal{A}^{(1)}(G, T)$$

It results

$$\left| \tilde{G}_{13}^{(1)} - \tilde{G}_{i}^{(2)} \right| \leq \int_{0}^{t} (a_{13})^{(1)} \left| G_{14}^{(1)} - G_{14}^{(2)} \right| e^{-(\tilde{M}_{13})^{(1)} s_{(13)}} e^{(\tilde{M}_{13})^{(1)} s_{(13)}} ds_{(13)} + C_{14}^{(1)} \left| G_{14}^{(1)} - G_{14}^{(2)} \right| ds_{(13)} ds_{(13)} + C_{14}^{(1)} \left| G_{14}^{(1)} - G_{14}^{(1)} \right| ds_{(13)} ds_{(13)} + C_{14}^{(1)} \left| G_{14}^{(1)} - G_{14}^{(1)} \right| ds_{(13)} ds_{(13)} + C_{14}^{(1)} \left| G_{14}^{(1)} - G_{14}^{(1)} \right| ds_{(13)} ds_{($$

$$\int_0^t \{(a_{13}')^{(1)} | G_{13}^{(1)} - G_{13}^{(2)} | e^{-(\widehat{M}_{13})^{(1)} s_{(13)}} e^{-(\widehat{M}_{13})^{(1)} s_{(13)}} +$$

$$(a_{13}^{"})^{(1)} (T_{14}^{(1)}, s_{(13)}) |G_{13}^{(1)} - G_{13}^{(2)}| e^{-(\widehat{M}_{13})^{(1)} s_{(13)}} e^{(\widehat{M}_{13})^{(1)} s_{(13)}} +$$

$$G_{13}^{(2)}|(a_{13}^{"})^{(1)}(T_{14}^{(1)},s_{(13)})-(a_{13}^{"})^{(1)}(T_{14}^{(2)},s_{(13)})|\ e^{-(\widehat{M}_{13})^{(1)}s_{(13)}}e^{(\widehat{M}_{13})^{(1)}s_{(13)}}\}ds_{(13)}$$

Where $s_{(13)}$ represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

$$\begin{aligned} & \left| G^{(1)} - G^{(2)} \right| e^{-(\widehat{M}_{13})^{(1)}t} \leq \\ & \frac{1}{(\widehat{M}_{13})^{(1)}} \left((a_{13})^{(1)} + (a_{13}')^{(1)} + (\widehat{A}_{13})^{(1)} + (\widehat{P}_{13})^{(1)} (\widehat{k}_{13})^{(1)} \right) d \left(\left(G^{(1)}, T^{(1)}; \ G^{(2)}, T^{(2)} \right) \right) \end{aligned}$$

And analogous inequalities for G_i and T_i . Taking into account the result follows

Remark 1: The fact that we supposed $(a_{13}'')^{(1)}$ and $(b_{13}'')^{(1)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\widehat{P}_{13})^{(1)}e^{(\widehat{M}_{13})^{(1)}t}$ and $(\widehat{Q}_{13})^{(1)}e^{(\widehat{M}_{13})^{(1)}t}$ respectively of \mathbb{R}_+ .

If instead of proving the existence of the solution on \mathbb{R}_+ , we have to prove it only on a compact then it suffices to consider that $(a_i^n)^{(1)}$ and $(b_i^n)^{(1)}$, i=13,14,15 depend only on T_{14} and respectively on $G(and\ not\ on\ t)$ and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where
$$G_i(t) = 0$$
 and $T_i(t) = 0$

From the governing equations of the holistic system it results

$$G_{i}(t) \geq G_{i}^{0} e^{\left[-\int_{0}^{t} \{(a_{i}^{'})^{(1)} - (a_{i}^{''})^{(1)}(T_{14}(s_{(13)}), s_{(13)})\}ds_{(13)}\right]} \geq 0$$

$$T_i(t) \ge T_i^0 e^{(-(b_i')^{(1)}t)} > 0 \text{ for } t > 0$$

$$\underline{\textbf{Definition of}} \left((\widehat{M}_{13})^{(1)} \right)_{1}, \left((\widehat{M}_{13})^{(1)} \right)_{2} \text{ and } \left((\widehat{M}_{13})^{(1)} \right)_{3} :$$

Remark 3: if G_{13} is bounded, the same property have also G_{14} and G_{15} indeed if

$$G_{13} < (\widehat{M}_{13})^{(1)}$$
 it follows $\frac{dG_{14}}{dt} \le ((\widehat{M}_{13})^{(1)})_1 - (a'_{14})^{(1)}G_{14}$ and by integrating

$$G_{14} \leq \left((\widehat{M}_{13})^{(1)} \right)_2 = G_{14}^0 + 2(a_{14})^{(1)} \left((\widehat{M}_{13})^{(1)} \right)_1 / (a_{14}^{'})^{(1)}$$

In the same way, one can obtain

$$G_{15} \leq \left((\widehat{M}_{13})^{(1)} \right)_3 = G_{15}^0 + 2(a_{15})^{(1)} \left((\widehat{M}_{13})^{(1)} \right)_2 / (a_{15}^{'})^{(1)}$$

If G_{14} or G_{15} is bounded, the same property follows for G_{13} , G_{15} and G_{13} , G_{14} respectively.

Remark 4: If G_{13} is bounded, from below, the same property holds for G_{14} and G_{15} . The proof is analogous with the preceding one. An analogous property is true if G_{14} is bounded from below.

Remark 5: If
$$T_{13}$$
 is bounded from below and $\lim_{t\to\infty} ((b_i'')^{(1)}(G(t),t)) = (b_{14}')^{(1)}$ then $T_{14}\to\infty$.

Definition of $(m)^{(1)}$ and ε_1 :

Indeed let t_1 be so that for $t > t_1$

$$(b_{14})^{(1)}-(b_i^{''})^{(1)}(G(t),t)<\varepsilon_1,T_{13}(t)>(m)^{(1)}$$

Then
$$\frac{dT_{14}}{dt} \ge (a_{14})^{(1)}(m)^{(1)} - \varepsilon_1 T_{14}$$
 which leads to

$$T_{14} \ge \left(\frac{(a_{14})^{(1)}(m)^{(1)}}{\varepsilon_1}\right)(1 - e^{-\varepsilon_1 t}) + T_{14}^0 e^{-\varepsilon_1 t}$$
 If we take t such that $e^{-\varepsilon_1 t} = \frac{1}{2}$ it results

 $T_{14} \geq \left(\frac{(a_{14})^{(1)}(m)^{(1)}}{2}\right)$, $t = \log \frac{2}{\varepsilon_1}$ By taking now ε_1 sufficiently small one sees that T_{14} is unbounded. The same property holds for T_{15} if $\lim_{t\to\infty} (b_{15}^{''})^{(1)} (G(t),t) = (b_{15}^{'})^{(1)}$

We now state a more precise theorem about the behaviors at infinity of the solutions of equations solution to the governing equations of the global system

It is now sufficient to take
$$\frac{(a_i)^{(2)}}{(\tilde{M}_{16})^{(2)}}$$
, $\frac{(b_i)^{(2)}}{(\tilde{M}_{16})^{(2)}} < 1$ and to choose

 $(\hat{P}_{16})^{(2)}$ and $(\hat{Q}_{16})^{(2)}$ large to have

$$\frac{(a_i)^{(2)}}{(\widehat{M}_{16})^{(2)}} \left[(\widehat{P}_{16})^{(2)} + ((\widehat{P}_{16})^{(2)} + G_j^0) e^{-\left(\frac{(\widehat{P}_{16})^{(2)} + G_j^0}{G_j^0}\right)} \right] \le (\widehat{P}_{16})^{(2)}$$

262

$$\frac{(b_l)^{(2)}}{(M_{16})^{(2)}} \left[\left((\hat{Q}_{16})^{(2)} + T_j^0 \right) e^{-\left(\frac{(\hat{Q}_{16})^{(2)} + T_j^0}{T_j^0}\right)} + (\hat{Q}_{16})^{(2)} \right] \le (\hat{Q}_{16})^{(2)}$$

In order that the operator $\mathcal{A}^{(2)}$ transforms the space of sextuples of functions G_i , T_i into itself

The operator $\mathcal{A}^{(2)}$ is a contraction with respect to the metric

$$d(((G_{19})^{(1)}, (T_{19})^{(1)}), ((G_{19})^{(2)}, (T_{19})^{(2)})) =$$

$$\sup_{i} \{ \max_{t \in \mathbb{R}_{+}} \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-(\hat{M}_{16})^{(2)}t}, \max_{t \in \mathbb{R}_{+}} \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-(\hat{M}_{16})^{(2)}t} \}$$

 $\underline{\textbf{Definition of}}\ \widetilde{G_{19}}, \widetilde{T_{19}}:\ \left(\ \widetilde{G_{19}}, \widetilde{T_{19}}\ \right) = \mathcal{A}^{(2)}(G_{19}, T_{19})$

$$\left| \tilde{G}_{16}^{(1)} - \tilde{G}_{i}^{(2)} \right| \leq \int_{0}^{t} (a_{16})^{(2)} \left| G_{17}^{(1)} - G_{17}^{(2)} \right| e^{-(\tilde{M}_{16})^{(2)} s_{(16)}} e^{(\tilde{M}_{16})^{(2)} s_{(16)}} \, ds_{(16)} + \frac{1}{2} \left| \frac{1}{2}$$

$$\int_0^t \{ (a_{16}')^{(2)} | G_{16}^{(1)} - G_{16}^{(2)} | e^{-(\tilde{M}_{16})^{(2)} s_{(16)}} e^{-(\tilde{M}_{16})^{(2)} s_{(16)}} +$$

$$(a_{16}^{"})^{(2)} \big(T_{17}^{(1)}, s_{(16)} \big) \big| G_{16}^{(1)} - G_{16}^{(2)} \big| e^{-(\widehat{M}_{16})^{(2)} s_{(16)}} e^{(\widehat{M}_{16})^{(2)} s_{(16)}} +$$

$$G_{16}^{(2)}|(a_{16}^{"})^{(2)}(T_{17}^{(1)},s_{(16)})-(a_{16}^{"})^{(2)}(T_{17}^{(2)},s_{(16)})|e^{-(\widehat{M}_{16})^{(2)}s_{(16)}}e^{(\widehat{M}_{16})^{(2)}s_{(16)}}\}ds_{(16)}$$

Where $s_{(16)}$ represents integrand that is integrated over the interval [0, t]

267

From the hypotheses it follows

$$\begin{split} & \left| (G_{19})^{(1)} - (G_{19})^{(2)} \right| e^{-(\widehat{M}_{16})^{(2)}t} \leq \\ & \frac{1}{(\widehat{M}_{16})^{(2)}} \Big((a_{16})^{(2)} + (a_{16}')^{(2)} + (\widehat{A}_{16})^{(2)} + (\widehat{P}_{16})^{(2)} (\widehat{k}_{16})^{(2)} \Big) \mathrm{d} \Big(\big((G_{19})^{(1)}, (T_{19})^{(1)}; \ (G_{19})^{(2)}, (T_{19})^{(2)} \big) \Big) \end{split}$$

And analogous inequalities for G_i and T_i . Taking into account the hypothesis (34,35,36) the result follows

269

Remark 1: The fact that we supposed $(a_{16}^{"})^{(2)}$ and $(b_{16}^{"})^{(2)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis, in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\widehat{P}_{16})^{(2)}e^{(\widehat{M}_{16})^{(2)}t}$ and $(\widehat{Q}_{16})^{(2)}e^{(\widehat{M}_{16})^{(2)}t}$ respectively of \mathbb{R}_+ .

If instead of proving the existence of the solution on \mathbb{R}_+ , we have to prove it only on a compact then it suffices to consider that $(a_i^{''})^{(2)}$ and $(b_i^{''})^{(2)}$, i=16,17,18 depend only on T_{17} and respectively on (G_{19}) (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where
$$G_i(t) = 0$$
 and $T_i(t) = 0$

From 19 to 24 it results

$$G_{i}(t) \geq G_{i}^{0} e^{\left[-\int_{0}^{t} \{(a_{i}^{'})^{(2)} - (a_{i}^{''})^{(2)}(T_{17}(s_{(16)}),s_{(16)})\}ds_{(16)}\right]} \geq 0$$

$$T_i(t) \ge T_i^0 e^{(-(b_i^{'})^{(2)}t)} > 0 \text{ for } t > 0$$

$$\underline{\textbf{Definition of}} \left((\widehat{\mathbf{M}}_{16})^{(2)} \right)_{1}, \left((\widehat{\mathbf{M}}_{16})^{(2)} \right)_{2} \text{ and } \left((\widehat{\mathbf{M}}_{16})^{(2)} \right)_{3} :$$

Remark 3: if G_{16} is bounded, the same property have also G_{17} and G_{18} . indeed if

$$G_{16} < (\widehat{M}_{16})^{(2)}$$
 it follows $\frac{dG_{17}}{dt} \le ((\widehat{M}_{16})^{(2)})_1 - (a_{17}^{'})^{(2)}G_{17}$ and by integrating

$$\mathsf{G}_{17} \leq \left((\widehat{\,\mathsf{M}}_{16})^{(2)} \right)_2 = \mathsf{G}_{17}^0 + 2(a_{17})^{(2)} \left((\widehat{\,\mathsf{M}}_{16})^{(2)} \right)_1 / (a_{17}^{'})^{(2)}$$

In the same way, one can obtain

$$\mathsf{G}_{18} \leq \left((\widehat{\,\mathsf{M}}_{16})^{(2)} \right)_3 = \mathsf{G}_{18}^0 + 2(a_{18})^{(2)} \left((\widehat{\,\mathsf{M}}_{16})^{(2)} \right)_2 / (a_{18}^{'})^{(2)}$$

If G_{17} or G_{18} is bounded, the same property follows for G_{16} , G_{18} and G_{16} , G_{17} respectively.

Remark 4: If G_{16} is bounded, from below, the same property holds for G_{17} and G_{18} . The proof is analogous with the preceding one. An analogous property is true if G_{17} is bounded from below.

<u>**Remark 5:**</u> If T_{16} is bounded from below and $\lim_{t\to\infty} ((b_i'')^{(2)}((G_{19})(t),t)) = (b_{17}')^{(2)}$ then $T_{17}\to\infty$.

<u>Definition of</u> $(m)^{(2)}$ and ε_2 :

Indeed let t_2 be so that for $t > t_2$

$$(b_{17})^{(2)} - (b_i^{"})^{(2)}((G_{19})(t),t) < \varepsilon_2, T_{16}(t) > (m)^{(2)}$$

Then
$$\frac{dT_{17}}{dt} \ge (a_{17})^{(2)}(m)^{(2)} - \varepsilon_2 T_{17}$$
 which leads to

$$T_{17} \, \geq \Big(\frac{(\alpha_{17})^{(2)}(m)^{(2)}}{\epsilon_2} \Big) \, (1 - e^{-\epsilon_2 t}) \, + \, T_{17}^0 \, e^{-\epsilon_2 t} \ \, \text{If we take t such that $e^{-\epsilon_2 t} = \frac{1}{2}$ it results}$$

$$T_{17} \ge \left(\frac{(a_{17})^{(2)}(m)^{(2)}}{2}\right)$$
, $t = \log \frac{2}{\epsilon_2}$ By taking now ϵ_2 sufficiently small one sees that T_{17} is unbounded.

The same property holds for T_{18} if $\lim_{t\to\infty} (b_{18}'')^{(2)} \left((G_{19})(t),t\right) = (b_{18}')^{(2)}$

We now state a more precise theorem about the behaviors at infinity of the solutions of equations 37 to 42

It is now sufficient to take
$$\frac{(a_i)^{(3)}}{(M_{20})^{(3)}}$$
, $\frac{(b_i)^{(3)}}{(M_{20})^{(3)}} < 1$ and to choose

 $(\widehat{P}_{20})^{(3)}$ and $(\widehat{Q}_{20})^{(3)}$ large to have

$$\frac{(a_i)^{(3)}}{(\tilde{M}_{20})^{(3)}} \left[(\hat{P}_{20})^{(3)} + ((\hat{P}_{20})^{(3)} + G_j^0) e^{-\left(\frac{(P_{20})^{(3)} + G_j^0}{G_j^0}\right)} \right] \le (\hat{P}_{20})^{(3)}$$

$$\frac{(b_{i})^{(3)}}{(\tilde{M}_{20})^{(3)}} \left[\left((\hat{Q}_{20})^{(3)} + T_{j}^{0} \right) e^{-\left(\frac{(\hat{Q}_{20})^{(3)} + T_{j}^{0}}{T_{j}^{0}}\right)} + (\hat{Q}_{20})^{(3)} \right] \le (\hat{Q}_{20})^{(3)}$$

In order that the operator $\mathcal{A}^{(3)}$ transforms the space of sextuples of functions G_i , T_i into itself

The operator $\mathcal{A}^{(3)}$ is a contraction with respect to the metric

$$d\left(\left((G_{23})^{(1)},(T_{23})^{(1)}\right),\left((G_{23})^{(2)},(T_{23})^{(2)}\right)\right)=$$

$$\sup_{i} \{ \max_{t \in \mathbb{R}_{+}} \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{20})^{(3)}t}, \max_{t \in \mathbb{R}_{+}} \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{20})^{(3)}t} \}$$

 $\underline{\textbf{Definition of}}\ \widetilde{G_{23}}, \widetilde{T_{23}}: \left(\widetilde{(G_{23})}, \widetilde{(T_{23})}\right) = \mathcal{A}^{(3)}\left((G_{23}), (T_{23})\right)$

$$\left| \tilde{G}_{20}^{(1)} - \tilde{G}_{i}^{(2)} \right| \leq \int_{0}^{t} (a_{20})^{(3)} \left| G_{21}^{(1)} - G_{21}^{(2)} \right| e^{-(\tilde{M}_{20})^{(3)} S_{(20)}} e^{(\tilde{M}_{20})^{(3)} S_{(20)}} ds_{(20)} + C_{21}^{(1)} \left| G_{20}^{(1)} - G_{21}^{(1)} \right| ds_{(20)} ds_{(20)} + C_{21}^{(1)} \left| G_{21}^{(1)} - G_{21}^{(1)} \right| ds_{(20)} ds_{(20)} + C_{21}^{(1)} \left| G_{21}^{(1)} - G_{21}^{(1)} \right| ds_{(20)} ds_{(20)} + C_{21}^{(1)} \left| G_{21}^{(1)} - G_{21}^{(1)} \right| ds_{(20)} ds_{($$

$$\int_0^t \{ (a'_{20})^{(3)} | G_{20}^{(1)} - G_{20}^{(2)} | e^{-(\tilde{M}_{20})^{(3)} s_{(20)}} e^{-(\tilde{M}_{20})^{(3)} s_{(20)}} +$$

$$(a_{20}^{"})^{(3)}(T_{21}^{(1)},s_{(20)})|G_{20}^{(1)}-G_{20}^{(2)}|e^{-(\widehat{M}_{20})^{(3)}s_{(20)}}e^{(\widehat{M}_{20})^{(3)}s_{(20)}}+$$

$$G_{20}^{(2)}|(a_{20}^{"})^{(3)}(T_{21}^{(1)},s_{(20)})-(a_{20}^{"})^{(3)}(T_{21}^{(2)},s_{(20)})|e^{-(\widetilde{M}_{20})^{(3)}s_{(20)}}e^{(\widetilde{M}_{20})^{(3)}s_{(20)}}\}ds_{(20)}$$

Where $s_{(20)}$ represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

$$\begin{aligned} & \left| G^{(1)} - G^{(2)} \right| e^{-(\widehat{M}_{20})^{(3)}t} \leq \\ & \frac{1}{(\widehat{M}_{20})^{(3)}} \left((a_{20})^{(3)} + (a_{20}^{'})^{(3)} + (\widehat{A}_{20})^{(3)} + (\widehat{P}_{20})^{(3)} (\widehat{k}_{20})^{(3)} \right) d \left(\left((G_{23})^{(1)}, (T_{23})^{(1)}; \ (G_{23})^{(2)}, (T_{23})^{(2)} \right) \right) \end{aligned}$$

And analogous inequalities for G_i and T_i . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed $(a_{20}^{"})^{(3)}$ and $(b_{20}^{"})^{(3)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\widehat{P}_{20})^{(3)}e^{(\overline{M}_{20})^{(3)}t}$ and $(\widehat{Q}_{20})^{(3)}e^{(\overline{M}_{20})^{(3)}t}$ respectively of \mathbb{R}_+ .

If instead of proving the existence of the solution on \mathbb{R}_+ , we have to prove it only on a compact then it suffices to consider that $(a_i^n)^{(3)}$ and $(b_i^n)^{(3)}$, i = 20,21,22 depend only on T_{21} and respectively on (G_{23}) (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where
$$G_i(t) = 0$$
 and $T_i(t) = 0$

From 19 to 24 it results

$$G_i\left(t\right) \geq G_i^0 e^{\left[-\int_0^t \left\{(a_i^{'})^{(3)} - (a_i^{''})^{(3)}\left(T_{21}\left(s_{(20)}\right), s_{(20)}\right)\right\} ds_{(20)}\right]} \geq 0$$

$$T_i(t) \ge T_i^0 e^{(-(b_i^{'})^{(3)}t)} > 0$$
 for $t > 0$

Definition of
$$((\widehat{M}_{20})^{(3)})_1$$
, $((\widehat{M}_{20})^{(3)})_2$ and $((\widehat{M}_{20})^{(3)})_3$:

Remark 3: if G_{20} is bounded, the same property have also G_{21} and G_{22} . indeed if

$$G_{20} < (\widehat{M}_{20})^{(3)}$$
 it follows $\frac{dG_{21}}{dt} \le ((\widehat{M}_{20})^{(3)})_1 - (a'_{21})^{(3)}G_{21}$ and by integrating

$$G_{21} \leq \left((\widehat{M}_{20})^{(3)} \right)_2 = G_{21}^0 + 2(a_{21})^{(3)} \left((\widehat{M}_{20})^{(3)} \right)_1 / (a_{21}^{'})^{(3)}$$

In the same way, one can obtain

$$G_{22} \le \left((\widehat{M}_{20})^{(3)} \right)_3 = G_{22}^0 + 2(a_{22})^{(3)} \left((\widehat{M}_{20})^{(3)} \right)_2 / (a_{22}^{'})^{(3)}$$

If G_{21} or G_{22} is bounded, the same property follows for G_{20} , G_{22} and G_{20} , G_{21} respectively.

Remark 4: If G_{20} is bounded, from below, the same property holds for G_{21} and G_{22} . The proof is analogous with the preceding one. An analogous property is true if G_{21} is bounded from below.

Remark 5: If T_{20} is bounded from below and $\lim_{t\to\infty} ((b_i'')^{(3)}((G_{23})(t),t)) = (b_{21}')^{(3)}$ then $T_{21}\to\infty$.

Definition of $(m)^{(3)}$ and ε_3 :

Indeed let t_3 be so that for $t > t_3$

$$(b_{21})^{(3)} - (b_i^{''})^{(3)} \big((G_{23})(t), t \big) < \varepsilon_3, T_{20} \, (t) > (m)^{(3)}$$

Then
$$\frac{dT_{21}}{dt} \ge (a_{21})^{(3)}(m)^{(3)} - \varepsilon_3 T_{21}$$
 which leads to

$$T_{21} \ge \left(\frac{(a_{21})^{(3)}(m)^{(3)}}{\varepsilon_3}\right)(1-e^{-\varepsilon_3 t}) + T_{21}^0 e^{-\varepsilon_3 t}$$
 If we take t such that $e^{-\varepsilon_3 t} = \frac{1}{2}$ it results

$$T_{21} \ge \left(\frac{(a_{21})^{(3)}(m)^{(3)}}{2}\right)$$
, $t = \log \frac{2}{\varepsilon_3}$ By taking now ε_3 sufficiently small one sees that T_{21} is unbounded. The same property holds for T_{22} if $\lim_{t\to\infty} (b_{22}^{''})^{(3)} \left((G_{23})(t),t\right) = (b_{22}^{'})^{(3)}$

We now state a more precise theorem about the behaviors at infinity of the solutions:

It is now sufficient to take
$$\frac{(a_i)^{(4)}}{(M_{24})^{(4)}}$$
, $\frac{(b_i)^{(4)}}{(M_{24})^{(4)}} < 1$ and to choose

(\widehat{P}_{24})^{(4)} and (\widehat{Q}_{24})^{(4)} large to have

$$\frac{(a_i)^{(4)}}{(\tilde{\mathcal{P}}_{24})^{(4)}} \left[(\hat{P}_{24})^{(4)} + ((\hat{P}_{24})^{(4)} + G_j^0) e^{-\left(\frac{(\hat{P}_{24})^{(4)} + G_j^0}{G_j^0}\right)} \right] \le (\hat{P}_{24})^{(4)}$$

$$\frac{(b_i)^{(4)}}{(\mathcal{M}_{24})^{(4)}} \left[\left((\hat{Q}_{24})^{(4)} + T_j^0 \right) e^{-\left(\frac{(\hat{Q}_{24})^{(4)} + T_j^0}{T_j^0}\right)} + (\hat{Q}_{24})^{(4)} \right] \le (\hat{Q}_{24})^{(4)}$$

In order that the operator $\mathcal{A}^{(4)}$ transforms the space of sextuples of functions G_i , T_i into itself

The operator $\mathcal{A}^{(4)}$ is a contraction with respect to the metric

$$d(((G_{27})^{(1)},(T_{27})^{(1)}),((G_{27})^{(2)},(T_{27})^{(2)})) =$$

$$\sup_{t \in \mathbb{R}_{+}} \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{24})^{(4)}t}, \max_{t \in \mathbb{R}_{+}} \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{24})^{(4)}t} \right\}$$

Indeed if we denote

Definition of
$$(\widetilde{G_{27}}), (\widetilde{T_{27}}): (\widetilde{G_{27}}), (\widetilde{T_{27}}) = \mathcal{A}^{(4)}((G_{27}), (T_{27}))$$

It results

$$\begin{split} \left| \tilde{G}_{24}^{(1)} - \tilde{G}_{i}^{(2)} \right| &\leq \int_{0}^{t} (a_{24})^{(4)} \left| G_{25}^{(1)} - G_{25}^{(2)} \right| e^{-(\tilde{M}_{24})^{(4)} s_{(24)}} e^{(\tilde{M}_{24})^{(4)} s_{(24)}} \, ds_{(24)} + \\ \int_{0}^{t} \left\{ (a_{24}')^{(4)} \middle| G_{24}^{(1)} - G_{24}^{(2)} \middle| e^{-(\tilde{M}_{24})^{(4)} s_{(24)}} e^{-(\tilde{M}_{24})^{(4)} s_{(24)}} + \right. \\ \left. \left(a_{24}'')^{(4)} \Big(T_{25}^{(1)}, s_{(24)} \Big) \middle| G_{24}^{(1)} - G_{24}^{(2)} \middle| e^{-(\tilde{M}_{24})^{(4)} s_{(24)}} e^{(\tilde{M}_{24})^{(4)} s_{(24)}} + \right. \\ \left. \left. G_{24}^{(2)} \middle| (a_{24}'')^{(4)} \Big(T_{25}^{(1)}, s_{(24)} \Big) - (a_{24}'')^{(4)} \Big(T_{25}^{(2)}, s_{(24)} \Big) \middle| e^{-(\tilde{M}_{24})^{(4)} s_{(24)}} e^{(\tilde{M}_{24})^{(4)} s_{(24)}} \right\} ds_{(24)} \end{split}$$

Where $s_{(24)}$ represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

$$\begin{split} & \left| (G_{27})^{(1)} - (G_{27})^{(2)} \right| e^{-(\widehat{M}_{24})^{(4)}t} \leq \\ & \frac{1}{(\widehat{M}_{24})^{(4)}} \left((a_{24})^{(4)} + (a_{24}^{'})^{(4)} + (\widehat{A}_{24})^{(4)} + (\widehat{P}_{24})^{(4)} (\widehat{k}_{24})^{(4)} \right) d \left(\left((G_{27})^{(1)}, (T_{27})^{(1)}; (G_{27})^{(2)}, (T_{27})^{(2)} \right) \right) \end{split}$$

And analogous inequalities for G_i and T_i . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed $(a_{24}^{"})^{(4)}$ and $(b_{24}^{"})^{(4)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\widehat{P}_{24})^{(4)}e^{(\widehat{M}_{24})^{(4)}t}$ and $(\widehat{Q}_{24})^{(4)}e^{(\widehat{M}_{24})^{(4)}t}$ respectively of \mathbb{R}_+ .

If instead of proving the existence of the solution on \mathbb{R}_+ , we have to prove it only on a compact then it suffices to consider that $(a_i^{''})^{(4)}$ and $(b_i^{''})^{(4)}$, i=24,25,26 depend only on T_{25} and respectively on

294

 (G_{27}) (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any
$$t$$
 where $G_i(t) = 0$ and $T_i(t) = 0$

From 19 to 24 it results

$$G_{i}\left(t\right) \geq G_{i}^{0} e^{\left[-\int_{0}^{t} \left\{\left(a_{i}^{'}\right)^{(4)} - \left(a_{i}^{''}\right)^{(4)} \left(T_{25}\left(s_{(24)}\right), s_{(24)}\right)\right\} ds_{(24)}\right]} \geq 0$$

$$T_i(t) \ge T_i^0 e^{(-(b_i^{'})^{(4)}t)} > 0 \text{ for } t > 0$$

Definition of
$$((\widehat{M}_{24})^{(4)})_1$$
, $((\widehat{M}_{24})^{(4)})_2$ and $((\widehat{M}_{24})^{(4)})_3$:

Remark 3: if G_{24} is bounded, the same property have also G_{25} and G_{26} . indeed if

$$G_{24} < (\widehat{M}_{24})^{(4)}$$
 it follows $\frac{dG_{25}}{dt} \le ((\widehat{M}_{24})^{(4)})_1 - (a'_{25})^{(4)}G_{25}$ and by integrating

$$G_{25} \leq \left((\widehat{M}_{24})^{(4)} \right)_2 = G_{25}^0 + 2(a_{25})^{(4)} \left((\widehat{M}_{24})^{(4)} \right)_1 / (a_{25}^{'})^{(4)}$$

In the same way, one can obtain

$$G_{26} \leq \left((\widehat{M}_{24})^{(4)} \right)_3 = G_{26}^0 + 2(a_{26})^{(4)} \left((\widehat{M}_{24})^{(4)} \right)_2 / (a_{26}^{'})^{(4)}$$

If G_{25} or G_{26} is bounded, the same property follows for G_{24} , G_{26} and G_{24} , G_{25} respectively.

Remark 4: If G_{24} is bounded, from below, the same property holds for G_{25} and G_{26} . The proof is analogous with the preceding one. An analogous property is true if G_{25} is bounded from below.

<u>Remark 5:</u> If T_{24} is bounded from below and $\lim_{t\to\infty} ((b_i^{''})^{(4)}((G_{27})(t),t)) = (b_{25}^{'})^{(4)}$ then $T_{25}\to\infty$.

Definition of $(m)^{(4)}$ and ε_4 :

Indeed let t_4 be so that for $t > t_4$

$$(b_{25})^{(4)} - (b_i'')^{(4)}((G_{27})(t), t) < \varepsilon_4, T_{24}(t) > (m)^{(4)}$$

Then
$$\frac{dT_{25}}{dt} \ge (a_{25})^{(4)}(m)^{(4)} - \varepsilon_4 T_{25}$$
 which leads to

$$T_{25} \ge \left(\frac{(a_{25})^{(4)}(m)^{(4)}}{\varepsilon_4}\right) (1 - e^{-\varepsilon_4 t}) + T_{25}^0 e^{-\varepsilon_4 t}$$
 If we take t such that $e^{-\varepsilon_4 t} = \frac{1}{2}$ it results

 $T_{25} \ge \left(\frac{(a_{25})^{(4)}(m)^{(4)}}{2}\right)$, $t = log \frac{2}{\varepsilon_4}$ By taking now ε_4 sufficiently small one sees that T_{25} is unbounded.

The same property holds for T_{26} if $\lim_{t\to\infty}(b_{26}^{''})^{(4)}\left((G_{27})(t),t\right)=(b_{26}^{'})^{(4)}$

We now state a more precise theorem about the behaviors at infinity of the solutions;

Analogous inequalities hold also for G_{29} , G_{30} , T_{28} , T_{29} , T_{30}

It is now sufficient to take
$$\frac{(a_i)^{(5)}}{(M_{28})^{(5)}}$$
, $\frac{(b_i)^{(5)}}{(M_{28})^{(5)}} < 1$ and to choose

(\widehat{P}_{28}) $^{(5)}$ and (\widehat{Q}_{28}) $^{(5)}$ large to have

$$\frac{(a_i)^{(5)}}{(\widehat{\mathcal{P}}_{28})^{(5)}} \left[(\widehat{P}_{28})^{(5)} + ((\widehat{P}_{28})^{(5)} + G_j^0) e^{-\left(\frac{(\widehat{P}_{28})^{(5)} + G_j^0}{G_j^0}\right)} \right] \le (\widehat{P}_{28})^{(5)}$$

$$\frac{(b_i)^{(5)}}{(M_{28})^{(5)}} \left[\left((\hat{Q}_{28})^{(5)} + T_j^0 \right) e^{-\left(\frac{(\hat{Q}_{28})^{(5)} + T_j^0}{T_j^0}\right)} + (\hat{Q}_{28})^{(5)} \right] \le (\hat{Q}_{28})^{(5)}$$

In order that the operator $\mathcal{A}^{(5)}$ transforms the space of sextuples of functions G_i , T_i into itself

The operator $\mathcal{A}^{(5)}$ is a contraction with respect to the metric

$$d\left(\left((G_{31})^{(1)},(T_{31})^{(1)}\right),\left((G_{31})^{(2)},(T_{31})^{(2)}\right)\right)=$$

$$\sup_{i} \{ \max_{t \in \mathbb{R}_{+}} \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{28})^{(5)}t}, \max_{t \in \mathbb{R}_{+}} \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{28})^{(5)}t} \}$$

Indeed if we denote

$$\underline{\mathbf{Definition of}}(\widetilde{G_{31}}), \widetilde{(T_{31})}: (\widetilde{G_{31}}), \widetilde{(T_{31})}) = \mathcal{A}^{(5)}((G_{31}), (T_{31}))$$

It results

$$\left| \tilde{G}_{28}^{(1)} - \tilde{G}_{i}^{(2)} \right| \leq \int_{0}^{t} (a_{28})^{(5)} \left| G_{29}^{(1)} - G_{29}^{(2)} \right| e^{-(\tilde{M}_{28})^{(5)} s_{(28)}} e^{(\tilde{M}_{28})^{(5)} s_{(28)}} ds_{(28)} + C_{10}^{(1)} \left| G_{10}^{(1)} - G_{10}^{(1)} \right| ds_{(10)} ds$$

$$\int_0^t \{(a_{28}')^{(5)} | G_{28}^{(1)} - G_{28}^{(2)} | e^{-(\widehat{M}_{28})^{(5)} s_{(28)}} e^{-(\widehat{M}_{28})^{(5)} s_{(28)}} +$$

$$(a_{28}^{''})^{(5)}\big(T_{29}^{(1)},s_{(28)}\big)\big|G_{28}^{(1)}-G_{28}^{(2)}\big|e^{-(\widetilde{M}_{28})^{(5)}s_{(28)}}e^{(\widetilde{M}_{28})^{(5)}s_{(28)}}+$$

$$G_{28}^{(2)}|(a_{28}^{''})^{(5)}\big(T_{29}^{(1)},s_{(28)}\big)-(a_{28}^{''})^{(5)}\big(T_{29}^{(2)},s_{(28)}\big)|\ e^{-(\tilde{M}_{28})^{(5)}s_{(28)}}e^{(\tilde{M}_{28})^{(5)}s_{(28)}}\}ds_{(28)}$$

Where $s_{(28)}$ represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

$$\begin{split} & \left| (G_{31})^{(1)} - (G_{31})^{(2)} \right| e^{-(\tilde{M}_{28})^{(5)}t} \leq \\ & \frac{1}{(\tilde{M}_{28})^{(5)}} \left((a_{28})^{(5)} + (a_{28}^{'})^{(5)} + (\tilde{A}_{28})^{(5)} + (\tilde{P}_{28})^{(5)} (\hat{k}_{28})^{(5)} \right) d \left(\left((G_{31})^{(1)}, (T_{31})^{(1)}; \ (G_{31})^{(2)}, (T_{31})^{(2)} \right) \right) \end{split}$$

And analogous inequalities for G_i and T_i . Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed $(a_{28}^{"})^{(5)}$ and $(b_{28}^{"})^{(5)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\mathcal{P}_{28})^{(5)}e^{(\tilde{M}_{28})^{(5)}t}$ and $(\tilde{Q}_{28})^{(5)}e^{(\tilde{M}_{28})^{(5)}t}$ respectively of \mathbb{R}_+ .

If instead of proving the existence of the solution on \mathbb{R}_+ , we have to prove it only on a compact then it suffices to consider that $(a_i^{''})^{(5)}$ and $(b_i^{''})^{(5)}$, i = 28,29,30 depend only on T_{29} and respectively on (G_{31}) (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where
$$G_i(t) = 0$$
 and $T_i(t) = 0$

$$G_i(t) \ge G_i^0 e^{\left[-\int_0^t \{(a_i^{'})^{(5)} - (a_i^{''})^{(5)}(T_{29}(s_{(28)}), s_{(28)})\}ds_{(28)}\right]} \ge 0$$

$$T_i(t) \ge T_i^0 e^{(-(b_i')^{(5)}t)} > 0$$
 for $t > 0$

Definition of
$$(\widehat{M}_{28})^{(5)}_{1}$$
, $(\widehat{M}_{28})^{(5)}_{2}$ and $(\widehat{M}_{28})^{(5)}_{3}$:

Remark 3: if G_{28} is bounded, the same property have also G_{29} and G_{30} . indeed if

$$G_{28} < (\widehat{M}_{28})^{(5)}$$
 it follows $\frac{dG_{29}}{dt} \le ((\widehat{M}_{28})^{(5)})_1 - (a'_{29})^{(5)}G_{29}$ and by integrating

$$G_{29} \le ((\widehat{M}_{28})^{(5)})_2 = G_{29}^0 + 2(a_{29})^{(5)} ((\widehat{M}_{28})^{(5)})_1 / (a_{29}^{'})^{(5)}$$

In the same way, one can obtain

$$G_{30} \le ((\widehat{M}_{28})^{(5)})_3 = G_{30}^0 + 2(a_{30})^{(5)} ((\widehat{M}_{28})^{(5)})_2 / (a_{30}^{'})^{(5)}$$

If G_{29} or G_{30} is bounded, the same property follows for G_{28} , G_{30} and G_{28} , G_{29} respectively.

Remark 4: If G_{28} is bounded, from below, the same property holds for G_{29} and G_{30} . The proof is analogous with the preceding one. An analogous property is true if G_{29} is bounded from below.

Remark 5: If T_{28} is bounded from below and $\lim_{t\to\infty} ((b_i'')^{(5)}((G_{31})(t),t)) = (b_{29}')^{(5)}$ then $T_{29}\to\infty$.

Definition of $(m)^{(5)}$ and ε_5 :

Indeed let t_5 be so that for $t > t_5$

$$(b_{29})^{(5)} - (b_i'')^{(5)}((G_{31})(t), t) < \varepsilon_{5}, T_{28}(t) > (m)^{(5)}$$

Then
$$\frac{dT_{29}}{dt} \ge (a_{29})^{(5)} (m)^{(5)} - \varepsilon_5 T_{29}$$
 which leads to

$$T_{29} \ge \left(\frac{(a_{29})^{(5)}(m)^{(5)}}{\varepsilon_5}\right) (1 - e^{-\varepsilon_5 t}) + T_{29}^0 e^{-\varepsilon_5 t} \quad \text{If we take t such that } e^{-\varepsilon_5 t} = \frac{1}{2} \text{ it results}$$

 $T_{29} \ge \left(\frac{(a_{29})^{(5)}(m)^{(5)}}{2}\right)$, $t = log \frac{2}{\varepsilon_5}$ By taking now ε_5 sufficiently small one sees that T_{29} is unbounded.

The same property holds for T_{30} if $\lim_{t\to\infty} (b_{30}^{"})^{(5)} ((G_{31})(t), t) = (b_{30}^{'})^{(5)}$

We now state a more precise theorem about the behaviors at infinity of the solutions;

Analogous inequalities hold also for G_{33} , G_{34} , T_{32} , T_{33} , T_{34}

It is now sufficient to take
$$\frac{(a_i)^{(6)}}{(M_{32})^{(6)}}$$
, $\frac{(b_i)^{(6)}}{(M_{32})^{(6)}} < 1$ and to choose

(\widehat{P}_{32}) $^{(6)}$ and (\widehat{Q}_{32}) $^{(6)}$ large to have

$$\frac{(a_i)^{(6)}}{(M_{32})^{(6)}} \left[(\widehat{P}_{32})^{(6)} + ((\widehat{P}_{32})^{(6)} + G_j^0) e^{-\left(\frac{(\widehat{P}_{32})^{(6)} + G_j^0}{G_j^0}\right)} \right] \le (\widehat{P}_{32})^{(6)}$$

$$\frac{(b_i)^{(6)}}{(\bar{\mathcal{M}}_{32})^{(6)}} \left[\left((\hat{Q}_{32})^{(6)} + T_j^0 \right) e^{-\left(\frac{(\hat{Q}_{32})^{(6)} + T_j^0}{T_j^0} \right)} + (\hat{Q}_{32})^{(6)} \right] \le (\hat{Q}_{32})^{(6)}$$

In order that the operator $\mathcal{A}^{(6)}$ transforms the space of sextuples of functions G_i , T_i into itself

The operator $\mathcal{A}^{(6)}$ is a contraction with respect to the metric

$$d(((G_{35})^{(1)}, (T_{35})^{(1)}), ((G_{35})^{(2)}, (T_{35})^{(2)})) =$$

$$\sup_{i} \{ \max_{t \in \mathbb{R}_{+}} \left| G_{i}^{(1)}(t) - G_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{32})^{(6)}t}, \max_{t \in \mathbb{R}_{+}} \left| T_{i}^{(1)}(t) - T_{i}^{(2)}(t) \right| e^{-(\tilde{M}_{32})^{(6)}t} \}$$

Indeed if we denote

Definition of
$$(\widetilde{G_{35}})$$
, $(\widetilde{T_{35}})$: $((\widetilde{G_{35}})$, $(\widetilde{T_{35}})$) = $\mathcal{A}^{(6)}((G_{35})$, (T_{35}))

It results

$$\left| \tilde{G}_{32}^{(1)} - \tilde{G}_{i}^{(2)} \right| \le \int_{0}^{t} (a_{32})^{(6)} \left| G_{33}^{(1)} - G_{33}^{(2)} \right| e^{-(\tilde{M}_{32})^{(6)} s_{(32)}} e^{(\tilde{M}_{32})^{(6)} s_{(32)}} \, ds_{(32)} +$$

$$\int_0^t \{ (a_{32}')^{(6)} | G_{32}^{(1)} - G_{32}^{(2)} | e^{-(\widehat{M}_{32})^{(6)} s_{(32)}} e^{-(\widehat{M}_{32})^{(6)} s_{(32)}} +$$

$$(a_{32}^{"})^{(6)}(T_{33}^{(1)},s_{(32)})|G_{32}^{(1)}-G_{32}^{(2)}|e^{-(\tilde{M}_{32})^{(6)}s_{(32)}}e^{(\tilde{M}_{32})^{(6)}s_{(32)}}+$$

$$G_{32}^{(2)}|(a_{32}^{"})^{(6)}(T_{33}^{(1)},s_{(32)})-(a_{32}^{"})^{(6)}(T_{33}^{(2)},s_{(32)})|e^{-(\overline{M}_{32})^{(6)}s_{(32)}}e^{(\overline{M}_{32})^{(6)}s_{(32)}}\}ds_{(32)}$$

Where $s_{(32)}$ represents integrand that is integrated over the interval [0, t]

From the hypotheses it follows

$$\begin{split} & \left| (G_{35})^{(1)} - (G_{35})^{(2)} \right| e^{-(\widehat{M}_{32})^{(6)}t} \leq \\ & \frac{1}{(\widehat{M}_{32})^{(6)}} \left((a_{32})^{(6)} + (a_{32}^{'})^{(6)} + (\widehat{A}_{32})^{(6)} + (\widehat{P}_{32})^{(6)} (\widehat{k}_{32})^{(6)} \right) d \left(\left((G_{35})^{(1)}, (T_{35})^{(1)}; \ (G_{35})^{(2)}, (T_{35})^{(2)} \right) \right) \end{split}$$

And analogous inequalities for G_i and T_i . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed $(a_{32}^{"})^{(6)}$ and $(b_{32}^{"})^{(6)}$ depending also on t can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by $(\widehat{P}_{32})^{(6)}e^{(\widehat{M}_{32})^{(6)}t}$ and $(\widehat{Q}_{32})^{(6)}e^{(\widehat{M}_{32})^{(6)}t}$ respectively of \mathbb{R}_+ .

If instead of proving the existence of the solution on \mathbb{R}_+ , we have to prove it only on a compact then it suffices to consider that $(a_i^n)^{(6)}$ and $(b_i^n)^{(6)}$, i = 32,33,34 depend only on T_{33} and respectively on (G_{35}) (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any
$$t$$
 where $G_i(t) = 0$ and $T_i(t) = 0$

From governing equations it results

323

$$G_i(t) \ge G_i^0 e^{\left[-\int_0^t \{(a_i')^{(6)} - (a_i'')^{(6)}(T_{33}(s_{(32)}), s_{(32)})\}ds_{(32)}\right]} \ge 0$$

$$T_i(t) \ge T_i^0 e^{(-(b_i')^{(6)}t)} > 0$$
 for $t > 0$

$$\underline{\textbf{Definition of}} \left((\widehat{M}_{32})^{(6)} \right)_{1}, \left((\widehat{M}_{32})^{(6)} \right)_{2} and \left((\widehat{M}_{32})^{(6)} \right)_{3} :$$

Remark 3: if G_{32} is bounded, the same property have also G_{33} and G_{34} . indeed if

$$G_{32} < (\widehat{M}_{32})^{(6)}$$
 it follows $\frac{dG_{33}}{dt} \le ((\widehat{M}_{32})^{(6)})_1 - (a'_{33})^{(6)}G_{33}$ and by integrating

$$G_{33} \leq \left((\widehat{M}_{32})^{(6)} \right)_2 = G_{33}^0 + 2(a_{33})^{(6)} \left((\widehat{M}_{32})^{(6)} \right)_1 / (a_{33}^{'})^{(6)}$$

In the same way, one can obtain

$$G_{34} \leq \left((\widehat{M}_{32})^{(6)} \right)_3 = G_{34}^0 + 2(a_{34})^{(6)} \left((\widehat{M}_{32})^{(6)} \right)_2 / (a_{34}^{'})^{(6)}$$

If G_{33} or G_{34} is bounded, the same property follows for G_{32} , G_{34} and G_{32} , G_{33} respectively.

Remark 4: If G_{32} is bounded, from below, the same property holds for G_{33} and G_{34} . The proof is analogous with the preceding one. An analogous property is true if G_{33} is bounded from below.

Remark 5: If T_{32} is bounded from below and $\lim_{t\to\infty} ((b_i'')^{(6)}((G_{35})(t),t)) = (b_{33}')^{(6)}$ then $T_{33}\to\infty$.

<u>Definition of</u> $(m)^{(6)}$ and ε_6 :

Indeed let t_6 be so that for $t > t_6$

$$(b_{33})^{(6)} - (b_i'')^{(6)} ((G_{35})(t), t) < \varepsilon_6, T_{32}(t) > (m)^{(6)}$$

Then
$$\frac{dT_{33}}{dt} \ge (a_{33})^{(6)}(m)^{(6)} - \varepsilon_6 T_{33}$$
 which leads to

$$T_{33} \ge \left(\frac{(a_{33})^{(6)}(m)^{(6)}}{\varepsilon_6}\right) (1 - e^{-\varepsilon_6 t}) + T_{33}^0 e^{-\varepsilon_6 t}$$
 If we take t such that $e^{-\varepsilon_6 t} = \frac{1}{2}$ it results

 $T_{33} \geq \left(\frac{(a_{33})^{(6)}(m)^{(6)}}{2}\right)$, $t = log \frac{2}{\varepsilon_6}$ By taking now ε_6 sufficiently small one sees that T_{33} is unbounded.

The same property holds for T_{34} if $\lim_{t\to\infty} (b_{34}^{"})^{(6)} ((G_{35})(t), t(t), t) = (b_{34}^{'})^{(6)}$

We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions 328

Theorem 2: If we denote and define

Definition of
$$(\sigma_1)^{(1)}$$
, $(\sigma_2)^{(1)}$, $(\tau_1)^{(1)}$, $(\tau_2)^{(1)}$:

(a) σ_1)⁽¹⁾, $(\sigma_2$)⁽¹⁾, $(\tau_1$)⁽¹⁾, $(\tau_2$)⁽¹⁾ four constants satisfying

$$-(\sigma_2)^{(1)} \le -(a_{13}^{'})^{(1)} + (a_{14}^{'})^{(1)} - (a_{13}^{''})^{(1)}(T_{14}, t) + (a_{14}^{''})^{(1)}(T_{14}, t) \le -(\sigma_1)^{(1)}$$

$$-(\tau_2)^{(1)} \le -(b_{13}^{'})^{(1)} + (b_{14}^{'})^{(1)} - (b_{13}^{''})^{(1)}(G,t) - (b_{14}^{''})^{(1)}(G,t) \le -(\tau_1)^{(1)}$$

Definition of
$$(v_1)^{(1)}$$
, $(v_2)^{(1)}$, $(u_1)^{(1)}$, $(u_2)^{(1)}$, $v^{(1)}$, $u^{(1)}$:

(b) By
$$(v_1)^{(1)} > 0$$
, $(v_2)^{(1)} < 0$ and respectively $(u_1)^{(1)} > 0$, $(u_2)^{(1)} < 0$ the roots of the equations $(a_{14})^{(1)}(v^{(1)})^2 + (\sigma_1)^{(1)}v^{(1)} - (a_{13})^{(1)} = 0$ and $(b_{14})^{(1)}(u^{(1)})^2 + (\tau_1)^{(1)}u^{(1)} - (b_{13})^{(1)} = 0$

Definition of
$$(\bar{\nu}_1)^{(1)}, (\bar{\nu}_2)^{(1)}, (\bar{u}_1)^{(1)}, (\bar{u}_2)^{(1)}$$
:

By
$$(\bar{v}_1)^{(1)} > 0$$
, $(\bar{v}_2)^{(1)} < 0$ and respectively $(\bar{u}_1)^{(1)} > 0$, $(\bar{u}_2)^{(1)} < 0$ the roots of the equations $(a_{14})^{(1)} (v^{(1)})^2 + (\sigma_2)^{(1)} v^{(1)} - (a_{13})^{(1)} = 0$ and $(b_{14})^{(1)} (u^{(1)})^2 + (\tau_2)^{(1)} u^{(1)} - (b_{13})^{(1)} = 0$

Definition of
$$(m_1)^{(1)}$$
, $(m_2)^{(1)}$, $(\mu_1)^{(1)}$, $(\mu_2)^{(1)}$, $(\nu_0)^{(1)}$:

(c) If we define $(m_1)^{(1)}$, $(m_2)^{(1)}$, $(\mu_1)^{(1)}$, $(\mu_2)^{(1)}$ by

$$(m_2)^{(1)} = (\nu_0)^{(1)}, (m_1)^{(1)} = (\nu_1)^{(1)}, if (\nu_0)^{(1)} < (\nu_1)^{(1)}$$

$$(m_2)^{(1)} = (\nu_1)^{(1)}, (m_1)^{(1)} = (\bar{\nu}_1)^{(1)}, if (\nu_1)^{(1)} < (\nu_0)^{(1)} < (\bar{\nu}_1)^{(1)},$$

and
$$(v_0)^{(1)} = \frac{G_{13}^0}{G_{14}^0}$$

$$(m_2)^{(1)} = (\nu_1)^{(1)}, (m_1)^{(1)} = (\nu_0)^{(1)}, if (\bar{\nu}_1)^{(1)} < (\nu_0)^{(1)}$$

and analogously

$$(\mu_2)^{(1)} = (u_0)^{(1)}, (\mu_1)^{(1)} = (u_1)^{(1)}, if (u_0)^{(1)} < (u_1)^{(1)}$$

$$(\mu_2)^{(1)} = (u_1)^{(1)}, (\mu_1)^{(1)} = (\bar{u}_1)^{(1)}, if (u_1)^{(1)} < (u_0)^{(1)} < (\bar{u}_1)^{(1)},$$

and
$$(u_0)^{(1)} = \frac{T_{13}^0}{T_{14}^0}$$

$$(\mu_2)^{(1)} = (u_1)^{(1)}, (\mu_1)^{(1)} = (u_0)^{(1)}, if(\bar{u}_1)^{(1)} < (u_0)^{(1)} \text{ where } (u_1)^{(1)}, (\bar{u}_1)^{(1)}$$

are defined above

Then the solution satisfies the inequalities

$$G_{13}^0 e^{((S_1)^{(1)} - (p_{13})^{(1)})t} \le G_{13}(t) \le G_{13}^0 e^{(S_1)^{(1)}t}$$

where $(p_i)^{(1)}$ is defined above

$$\frac{1}{(m_1)^{(1)}}G_{13}^0e^{((S_1)^{(1)}-(p_{13})^{(1)})t} \le G_{14}(t) \le \frac{1}{(m_2)^{(1)}}G_{13}^0e^{(S_1)^{(1)}t}$$

$$\left(\frac{(a_{15})^{(1)}G_{13}^0}{(m_1)^{(1)}((S_1)^{(1)}-(p_{13})^{(1)})}\left[e^{\left((S_1)^{(1)}-(p_{13})^{(1)}\right)t}-e^{-(S_2)^{(1)}t}\right]+G_{15}^0e^{-(S_2)^{(1)}t}\leq G_{15}(t)\leq \frac{(a_{15})^{(1)}G_{13}^0}{(m_2)^{(1)}((S_1)^{(1)}-(a_{15}')^{(1)})}\left[e^{(S_1)^{(1)}t}-e^{-(a_{15}')^{(1)}t}\right]+G_{15}^0e^{-(a_{15}')^{(1)}t})$$

$$T_{13}^{0} e^{(R_1)^{(1)}t} \le T_{13}(t) \le T_{13}^{0} e^{((R_1)^{(1)} + (r_{13})^{(1)})t}$$
335

$$\frac{1}{(\mu_1)^{(1)}} T_{13}^0 e^{(R_1)^{(1)} t} \le T_{13}(t) \le \frac{1}{(\mu_2)^{(1)}} T_{13}^0 e^{\left((R_1)^{(1)} + (r_{13})^{(1)}\right) t}$$
336

$$\frac{(b_{15})^{(1)}T_{13}^{0}}{(\mu_{1})^{(1)}((R_{1})^{(1)}-(b_{15}^{'})^{(1)})}\left[e^{(R_{1})^{(1)}t}-e^{-(b_{15}^{'})^{(1)}t}\right]+T_{15}^{0}e^{-(b_{15}^{'})^{(1)}t}\leq T_{15}(t)\leq$$

332

$$\frac{(a_{15})^{(1)}T_{13}^0}{(\mu_2)^{(1)}\big((R_1)^{(1)}+(r_{13})^{(1)}+(R_2)^{(1)}\big)}\Big[e^{\big((R_1)^{(1)}+(r_{13})^{(1)}\big)t}-e^{-(R_2)^{(1)}t}\Big]+T_{15}^0e^{-(R_2)^{(1)}t}$$

Definition of
$$(S_1)^{(1)}$$
, $(S_2)^{(1)}$, $(R_1)^{(1)}$, $(R_2)^{(1)}$:-

Where $(S_1)^{(1)} = (a_{13})^{(1)} (m_2)^{(1)} - (a'_{13})^{(1)}$

$$(S_2)^{(1)} = (a_{15})^{(1)} - (p_{15})^{(1)}$$

$$(R_1)^{(1)} = (b_{13})^{(1)} (\mu_2)^{(1)} - (b'_{13})^{(1)}$$

$$(R_2)^{(1)} = (b_{15}^{'})^{(1)} - (r_{15})^{(1)}$$

Behavior of the solutions

20111112 02 1112 03 1113 03 113

Theorem 2: If we denote and define

Definition of
$$(\sigma_1)^{(2)}$$
, $(\sigma_2)^{(2)}$, $(\tau_1)^{(2)}$, $(\tau_2)^{(2)}$:

(d) σ_1)⁽²⁾, $(\sigma_2)^{(2)}$, $(\tau_1)^{(2)}$, $(\tau_2)^{(2)}$ four constants satisfying

$$-(\sigma_{2})^{(2)} \leq -(a_{16}^{'})^{(2)} + (a_{17}^{'})^{(2)} - (a_{16}^{''})^{(2)}(T_{17}, t) + (a_{17}^{''})^{(2)}(T_{17}, t) \leq -(\sigma_{1})^{(2)}$$

341

$$-(\tau_2)^{(2)} \le -(b'_{16})^{(2)} + (b'_{17})^{(2)} - (b''_{16})^{(2)} ((G_{19}), t) - (b''_{17})^{(2)} ((G_{19}), t) \le -(\tau_1)^{(2)}$$

$$342$$

Definition of
$$(v_1)^{(2)}, (v_2)^{(2)}, (u_1)^{(2)}, (u_2)^{(2)}$$
:

By
$$(v_1)^{(2)} > 0$$
, $(v_2)^{(2)} < 0$ and respectively $(u_1)^{(2)} > 0$, $(u_2)^{(2)} < 0$ the roots

(e) of the equations
$$(a_{17})^{(2)} (v^{(2)})^2 + (\sigma_1)^{(2)} v^{(2)} - (a_{16})^{(2)} = 0$$

and
$$(b_{14})^{(2)}(u^{(2)})^2 + (\tau_1)^{(2)}u^{(2)} - (b_{16})^{(2)} = 0$$
 and

Definition of
$$(\bar{v}_1)^{(2)}, (\bar{v}_2)^{(2)}, (\bar{u}_1)^{(2)}, (\bar{u}_2)^{(2)}$$
:

By
$$(\bar{\nu}_1)^{(2)} > 0$$
, $(\bar{\nu}_2)^{(2)} < 0$ and respectively $(\bar{u}_1)^{(2)} > 0$, $(\bar{u}_2)^{(2)} < 0$ the

roots of the equations
$$(a_{17})^{(2)} (v^{(2)})^2 + (\sigma_2)^{(2)} v^{(2)} - (a_{16})^{(2)} = 0$$

and
$$(b_{17})^{(2)}(u^{(2)})^2 + (\tau_2)^{(2)}u^{(2)} - (b_{16})^{(2)} = 0$$

Definition of
$$(m_1)^{(2)}$$
, $(m_2)^{(2)}$, $(\mu_1)^{(2)}$, $(\mu_2)^{(2)}$:-

(f) If we define
$$(m_1)^{(2)}$$
, $(m_2)^{(2)}$, $(\mu_1)^{(2)}$, $(\mu_2)^{(2)}$ by

$$(m_2)^{(2)} = (\nu_0)^{(2)}, (m_1)^{(2)} = (\nu_1)^{(2)}, if(\nu_0)^{(2)} < (\nu_1)^{(2)}$$

$$(m_2)^{(2)} = (\nu_0)^{(2)}, (m_1)^{(2)} = (\nu_1)^{(2)}, if(\nu_0)^{(2)} < (\nu_1)^{(2)}$$

$$(m_2)^{(2)} = (\nu_1)^{(2)}, (m_1)^{(2)} = (\bar{\nu}_1)^{(2)}, if(\nu_1)^{(2)} < (\nu_0)^{(2)} < (\bar{\nu}_1)^{(2)},$$

$$(5)$$

and $(\nu_0)^{(2)} = \frac{G_{16}^0}{G_{17}^0}$

$$(m_2)^{(2)} = (\nu_1)^{(2)}, (m_1)^{(2)} = (\nu_0)^{(2)}, \quad if \quad (\bar{\nu}_1)^{(2)} < (\nu_0)^{(2)}$$
 355

and analogously 356

$$(\mu_2)^{(2)} = (u_0)^{(2)}, (\mu_1)^{(2)} = (u_1)^{(2)}, if (u_0)^{(2)} < (u_1)^{(2)}$$

$$(\mu_2)^{(2)} = (u_1)^{(2)}, (\mu_1)^{(2)} = (\bar{u}_1)^{(2)}, if(u_1)^{(2)} < (u_0)^{(2)} < (\bar{u}_1)^{(2)},$$

and
$$(u_0)^{(2)} = \frac{T_{16}^0}{T_{17}^0}$$

$$(\mu_2)^{(2)} = (u_1)^{(2)}, (\mu_1)^{(2)} = (u_0)^{(2)}, if(\bar{u}_1)^{(2)} < (u_0)^{(2)}$$

$$(357)$$

Then the solution satisfies the inequalities

$$G_{16}^{0}e^{((S_1)^{(2)}-(p_{16})^{(2)})t} \le G_{16}(t) \le G_{16}^{0}e^{(S_1)^{(2)}t}$$

$$(p_i)^{(2)}$$
 is defined by equation above

$$\frac{1}{(m_1)^{(2)}} G_{16}^0 e^{((S_1)^{(2)} - (p_{16})^{(2)})t} \le G_{17}(t) \le \frac{1}{(m_2)^{(2)}} G_{16}^0 e^{(S_1)^{(2)}t}$$
360

$$(\frac{(a_{18})^{(2)}G_{16}^0}{(m_1)^{(2)}((S_1)^{(2)}-(p_{16})^{(2)})} \Big[e^{((S_1)^{(2)}-(p_{16})^{(2)})t} - e^{-(S_2)^{(2)}t} \Big] + G_{18}^0 e^{-(S_2)^{(2)}t} \le G_{18}(t) \le \frac{(a_{18})^{(2)}G_{16}^0}{(m_2)^{(2)}((S_1)^{(2)}-(a_{18}')^{(2)})} \Big[e^{(S_1)^{(2)}t} - e^{-(a_{18}')^{(2)}t} \Big] + G_{18}^0 e^{-(a_{18}')^{(2)}t})$$

$$T_{16}^{0} e^{(R_1)^{(2)}t} \le T_{16}(t) \le T_{16}^{0} e^{((R_1)^{(2)} + (r_{16})^{(2)})t}$$
362

$$\frac{1}{(\mu_1)^{(2)}} T_{16}^0 e^{(R_1)^{(2)}t} \le T_{16}(t) \le \frac{1}{(\mu_2)^{(2)}} T_{16}^0 e^{\left((R_1)^{(2)} + (r_{16})^{(2)}\right)t}$$
 363

$$\frac{(b_{18})^{(2)}T_{16}^{0}}{(\mu_{1})^{(2)}\left((R_{1})^{(2)}-(b_{18}^{'})^{(2)}\right)}\left[e^{(R_{1})^{(2)}t}-e^{-(b_{18}^{'})^{(2)}t}\right]+T_{18}^{0}e^{-(b_{18}^{'})^{(2)}t}\leq T_{18}(t)\leq$$

$$\frac{(a_{18})^{(2)}T_{16}^{0}}{(\mu_{2})^{(2)}((R_{1})^{(2)}+(r_{16})^{(2)}+(R_{2})^{(2)})} \left[e^{\left((R_{1})^{(2)}+(r_{16})^{(2)}\right)t} - e^{-(R_{2})^{(2)}t} \right] + T_{18}^{0}e^{-(R_{2})^{(2)}t}$$

Definition of
$$(S_1)^{(2)}$$
, $(S_2)^{(2)}$, $(R_1)^{(2)}$, $(R_2)^{(2)}$:-

Where
$$(S_1)^{(2)} = (a_{16})^{(2)}(m_2)^{(2)} - (a'_{16})^{(2)}$$

$$(S_2)^{(2)} = (a_{18})^{(2)} - (p_{18})^{(2)}$$

$$(R_1)^{(2)} = (b_{16})^{(2)}(\mu_2)^{(1)} - (b'_{16})^{(2)}$$

$$367$$

$$(R_2)^{(2)} = (b_{18}^{'})^{(2)} - (r_{18})^{(2)}$$

Behavior of the solutions

Theorem 2: If we denote and define

<u>Definition of</u> $(\sigma_1)^{(3)}$, $(\sigma_2)^{(3)}$, $(\tau_1)^{(3)}$, $(\tau_2)^{(3)}$:

(a) σ_1)⁽³⁾, $(\sigma_2)^{(3)}$, $(\tau_1)^{(3)}$, $(\tau_2)^{(3)}$ four constants satisfying

$$-(\sigma_2)^{(3)} \le -(a_{20}^{'})^{(3)} + (a_{21}^{'})^{(3)} - (a_{20}^{''})^{(3)}(T_{21},t) + (a_{21}^{''})^{(3)}(T_{21},t) \le -(\sigma_1)^{(3)}$$

$$-(\tau_2)^{(3)} \leq -(b_{20}^{'})^{(3)} + (b_{21}^{'})^{(3)} - (b_{20}^{''})^{(3)}(G,t) - (b_{21}^{''})^{(3)} \big((G_{23}),t \big) \leq -(\tau_1)^{(3)}$$

Definition of
$$(v_1)^{(3)}$$
, $(v_2)^{(3)}$, $(u_1)^{(3)}$, $(u_2)^{(3)}$:

(b) By $(v_1)^{(3)} > 0$, $(v_2)^{(3)} < 0$ and respectively $(u_1)^{(3)} > 0$, $(u_2)^{(3)} < 0$ the roots of the equations

368

$$(a_{21})^{(3)} (v^{(3)})^2 + (\sigma_1)^{(3)} v^{(3)} - (a_{20})^{(3)} = 0$$

and
$$(b_{21})^{(3)}(u^{(3)})^2 + (\tau_1)^{(3)}u^{(3)} - (b_{20})^{(3)} = 0$$
 and

By
$$(\bar{\nu}_1)^{(3)} > 0$$
, $(\bar{\nu}_2)^{(3)} < 0$ and respectively $(\bar{u}_1)^{(3)} > 0$, $(\bar{u}_2)^{(3)} < 0$ the

roots of the equations $(a_{21})^{(3)} (v^{(3)})^2 + (\sigma_2)^{(3)} v^{(3)} - (a_{20})^{(3)} = 0$

and
$$(b_{21})^{(3)} (u^{(3)})^2 + (\tau_2)^{(3)} u^{(3)} - (b_{20})^{(3)} = 0$$

Definition of
$$(m_1)^{(3)}$$
, $(m_2)^{(3)}$, $(\mu_1)^{(3)}$, $(\mu_2)^{(3)}$:-

(c) If we define $(m_1)^{(3)}$, $(m_2)^{(3)}$, $(\mu_1)^{(3)}$, $(\mu_2)^{(3)}$ by

$$(m_2)^{(3)} = (\nu_0)^{(3)}, (m_1)^{(3)} = (\nu_1)^{(3)}, if (\nu_0)^{(3)} < (\nu_1)^{(3)}$$

$$(m_2)^{(3)} = (\nu_1)^{(3)}, (m_1)^{(3)} = (\bar{\nu}_1)^{(3)}, if(\nu_1)^{(3)} < (\nu_0)^{(3)} < (\bar{\nu}_1)^{(3)}, (\bar{\nu}$$

and
$$(\nu_0)^{(3)} = \frac{G_{20}^0}{G_{21}^0}$$

$$(m_2)^{(3)} = (\nu_1)^{(3)}, (m_1)^{(3)} = (\nu_0)^{(3)}, if(\bar{\nu}_1)^{(3)} < (\nu_0)^{(3)}$$

and analogously

$$(\mu_2)^{(3)} = (u_0)^{(3)}, (\mu_1)^{(3)} = (u_1)^{(3)}, if (u_0)^{(3)} < (u_1)^{(3)}$$

$$(\mu_2)^{(3)} = (u_1)^{(3)}, (\mu_1)^{(3)} = (\bar{u}_1)^{(3)}, if(u_1)^{(3)} < (u_0)^{(3)} < (\bar{u}_1)^{(3)}, \text{ and } u_0)^{(3)} = \frac{T_{20}^0}{T_{21}^0}$$

$$(\mu_2)^{(3)} = (u_1)^{(3)}, (\mu_1)^{(3)} = (u_0)^{(3)}, if (\bar{u}_1)^{(3)} < (u_0)^{(3)}$$

Then the solution satisfies the inequalities

$$G_{20}^0 e^{\left((S_1)^{(3)} - (p_{20})^{(3)}\right)t} \leq G_{20}(t) \leq G_{20}^0 e^{(S_1)^{(3)}t}$$

 $(p_i)^{(3)}$ is defined by equation above

$$\frac{1}{(m_1)^{(3)}} G_{20}^0 e^{((S_1)^{(3)} - (p_{20})^{(3)})t} \le G_{21}(t) \le \frac{1}{(m_2)^{(3)}} G_{20}^0 e^{(S_1)^{(3)}t}$$
372

$$\left(\frac{(a_{22})^{(3)} G_{20}^0}{(m_1)^{(3)} ((S_1)^{(3)} - (p_{20})^{(3)})} \left[e^{((S_1)^{(3)} - (p_{20})^{(3)})t} - e^{-(S_2)^{(3)}t} \right] + G_{22}^0 e^{-(S_2)^{(3)}t} \le G_{22}(t) \le \frac{(a_{22})^{(3)} G_{20}^0}{(m_2)^{(3)} ((S_1)^{(3)} - (a'_{22})^{(3)})} \left[e^{(S_1)^{(3)}t} - e^{-(a'_{22})^{(3)}t} \right] + G_{22}^0 e^{-(a'_{22})^{(3)}t})$$

$$T_{20}^{0}e^{(R_{1})^{(3)}t} \le T_{20}(t) \le T_{20}^{0}e^{((R_{1})^{(3)}+(r_{20})^{(3)})t}$$
374

$$\frac{1}{(u_1)^{(3)}} T_{20}^0 e^{(R_1)^{(3)} t} \le T_{20}(t) \le \frac{1}{(u_2)^{(3)}} T_{20}^0 e^{((R_1)^{(3)} + (r_{20})^{(3)}) t}$$

$$375$$

$$\frac{(b_{22})^{(3)}T_{20}^{0}}{(\mu_{1})^{(3)}((R_{1})^{(3)}-(b_{22}^{'})^{(3)})}\left[e^{(R_{1})^{(3)}t}-e^{-(b_{22}^{'})^{(3)}t}\right]+T_{22}^{0}e^{-(b_{22}^{'})^{(3)}t}\leq T_{22}(t)\leq$$

$$\frac{(a_{22})^{(3)}T_{20}^0}{(\mu_2)^{(3)}((R_1)^{(3)}+(R_{20})^{(3)}+(R_2)^{(3)})} \left[e^{\left((R_1)^{(3)}+(R_{20})^{(3)}\right)t} - e^{-(R_2)^{(3)}t} \right] + T_{22}^0 e^{-(R_2)^{(3)}t}$$

Definition of
$$(S_1)^{(3)}$$
, $(S_2)^{(3)}$, $(R_1)^{(3)}$, $(R_2)^{(3)}$:-

Where $(S_1)^{(3)} = (a_{20})^{(3)} (m_2)^{(3)} - (a'_{20})^{(3)}$
 $(S_2)^{(3)} = (a_{22})^{(3)} - (p_{22})^{(3)}$
 $(R_1)^{(3)} = (b'_{20})^{(3)} (\mu_2)^{(3)} - (b'_{20})^{(3)}$
 $(R_2)^{(3)} = (b'_{22})^{(3)} - (r_{22})^{(3)}$

Behavior of the solutions

378

380

If we denote and define

<u>Definition of</u> $(\sigma_1)^{(4)}$, $(\sigma_2)^{(4)}$, $(\tau_1)^{(4)}$, $(\tau_2)^{(4)}$:

(d) $(\sigma_1)^{(4)}$, $(\sigma_2)^{(4)}$, $(\tau_1)^{(4)}$, $(\tau_2)^{(4)}$ four constants satisfying

$$-(\sigma_{2})^{(4)} \leq -(a_{24}^{'})^{(4)} + (a_{25}^{'})^{(4)} - (a_{24}^{''})^{(4)}(T_{25}, t) + (a_{25}^{''})^{(4)}(T_{25}, t) \leq -(\sigma_{1})^{(4)}$$
$$-(\tau_{2})^{(4)} \leq -(b_{24}^{'})^{(4)} + (b_{25}^{'})^{(4)} - (b_{24}^{''})^{(4)}((G_{27}), t) - (b_{25}^{''})^{(4)}((G_{27}), t) \leq -(\tau_{1})^{(4)}$$

Definition of
$$(v_1)^{(4)}, (v_2)^{(4)}, (u_1)^{(4)}, (u_2)^{(4)}, v^{(4)}, u^{(4)}$$
:

(e) By $(v_1)^{(4)} > 0$, $(v_2)^{(4)} < 0$ and respectively $(u_1)^{(4)} > 0$, $(u_2)^{(4)} < 0$ the roots of the equations $(a_{25})^{(4)} (v^{(4)})^2 + (\sigma_1)^{(4)} v^{(4)} - (a_{24})^{(4)} = 0$ and $(b_{25})^{(4)} (u^{(4)})^2 + (\tau_1)^{(4)} u^{(4)} - (b_{24})^{(4)} = 0$ and

Definition of
$$(\bar{\nu}_1)^{(4)}, (\bar{\nu}_2)^{(4)}, (\bar{u}_1)^{(4)}, (\bar{u}_2)^{(4)}$$
:

By $(\bar{v}_1)^{(4)} > 0$, $(\bar{v}_2)^{(4)} < 0$ and respectively $(\bar{u}_1)^{(4)} > 0$, $(\bar{u}_2)^{(4)} < 0$ the roots of the equations $(a_{25})^{(4)} (v^{(4)})^2 + (\sigma_2)^{(4)} v^{(4)} - (a_{24})^{(4)} = 0$ and $(b_{25})^{(4)} (u^{(4)})^2 + (\tau_2)^{(4)} u^{(4)} - (b_{24})^{(4)} = 0$ **Definition of** $(m_1)^{(4)}$, $(m_2)^{(4)}$, $(\mu_1)^{(4)}$, $(\mu_2)^{(4)}$, $(v_0)^{(4)}$:

(f) If we define $(m_1)^{(4)}$, $(m_2)^{(4)}$, $(\mu_1)^{(4)}$, $(\mu_2)^{(4)}$ by

$$\begin{split} &(m_2)^{(4)} = (\nu_0)^{(4)}, (m_1)^{(4)} = (\nu_1)^{(4)}, \ \textit{if} \ (\nu_0)^{(4)} < (\nu_1)^{(4)} \\ &(m_2)^{(4)} = (\nu_1)^{(4)}, (m_1)^{(4)} = (\bar{\nu}_1)^{(4)}, \textit{if} \ (\nu_4)^{(4)} < (\nu_0)^{(4)} < (\bar{\nu}_1)^{(4)}, \\ &\text{and} \ \boxed{(\nu_0)^{(4)} = \frac{G_{24}^2}{G_{25}^0}} \end{split}$$

$$(m_2)^{(4)} = (\nu_4)^{(4)}, (m_1)^{(4)} = (\nu_0)^{(4)}, if (\bar{\nu}_4)^{(4)} < (\nu_0)^{(4)}$$

and analogously

$$\begin{split} &(\mu_2)^{(4)} = (u_0)^{(4)}, (\mu_1)^{(4)} = (u_1)^{(4)}, \ \textit{if} \ (u_0)^{(4)} < (u_1)^{(4)} \\ &(\mu_2)^{(4)} = (u_1)^{(4)}, (\mu_1)^{(4)} = (\bar{u}_1)^{(4)}, \textit{if} \ (u_1)^{(4)} < (u_0)^{(4)} < (\bar{u}_1)^{(4)}, \\ &\text{and} \ \boxed{(u_0)^{(4)} = \frac{T_{24}^0}{T_{25}^0}} \end{split}$$

$$(\mu_2)^{(4)} = (u_1)^{(4)}, (\mu_1)^{(4)} = (u_0)^{(4)}, if(\bar{u}_1)^{(4)} < (u_0)^{(4)} \text{ where } (u_1)^{(4)}, (\bar{u}_1)^{(4)}$$

www.iosrjournals.org 103 | Page

are defined

Then the solution satisfies the inequalities

$$G_{24}^0 e^{\left((S_1)^{(4)} - (p_{24})^{(4)}\right)t} \le G_{24}(t) \le G_{24}^0 e^{(S_1)^{(4)}t}$$

where $(p_i)^{(4)}$ is defined by equation above

$$\frac{1}{(m_1)^{(4)}} G_{24}^0 e^{((S_1)^{(4)} - (p_{24})^{(4)})t} \le G_{25}(t) \le \frac{1}{(m_2)^{(4)}} G_{24}^0 e^{(S_1)^{(4)}t}$$
383

$$\left(\frac{(a_{26})^{(4)}G_{24}^0}{(m_1)^{(4)}((S_1)^{(4)}-(p_{24})^{(4)})}\left[e^{((S_1)^{(4)}-(p_{24})^{(4)})t}-e^{-(S_2)^{(4)}t}\right]+G_{26}^0e^{-(S_2)^{(4)}t}\leq G_{26}(t)\leq (a_{26})^4G_{240}(m_2)^4(S_1)^4-(a_{26})^4e(S_1)^4t-e^{-(a_{26})^4t}+G_{260}^2e^{-(a_{26})^4t}\leq G_{26}(t)\leq (a_{26})^4G_{240}(m_2)^4(S_1)^4-(a_{26})^4e(S_1)^4t-e^{-(a_{26})^4t}+G_{260}^2e^{-(a_{26})^4t}\leq G_{26}(t)\leq (a_{26})^4e^{-(a_{26})^4t}+G_{260}^2e^{-(a_{26})^4t}+G_{$$

$$T_{24}^{0}e^{(R_{1})^{(4)}t} \leq T_{24}(t) \leq T_{24}^{0}e^{((R_{1})^{(4)}+(r_{24})^{(4)})t}$$
385

$$\frac{1}{(\mu_1)^{(4)}} T_{24}^0 e^{(R_1)^{(4)} t} \le T_{24}(t) \le \frac{1}{(\mu_2)^{(4)}} T_{24}^0 e^{((R_1)^{(4)} + (r_{24})^{(4)}) t}$$
386

$$\frac{(b_{26})^{(4)}T_{24}^{0}}{(\mu_{1})^{(4)}((R_{1})^{(4)}-(b_{26}^{'})^{(4)})}\left[e^{(R_{1})^{(4)}t}-e^{-(b_{26}^{'})^{(4)}t}\right]+T_{26}^{0}e^{-(b_{26}^{'})^{(4)}t}\leq T_{26}(t)\leq$$
387

$$\frac{(a_{26})^{(4)}T_{24}^0}{(\mu_2)^{(4)}\big((R_1)^{(4)}+(r_{24})^{(4)}+(R_2)^{(4)}\big)}\Big[e^{\big((R_1)^{(4)}+(r_{24})^{(4)}\big)t}-e^{-(R_2)^{(4)}t}\Big]+T_{26}^0e^{-(R_2)^{(4)}t}$$

Definition of
$$(S_1)^{(4)}$$
, $(S_2)^{(4)}$, $(R_1)^{(4)}$, $(R_2)^{(4)}$:-

Where $(S_1)^{(4)} = (a_{24})^{(4)} (m_2)^{(4)} - (a'_{24})^{(4)}$

$$(S_2)^{(4)} = (a_{26})^{(4)} - (p_{26})^{(4)}$$

$$(R_1)^{(4)} = (b_{24})^{(4)} (\mu_2)^{(4)} - (b'_{24})^{(4)}$$

$$(R_2)^{(4)} = (b'_{26})^{(4)} - (r_{26})^{(4)}$$

Behavior of the solutions

If we denote and define

<u>Definition of</u> $(\sigma_1)^{(5)}$, $(\sigma_2)^{(5)}$, $(\tau_1)^{(5)}$, $(\tau_2)^{(5)}$:

(g) $(\sigma_1)^{(5)}$, $(\sigma_2)^{(5)}$, $(\tau_1)^{(5)}$, $(\tau_2)^{(5)}$ four constants satisfying

$$-(\sigma_2)^{(5)} \le -(a'_{28})^{(5)} + (a'_{29})^{(5)} - (a''_{28})^{(5)}(T_{29}, t) + (a''_{29})^{(5)}(T_{29}, t) \le -(\sigma_1)^{(5)}$$
$$-(\tau_2)^{(5)} \le -(b'_{28})^{(5)} + (b'_{29})^{(5)} - (b''_{28})^{(5)}((G_{31}), t) - (b''_{29})^{(5)}((G_{31}), t) \le -(\tau_1)^{(5)}$$

$$-(\iota_2) \cdot \cdot \cdot \leq -(\iota_{28}) \cdot \cdot \cdot + (\iota_{29}) \cdot \cdot - (\iota_{28}) \cdot \cdot \cdot ((\iota_{31}), \iota) - (\iota_{29}) \cdot \cdot \cdot ((\iota_{31}), \iota) \leq -(\iota_1) \cdot \cdot \cdot$$

Definition of
$$(v_1)^{(5)}, (v_2)^{(5)}, (u_1)^{(5)}, (u_2)^{(5)}, v^{(5)}, u^{(5)}$$
:

(h) By
$$(v_1)^{(5)} > 0$$
, $(v_2)^{(5)} < 0$ and respectively $(u_1)^{(5)} > 0$, $(u_2)^{(5)} < 0$ the roots of the equations $(a_{29})^{(5)} (v^{(5)})^2 + (\sigma_1)^{(5)} v^{(5)} - (a_{28})^{(5)} = 0$ and $(b_{29})^{(5)} (u^{(5)})^2 + (\tau_1)^{(5)} u^{(5)} - (b_{28})^{(5)} = 0$ and

389

Definition of
$$(\bar{v}_1)^{(5)}, (\bar{v}_2)^{(5)}, (\bar{u}_1)^{(5)}, (\bar{u}_2)^{(5)}$$
:

By $(\bar{v}_1)^{(5)} > 0$, $(\bar{v}_2)^{(5)} < 0$ and respectively $(\bar{u}_1)^{(5)} > 0$, $(\bar{u}_2)^{(5)} < 0$ the roots of the equations $(a_{29})^{(5)} (v^{(5)})^2 + (\sigma_2)^{(5)} v^{(5)} - (a_{28})^{(5)} = 0$ and $(b_{29})^{(5)} (u^{(5)})^2 + (\tau_2)^{(5)} u^{(5)} - (b_{28})^{(5)} = 0$ **Definition of** $(m_1)^{(5)}$, $(m_2)^{(5)}$, $(\mu_1)^{(5)}$, $(\mu_2)^{(5)}$, $(v_0)^{(5)}$:

(i) If we define $(m_1)^{(5)}$, $(m_2)^{(5)}$, $(\mu_1)^{(5)}$, $(\mu_2)^{(5)}$ by

$$(m_2)^{(5)} = (\nu_0)^{(5)}, (m_1)^{(5)} = (\nu_1)^{(5)}, if (\nu_0)^{(5)} < (\nu_1)^{(5)}$$

$$(m_2)^{(5)} = (\nu_1)^{(5)}, (m_1)^{(5)} = (\bar{\nu}_1)^{(5)}, if(\nu_1)^{(5)} < (\nu_0)^{(5)} < (\bar{\nu}_1)^{(5)},$$
 and $(\nu_0)^{(5)} = \frac{G_{28}^0}{G_{29}^0}$

$$(m_2)^{(5)} = (\nu_1)^{(5)}, (m_1)^{(5)} = (\nu_0)^{(5)}, if (\bar{\nu}_1)^{(5)} < (\nu_0)^{(5)}$$

and analogously

$$(\mu_2)^{(5)} = (u_0)^{(5)}, (\mu_1)^{(5)} = (u_1)^{(5)}, if (u_0)^{(5)} < (u_1)^{(5)}$$

$$(\mu_2)^{(5)} = (u_1)^{(5)}, (\mu_1)^{(5)} = (\bar{u}_1)^{(5)}, \text{ if } (u_1)^{(5)} < (u_0)^{(5)} < (\bar{u}_1)^{(5)}, \\ \text{and } \boxed{(u_0)^{(5)} = \frac{T_{28}^0}{T_{29}^0}}$$

$$(\mu_2)^{(5)} = (u_1)^{(5)}, (\mu_1)^{(5)} = (u_0)^{(5)}, if(\bar{u}_1)^{(5)} < (u_0)^{(5)}$$
 where $(u_1)^{(5)}, (\bar{u}_1)^{(5)}$ are defined respectively

Then the solution satisfies the inequalities

$$G_{28}^0 e^{((S_1)^{(5)} - (p_{28})^{(5)})t} \le G_{28}(t) \le G_{28}^0 e^{(S_1)^{(5)}t}$$

where $(p_i)^{(5)}$ is defined by equation above

$$\frac{1}{(m_5)^{(5)}} G_{28}^0 e^{((S_1)^{(5)} - (p_{28})^{(5)})t} \le G_{29}(t) \le \frac{1}{(m_2)^{(5)}} G_{28}^0 e^{(S_1)^{(5)}t}$$
394

$$\left(\frac{(a_{30})^{(5)}G_{28}^{0}}{(m_{1})^{(5)}((S_{1})^{(5)}-(p_{28})^{(5)}-(S_{2})^{(5)})}\left[e^{((S_{1})^{(5)}-(p_{28})^{(5)})t}-e^{-(S_{2})^{(5)}t}\right]+G_{30}^{0}e^{-(S_{2})^{(5)}t}\leq G_{30}(t)\leq (a_{30})^{5}G_{280}(m_{2})^{5}(S_{1})^{5}-(a_{30}')^{5}e(S_{1})^{5}t-e^{-(a_{30}')^{5}t}+G_{300}e^{-(a_{30}')^{5}t}\leq G_{30}(t)\leq (a_{30})^{5}G_{280}(m_{2})^{5}(S_{1})^{5}-(a_{30}')^{5}e(S_{1})^{5}t-e^{-(a_{30}')^{5}t}+G_{300}e^{-(a_{30}')^{5}t}\leq G_{30}(t)\leq (a_{30})^{5}G_{280}(m_{2})^{5}(S_{1})^{5}-(a_{30}')^{5}e(S_{1})^{5}t-e^{-(a_{30}')^{5}t}+G_{300}e^{-(a_{30}')^{5}t}\leq G_{30}(t)\leq (a_{30})^{5}G_{280}(m_{2})^{5}(S_{1})^{5}-(a_{30}')^{5}e(S_{1})^{5}t-e^{-(a_{30}')^{5}t}+G_{300}e^{-(a_{30}')^{5}t}\leq G_{30}(t)\leq (a_{30})^{5}G_{280}(m_{2})^{5}(S_{1})^{5}-(a_{30}')^{5}e(S_{1})^{5}t-e^{-(a_{30}')^{5}t}+G_{300}e^{-(a_{30}')^{5}t}$$

$$T_{28}^{0} e^{(R_1)^{(5)}t} \le T_{28}(t) \le T_{28}^{0} e^{((R_1)^{(5)} + (r_{28})^{(5)})t}$$
396

$$\frac{1}{(\mu_1)^{(5)}} T_{28}^0 e^{(R_1)^{(5)} t} \le T_{28}(t) \le \frac{1}{(\mu_2)^{(5)}} T_{28}^0 e^{((R_1)^{(5)} + (r_{28})^{(5)})t}$$
397

$$\frac{(b_{30})^{(5)}T_{28}^{0}}{(\mu_{1})^{(5)}((R_{1})^{(5)}-(b_{30}^{'})^{(5)})} \left[e^{(R_{1})^{(5)}t} - e^{-(b_{30}^{'})^{(5)}t} \right] + T_{30}^{0} e^{-(b_{30}^{'})^{(5)}t} \le T_{30}(t) \le$$

$$\frac{(a_{30})^{(5)} r_{28}^0}{(\mu_2)^{(5)} \big((R_1)^{(5)} + (r_{28})^{(5)} + (R_2)^{(5)}\big)} \Big[e^{\big((R_1)^{(5)} + (r_{28})^{(5)}\big)t} - e^{-(R_2)^{(5)}t} \Big] + T_{30}^0 e^{-(R_2)^{(5)}t}$$

Definition of
$$(S_1)^{(5)}$$
, $(S_2)^{(5)}$, $(R_1)^{(5)}$, $(R_2)^{(5)}$:-

392

Where
$$(S_1)^{(5)} = (a_{28})^{(5)} (m_2)^{(5)} - (a'_{28})^{(5)}$$

 $(S_2)^{(5)} = (a_{30})^{(5)} - (p_{30})^{(5)}$
 $(R_1)^{(5)} = (b_{28})^{(5)} (\mu_2)^{(5)} - (b'_{28})^{(5)}$
 $(R_2)^{(5)} = (b'_{30})^{(5)} - (r_{30})^{(5)}$

Behavior of the solutions

400

If we denote and define

<u>Definition of</u> $(\sigma_1)^{(6)}$, $(\sigma_2)^{(6)}$, $(\tau_1)^{(6)}$, $(\tau_2)^{(6)}$:

(j) $(\sigma_1)^{(6)}$, $(\sigma_2)^{(6)}$, $(\tau_1)^{(6)}$, $(\tau_2)^{(6)}$ four constants satisfying

$$-(\sigma_2)^{(6)} \le -(a'_{32})^{(6)} + (a'_{33})^{(6)} - (a''_{32})^{(6)}(T_{33}, t) + (a''_{33})^{(6)}(T_{33}, t) \le -(\sigma_1)^{(6)}$$
$$-(\tau_2)^{(6)} \le -(b'_{32})^{(6)} + (b'_{33})^{(6)} - (b''_{32})^{(6)}((G_{35}), t) - (b''_{33})^{(6)}((G_{35}), t) \le -(\tau_1)^{(6)}$$

Definition of
$$(v_1)^{(6)}, (v_2)^{(6)}, (u_1)^{(6)}, (u_2)^{(6)}, v^{(6)}, u^{(6)}$$
:

401

(k) By $(v_1)^{(6)} > 0$, $(v_2)^{(6)} < 0$ and respectively $(u_1)^{(6)} > 0$, $(u_2)^{(6)} < 0$ the roots of the equations $(a_{33})^{(6)} (v^{(6)})^2 + (\sigma_1)^{(6)} v^{(6)} - (a_{32})^{(6)} = 0$ and $(b_{33})^{(6)} (u^{(6)})^2 + (\tau_1)^{(6)} u^{(6)} - (b_{32})^{(6)} = 0$ and

Definition of
$$(\bar{\nu}_1)^{(6)}$$
,, $(\bar{\nu}_2)^{(6)}$, $(\bar{u}_1)^{(6)}$, $(\bar{u}_2)^{(6)}$:

402

By $(\bar{\nu}_1)^{(6)}>0$, $(\bar{\nu}_2)^{(6)}<0$ and respectively $(\bar{u}_1)^{(6)}>0$, $(\bar{u}_2)^{(6)}<0$ the roots of the equations $(a_{33})^{(6)} (v^{(6)})^2 + (\sigma_2)^{(6)} v^{(6)} - (a_{32})^{(6)} = 0$ and $(b_{33})^{(6)}(u^{(6)})^2 + (\tau_2)^{(6)}u^{(6)} - (b_{32})^{(6)} = 0$

<u>Definition of</u> $(m_1)^{(6)}$, $(m_2)^{(6)}$, $(\mu_1)^{(6)}$, $(\mu_2)^{(6)}$, $(\nu_0)^{(6)}$:

(l) If we define $(m_1)^{(6)}$, $(m_2)^{(6)}$, $(\mu_1)^{(6)}$, $(\mu_2)^{(6)}$ by

$$(m_2)^{(6)} = (\nu_0)^{(6)}, (m_1)^{(6)} = (\nu_1)^{(6)}, if (\nu_0)^{(6)} < (\nu_1)^{(6)}$$

$$(m_2)^{(6)} = (\nu_1)^{(6)}, (m_1)^{(6)} = (\bar{\nu}_6)^{(6)}, if (\nu_1)^{(6)} < (\nu_0)^{(6)} < (\bar{\nu}_1)^{(6)},$$
 and
$$\boxed{(\nu_0)^{(6)} = \frac{G_{32}^0}{G_{33}^0}}$$

$$(m_2)^{(6)} = (\nu_1)^{(6)}, (m_1)^{(6)} = (\nu_0)^{(6)}, if (\bar{\nu}_1)^{(6)} < (\nu_0)^{(6)}$$

and analogously

$$(\mu_2)^{(6)} = (u_0)^{(6)}, (\mu_1)^{(6)} = (u_1)^{(6)}, \quad \textbf{if} \quad (u_0)^{(6)} < (u_1)^{(6)}$$

$$(\mu_2)^{(6)} = (u_1)^{(6)}, (\mu_1)^{(6)} = (\bar{u}_1)^{(6)}, \quad \textbf{if} \quad (u_1)^{(6)} < (u_0)^{(6)} < (\bar{u}_1)^{(6)}, \quad \textbf{if} \quad (u_0)^{(6)} = \frac{T_{32}^0}{T_{12}^0}$$
and
$$(u_0)^{(6)} = \frac{T_{32}^0}{T_{12}^0}$$

$$(\mu_2)^{(6)} = (u_1)^{(6)}, (\mu_1)^{(6)} = (u_0)^{(6)}, if(\bar{u}_1)^{(6)} < (u_0)^{(6)}$$
 where $(u_1)^{(6)}, (\bar{u}_1)^{(6)}$ are defined respectively

Then the solution satisfies the inequalities

$$G_{32}^0 e^{((S_1)^{(6)} - (p_{32})^{(6)})t} \le G_{32}(t) \le G_{32}^0 e^{(S_1)^{(6)}t}$$

where $(p_i)^{(6)}$ is defined by equation above

$$\frac{1}{(m_1)^{(6)}} G_{32}^0 e^{((S_1)^{(6)} - (p_{32})^{(6)})t} \le G_{33}(t) \le \frac{1}{(m_2)^{(6)}} G_{32}^0 e^{(S_1)^{(6)}t}$$

$$\left(\frac{(a_{34})^{(6)}G_{32}^0}{(m_1)^{(6)}((S_1)^{(6)} - (p_{32})^{(6)})} \left[e^{((S_1)^{(6)} - (p_{32})^{(6)})t} - e^{-(S_2)^{(6)}t} \right] + G_{34}^0 e^{-(S_2)^{(6)}t} \le G_{34}(t) \le (a_{34})6G_{320}(m_2)6(S_1)6 - (a_{34}')6e(S_1)6t - e^{-(a_{34}')6t} + G_{340}e^{-(a_{34}')6t} \le G_{34}(t) \le (a_{34})6G_{320}(m_2)6(S_1)6 - (a_{34}')6e(S_1)6t - e^{-(a_{34}')6t} + G_{340}e^{-(a_{34}')6t}$$

$$T_{32}^{0} e^{(R_{1})^{(6)}t} \le T_{32}(t) \le T_{32}^{0} e^{((R_{1})^{(6)} + (r_{32})^{(6)})t}$$

$$407$$

$$\frac{1}{(\mu_1)^{(6)}} T_{32}^0 e^{(R_1)^{(6)} t} \le T_{32}(t) \le \frac{1}{(\mu_2)^{(6)}} T_{32}^0 e^{((R_1)^{(6)} + (r_{32})^{(6)}) t}$$

$$\frac{(b_{34})^{(6)}T_{32}^{0}}{(\mu_{1})^{(6)}((R_{1})^{(6)}-(b_{34}^{'})^{(6)})}\left[e^{(R_{1})^{(6)}t}-e^{-(b_{34}^{'})^{(6)}t}\right]+T_{34}^{0}e^{-(b_{34}^{'})^{(6)}t}\leq T_{34}(t)\leq 409$$

$$\frac{(a_{34})^{(6)} r_{32}^0}{(\mu_2)^{(6)} \left((R_1)^{(6)} + (r_{32})^{(6)} + (R_2)^{(6)}\right)} \left[e^{\left((R_1)^{(6)} + (r_{32})^{(6)}\right)t} - e^{-(R_2)^{(6)}t} \right] + T_{34}^0 e^{-(R_2)^{(6)}t}$$

Definition of
$$(S_1)^{(6)}$$
, $(S_2)^{(6)}$, $(R_1)^{(6)}$, $(R_2)^{(6)}$:-

Where $(S_1)^{(6)} = (a_{32})^{(6)} (m_2)^{(6)} - (a'_{32})^{(6)}$

$$(S_2)^{(6)} = (a_{34})^{(6)} - (p_{34})^{(6)}$$

$$(R_1)^{(6)} = (b_{32})^{(6)} (\mu_2)^{(6)} - (b_{32}^{'})^{(6)}$$

$$(R_2)^{(6)} = (b'_{34})^{(6)} - (r_{34})^{(6)}$$

 $(R_2)^{(6)} = (b_{34}^{'})^{(6)} - (r_{34})^{(6)}$ **Proof :** From Governing equations we obtain

$$\frac{dv^{(1)}}{dt} = (a_{13})^{(1)} - \left((a_{13}^{'})^{(1)} - (a_{14}^{'})^{(1)} + (a_{13}^{''})^{(1)} (T_{14}, t) \right) - (a_{14}^{''})^{(1)} (T_{14}, t)v^{(1)} - (a_{14})^{(1)}v^{(1)}$$
Definition of $v^{(1)}$:
$$v^{(1)} = \frac{G_{13}}{G_{14}}$$

It follows

$$-\left((a_{14})^{(1)}\left(v^{(1)}\right)^2+(\sigma_2)^{(1)}v^{(1)}-(a_{13})^{(1)}\right)\leq \frac{dv^{(1)}}{dt}\leq -\left((a_{14})^{(1)}\left(v^{(1)}\right)^2+(\sigma_1)^{(1)}v^{(1)}-(a_{13})^{(1)}\right)$$

From which one obtains

Definition of $(\bar{\nu}_1)^{(1)}, (\nu_0)^{(1)} :$

(a) For
$$0 < \boxed{(\nu_0)^{(1)} = \frac{G_{13}^0}{G_{14}^0}} < (\nu_1)^{(1)} < (\bar{\nu}_1)^{(1)}$$

411

$$\nu^{(1)}(t) \geq \frac{(\nu_1)^{(1)} + (\mathcal{C})^{(1)} (\nu_2)^{(1)} e^{\left[-(a_{14})^{(1)} \left((\nu_1)^{(1)} - (\nu_0)^{(1)}\right)t\right]}}{1 + (\mathcal{C})^{(1)} e^{\left[-(a_{14})^{(1)} \left((\nu_1)^{(1)} - (\nu_0)^{(1)}\right)t\right]}} \quad , \quad \boxed{(\mathcal{C})^{(1)} = \frac{(\nu_1)^{(1)} - (\nu_0)^{(1)}}{(\nu_0)^{(1)} - (\nu_2)^{(1)}}}$$

it follows
$$(v_0)^{(1)} \le v^{(1)}(t) \le (v_1)^{(1)}$$

In the same manner, we get

$$\nu^{(1)}(t) \leq \frac{(\bar{\nu}_1)^{(1)} + (\bar{\mathcal{C}})^{(1)}(\bar{\nu}_2)^{(1)} e^{\left[-(a_{14})^{(1)}\left((\bar{\nu}_1)^{(1)} - (\bar{\nu}_2)^{(1)}\right)t\right]}}{1 + (\bar{\mathcal{C}})^{(1)} e^{\left[-(a_{14})^{(1)}\left((\bar{\nu}_1)^{(1)} - (\bar{\nu}_2)^{(1)}\right)t\right]}} \quad , \quad \left[(\bar{\mathcal{C}})^{(1)} = \frac{(\bar{\nu}_1)^{(1)} - (\nu_0)^{(1)}}{(\nu_0)^{(1)} - (\bar{\nu}_2)^{(1)}}\right]$$

From which we deduce $(v_0)^{(1)} \le v^{(1)}(t) \le (\bar{v}_1)^{(1)}$

(b) If
$$0 < (\nu_1)^{(1)} < (\nu_0)^{(1)} = \frac{G_{13}^0}{G_{14}^0} < (\bar{\nu}_1)^{(1)}$$
 we find like in the previous case,

$$(\nu_1)^{(1)} \leq \frac{(\nu_1)^{(1)} + (C)^{(1)} (\nu_2)^{(1)} e^{\left[-(a_{14})^{(1)} \left((\nu_1)^{(1)} - (\nu_2)^{(1)}\right)t\right]}}{1 + (C)^{(1)} e^{\left[-(a_{14})^{(1)} \left((\nu_1)^{(1)} - (\nu_2)^{(1)}\right)t\right]}} \leq \nu^{(1)}(t) \leq$$

$$\frac{(\overline{v}_{1})^{(1)} + (\overline{c})^{(1)}(\overline{v}_{2})^{(1)} e^{\left[-(a_{14})^{(1)}\left((\overline{v}_{1})^{(1)} - (\overline{v}_{2})^{(1)}\right)t\right]}}{1 + (\overline{c})^{(1)} e^{\left[-(a_{14})^{(1)}\left((\overline{v}_{1})^{(1)} - (\overline{v}_{2})^{(1)}\right)t\right]}} \leq (\overline{v}_{1})^{(1)}$$

(c) If
$$0 < (\nu_1)^{(1)} \le (\bar{\nu}_1)^{(1)} \le (\nu_0)^{(1)} = \frac{G_{13}^0}{G_{14}^0}$$
, we obtain

$$(\nu_1)^{(1)} \leq \nu^{(1)}(t) \leq \frac{(\overline{\nu}_1)^{(1)} + (\overline{c})^{(1)}(\overline{\nu}_2)^{(1)} e^{\left[-(a_{14})^{(1)}((\overline{\nu}_1)^{(1)} - (\overline{\nu}_2)^{(1)})t\right]}}{1 + (\overline{c})^{(1)} e^{\left[-(a_{14})^{(1)}((\overline{\nu}_1)^{(1)} - (\overline{\nu}_2)^{(1)})t\right]}} \leq (\nu_0)^{(1)}$$

And so with the notation of the first part of condition (c), we have

Definition of $v^{(1)}(t)$:-

$$(m_2)^{(1)} \le v^{(1)}(t) \le (m_1)^{(1)}, \quad v^{(1)}(t) = \frac{G_{13}(t)}{G_{14}(t)}$$

In a completely analogous way, we obtain

Definition of $u^{(1)}(t)$:-

$$(\mu_2)^{(1)} \le u^{(1)}(t) \le (\mu_1)^{(1)}, \quad u^{(1)}(t) = \frac{T_{13}(t)}{T_{14}(t)}$$

Now, using this result and replacing it in concatenated equations of global system we get easily the result stated in the theorem.

Particular case:

If $(a_{13}^{"})^{(1)} = (a_{14}^{"})^{(1)}$, then $(\sigma_1)^{(1)} = (\sigma_2)^{(1)}$ and in this case $(\nu_1)^{(1)} = (\bar{\nu}_1)^{(1)}$ if in addition $(\nu_0)^{(1)} = (\nu_1)^{(1)}$ then $\nu^{(1)}(t) = (\nu_0)^{(1)}$ and as a consequence $G_{13}(t) = (\nu_0)^{(1)}G_{14}(t)$ this also defines $(\nu_0)^{(1)}$ for the special case

Analogously if
$$(b_{13}^{"})^{(1)} = (b_{14}^{"})^{(1)}$$
, then $(\tau_1)^{(1)} = (\tau_2)^{(1)}$ and then

 $(u_1)^{(1)} = (\bar{u}_1)^{(1)}$ if in addition $(u_0)^{(1)} = (u_1)^{(1)}$ then $T_{13}(t) = (u_0)^{(1)} T_{14}(t)$ This is an important consequence of the relation between $(v_1)^{(1)}$ and $(\bar{v}_1)^{(1)}$, and definition of $(u_0)^{(1)}$.

<u>Proof</u>: From the concatenated set of global governing equations we obtain

415

$$\frac{d\nu^{(2)}}{dt} = (a_{16})^{(2)} - \left((a_{16}^{'})^{(2)} - (a_{17}^{'})^{(2)} + (a_{16}^{''})^{(2)} (T_{17}, t) \right) - (a_{17}^{''})^{(2)} (T_{17}, t)\nu^{(2)} - (a_{17})^{(2)}\nu^{(2)}$$

Definition of
$$v^{(2)} := v^{(2)} = \frac{G_{16}}{G_{17}}$$

It follows 417

$$-\left((a_{17})^{(2)} \left(\nu^{(2)}\right)^2 + (\sigma_2)^{(2)} \nu^{(2)} - (a_{16})^{(2)}\right) \leq \frac{\mathrm{d} \nu^{(2)}}{\mathrm{d} t} \leq -\left((a_{17})^{(2)} \left(\nu^{(2)}\right)^2 + (\sigma_1)^{(2)} \nu^{(2)} - (a_{16})^{(2)}\right)$$

418 From which one obtains

<u>Definition of</u> $(\bar{\nu}_1)^{(2)}$, $(\nu_0)^{(2)}$:

(d) For
$$0 < (\nu_0)^{(2)} = \frac{G_{16}^0}{G_{17}^0} < (\nu_1)^{(2)} < (\bar{\nu}_1)^{(2)}$$

$$\nu^{(2)}(t) \ge \frac{(\nu_1)^{(2)} + (C)^{(2)}(\nu_2)^{(2)} e^{\left[-(a_{17})^{(2)} \left((\nu_1)^{(2)} - (\nu_0)^{(2)}\right)t\right]}}{1 + (C)^{(2)} e^{\left[-(a_{17})^{(2)} \left((\nu_1)^{(2)} - (\nu_0)^{(2)}\right)t\right]}} \quad , \quad \boxed{(C)^{(2)} = \frac{(\nu_1)^{(2)} - (\nu_0)^{(2)}}{(\nu_0)^{(2)} - (\nu_2)^{(2)}}}$$

it follows $(v_0)^{(2)} \le v^{(2)}(t) \le (v_1)^{(2)}$

419 In the same manner, we get

$$\nu^{(2)}(t) \leq \frac{(\overline{v}_1)^{(2)} + (\overline{C})^{(2)}(\overline{v}_2)^{(2)} e^{\left[-(a_{17})^{(2)}\left((\overline{v}_1)^{(2)} - (\overline{v}_2)^{(2)}\right)t\right]}}{1 + (\overline{C})^{(2)} e^{\left[-(a_{17})^{(2)}\left((\overline{v}_1)^{(2)} - (\overline{v}_2)^{(2)}\right)t\right]}} \quad , \quad \overline{(\bar{C})^{(2)} = \frac{(\overline{v}_1)^{(2)} - (v_0)^{(2)}}{(v_0)^{(2)} - (\overline{v}_2)^{(2)}}}$$

From which we deduce
$$(\nu_0)^{(2)} \le \nu^{(2)}(t) \le (\bar{\nu}_1)^{(2)}$$

421

(e) If
$$0 < (\nu_1)^{(2)} < (\nu_0)^{(2)} = \frac{G_{16}^0}{G_{17}^0} < (\bar{\nu}_1)^{(2)}$$
 we find like in the previous case,
$$(\nu_1)^{(2)} \le \frac{(\nu_1)^{(2)} + (C)^{(2)}(\nu_2)^{(2)} e^{\left[-(a_{17})^{(2)}\left((\nu_1)^{(2)} - (\nu_2)^{(2)}\right)t\right]}}{1 + (C)^{(2)} e^{\left[-(a_{17})^{(2)}\left((\nu_1)^{(2)} - (\nu_2)^{(2)}\right)t\right]}} \le \nu^{(2)}(t) \le$$

$$\frac{(\overline{v}_{1})^{(2)} + (\overline{c})^{(2)}(\overline{v}_{2})^{(2)} e^{\left[-(a_{17})^{(2)}((\overline{v}_{1})^{(2)} - (\overline{v}_{2})^{(2)})t\right]}}{1 + (\overline{c})^{(2)} e^{\left[-(a_{17})^{(2)}((\overline{v}_{1})^{(2)} - (\overline{v}_{2})^{(2)})t\right]}} \leq (\overline{v}_{1})^{(2)}$$

(f) If
$$0 < (\nu_1)^{(2)} \le (\bar{\nu}_1)^{(2)} \le (\nu_0)^{(2)} = \frac{G_{16}^0}{G_{17}^0}$$
, we obtain

$$(\nu_1)^{(2)} \leq \nu^{(2)}(t) \leq \frac{(\overline{\nu}_1)^{(2)} + (\overline{C})^{(2)}(\overline{\nu}_2)^{(2)} e^{\left[-(a_{17})^{(2)}\left((\overline{\nu}_1)^{(2)} - (\overline{\nu}_2)^{(2)}\right)t\right]}}{1 + (\overline{C})^{(2)} e^{\left[-(a_{17})^{(2)}\left((\overline{\nu}_1)^{(2)} - (\overline{\nu}_2)^{(2)}\right)t\right]}} \leq (\nu_0)^{(2)}$$

And so with the notation of the first part of condition (c), we have

**Definition of
$$\nu^{(2)}(t)$$
:-**

$$(m_2)^{(2)} \le v^{(2)}(t) \le (m_1)^{(2)}, \quad v^{(2)}(t) = \frac{G_{16}(t)}{G_{17}(t)}$$

In a completely analogous way, we obtain 424

www.iosrjournals.org

Definition of $u^{(2)}(t)$:

$$(\mu_2)^{(2)} \le u^{(2)}(t) \le (\mu_1)^{(2)}, \quad u^{(2)}(t) = \frac{T_{16}(t)}{T_{17}(t)}$$

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.

Particular case:

If
$$(a_{16}^{''})^{(2)} = (a_{17}^{''})^{(2)}$$
, then $(\sigma_1)^{(2)} = (\sigma_2)^{(2)}$ and in this case $(\nu_1)^{(2)} = (\bar{\nu}_1)^{(2)}$ if in addition $(\nu_0)^{(2)} = (\nu_1)^{(2)}$ then $\nu^{(2)}(t) = (\nu_0)^{(2)}$ and as a consequence $G_{16}(t) = (\nu_0)^{(2)}G_{17}(t)$

Analogously if $(b_{16}^{"})^{(2)} = (b_{17}^{"})^{(2)}$, then $(\tau_1)^{(2)} = (\tau_2)^{(2)}$ and then

 $(u_1)^{(2)} = (\bar{u}_1)^{(2)}$ if in addition $(u_0)^{(2)} = (u_1)^{(2)}$ then $T_{16}(t) = (u_0)^{(2)}T_{17}(t)$ This is an important consequence of the relation between $(v_1)^{(2)}$ and $(\bar{v}_1)^{(2)}$

Proof: From Global equations we obtain

$$\frac{dv^{(3)}}{dt} = (a_{20})^{(3)} - \left((a_{20}^{'})^{(3)} - (a_{21}^{'})^{(3)} + (a_{20}^{''})^{(3)} (T_{21}, t) \right) - (a_{21}^{''})^{(3)} (T_{21}, t) v^{(3)} - (a_{21})^{(3)} v^{(3)}$$

Definition of
$$v^{(3)} := v^{(3)} = \frac{G_{20}}{G_{21}}$$

It follows

$$-\left((a_{21})^{(3)}\left(\nu^{(3)}\right)^2+(\sigma_2)^{(3)}\nu^{(3)}-(a_{20})^{(3)}\right)\leq \frac{d\nu^{(3)}}{dt}\leq -\left((a_{21})^{(3)}\left(\nu^{(3)}\right)^2+(\sigma_1)^{(3)}\nu^{(3)}-(a_{20})^{(3)}\right)$$

From which one obtains 428

(a) For
$$0 < (\nu_0)^{(3)} = \frac{G_{20}^0}{G_{21}^0} < (\nu_1)^{(3)} < (\bar{\nu}_1)^{(3)}$$

$$\nu^{(3)}(t) \ge \frac{(\nu_1)^{(3)} + (C)^{(3)}(\nu_2)^{(3)} e^{\left[-(\alpha_{21})^{(3)} \left((\nu_1)^{(3)} - (\nu_0)^{(3)}\right)t\right]}}{1 + (C)^{(3)} e^{\left[-(\alpha_{21})^{(3)} \left((\nu_1)^{(3)} - (\nu_0)^{(3)}\right)t\right]}} , \quad \left[(C)^{(3)} = \frac{(\nu_1)^{(3)} - (\nu_0)^{(3)}}{(\nu_0)^{(3)} - (\nu_2)^{(3)}}\right]$$

it follows $(v_0)^{(3)} \le v^{(3)}(t) \le (v_1)^{(3)}$

In the same manner, we get

$$\nu^{(3)}(t) \leq \frac{(\overline{v}_1)^{(3)} + (\bar{C})^{(3)}(\overline{v}_2)^{(3)} e^{\left[-(\alpha_{21})^{(3)} \left((\overline{v}_1)^{(3)} - (\overline{v}_2)^{(3)}\right)t\right]}}{1 + (\bar{C})^{(3)} e^{\left[-(\alpha_{21})^{(3)} \left((\overline{v}_1)^{(3)} - (\overline{v}_2)^{(3)}\right)t\right]}} \quad , \quad \left[(\bar{C})^{(3)} = \frac{(\overline{v}_1)^{(3)} - (v_0)^{(3)}}{(v_0)^{(3)} - (\overline{v}_2)^{(3)}}\right]$$

Definition of $(\bar{\nu}_1)^{(3)}$:

From which we deduce $(v_0)^{(3)} \le v^{(3)}(t) \le (\bar{v}_1)^{(3)}$

(b) If
$$0 < (\nu_1)^{(3)} < (\nu_0)^{(3)} = \frac{G_{20}^0}{G_{21}^0} < (\bar{\nu}_1)^{(3)}$$
 we find like in the previous case,
$$(\nu_1)^{(3)} \le \frac{(\nu_1)^{(3)} + (C)^{(3)}(\nu_2)^{(3)} e^{\left[-(a_{21})^{(3)}\left((\nu_1)^{(3)} - (\nu_2)^{(3)}\right)t\right]}}{1 + (C)^{(3)} e^{\left[-(a_{21})^{(3)}\left((\nu_1)^{(3)} - (\nu_2)^{(3)}\right)t\right]}} \le \nu^{(3)}(t) \le$$

$$\frac{(\overline{v}_1)^{(3)} + (\bar{c})^{(3)}(\overline{v}_2)^{(3)} e^{\left[-(a_{21})^{(3)} \left((\overline{v}_1)^{(3)} - (\overline{v}_2)^{(3)}\right)t\right]}}{1 + (\bar{c})^{(3)} e^{\left[-(a_{21})^{(3)} \left((\overline{v}_1)^{(3)} - (\overline{v}_2)^{(3)}\right)t\right]}} \leq (\bar{v}_1)^{(3)}$$

(c) If
$$0 < (\nu_1)^{(3)} \le (\bar{\nu}_1)^{(3)} \le (\nu_0)^{(3)} = \frac{G_{20}^0}{G_{21}^0}$$
, we obtain

426

$$(\nu_1)^{(3)} \leq \nu^{(3)}(t) \leq \frac{(\overline{\nu}_1)^{(3)} + (\overline{c})^{(3)}(\overline{\nu}_2)^{(3)} e^{\left[-(a_{21})^{(3)}\left((\overline{\nu}_1)^{(3)} - (\overline{\nu}_2)^{(3)}\right)t\right]}}{1 + (\overline{c})^{(3)} e^{\left[-(a_{21})^{(3)}\left((\overline{\nu}_1)^{(3)} - (\overline{\nu}_2)^{(3)}\right)t\right]}} \leq (\nu_0)^{(3)}$$

And so with the notation of the first part of condition (c), we have

Definition of $v^{(3)}(t)$:-

$$(m_2)^{(3)} \le v^{(3)}(t) \le (m_1)^{(3)}, \quad v^{(3)}(t) = \frac{G_{20}(t)}{G_{21}(t)}$$

In a completely analogous way, we obtain

Definition of $u^{(3)}(t)$:-

$$(\mu_2)^{(3)} \le u^{(3)}(t) \le (\mu_1)^{(3)}, \quad u^{(3)}(t) = \frac{T_{20}(t)}{T_{21}(t)}$$

Now, using this result and replacing it in Global Equations we get easily the result stated in the theorem.

Particular case:

If
$$(a_{20}^{''})^{(3)} = (a_{21}^{''})^{(3)}$$
, then $(\sigma_1)^{(3)} = (\sigma_2)^{(3)}$ and in this case $(\nu_1)^{(3)} = (\bar{\nu}_1)^{(3)}$ if in addition $(\nu_0)^{(3)} = (\nu_1)^{(3)}$ then $\nu^{(3)}(t) = (\nu_0)^{(3)}$ and as a consequence $G_{20}(t) = (\nu_0)^{(3)}G_{21}(t)$

Analogously if
$$(b_{20}^{"})^{(3)} = (b_{21}^{"})^{(3)}$$
, then $(\tau_1)^{(3)} = (\tau_2)^{(3)}$ and then

$$(u_1)^{(3)} = (\bar{u}_1)^{(3)}$$
 if in addition $(u_0)^{(3)} = (u_1)^{(3)}$ then $T_{20}(t) = (u_0)^{(3)}T_{21}(t)$ This is an important consequence of the relation between $(v_1)^{(3)}$ and $(\bar{v}_1)^{(3)}$

Proof: From Global equations we obtain

$$\frac{dv^{(4)}}{dt} = (a_{24})^{(4)} - \left((a_{24}^{'})^{(4)} - (a_{25}^{'})^{(4)} + (a_{24}^{''})^{(4)} (T_{25}, t) \right) - (a_{25}^{''})^{(4)} (T_{25}, t) v^{(4)} - (a_{25})^{(4)} v^{(4)}$$

Definition of
$$v^{(4)}$$
:- $v^{(4)} = \frac{G_{24}}{G_{25}}$

It follows

$$-\left((a_{25})^{(4)}\left(v^{(4)}\right)^2+(\sigma_2)^{(4)}v^{(4)}-(a_{24})^{(4)}\right)\leq \frac{dv^{(4)}}{dt}\leq -\left((a_{25})^{(4)}\left(v^{(4)}\right)^2+(\sigma_4)^{(4)}v^{(4)}-(a_{24})^{(4)}\right)$$
 From which one obtains

<u>Definition of</u> $(\bar{\nu}_1)^{(4)}, (\nu_0)^{(4)} :$

(d) For
$$0 < \overline{(\nu_0)^{(4)} = \frac{G_{24}^0}{G_{25}^0}} < (\nu_1)^{(4)} < (\bar{\nu}_1)^{(4)}$$

$$\nu^{(4)}(t) \ge \frac{(\nu_1)^{(4)} + (C)^{(4)}(\nu_2)^{(4)} e^{\left[-(\alpha_{25})^{(4)} \left((\nu_1)^{(4)} - (\nu_0)^{(4)}\right)t\right]}}{4 + (C)^{(4)} e^{\left[-(\alpha_{25})^{(4)} \left((\nu_1)^{(4)} - (\nu_0)^{(4)}\right)t\right]}} \quad , \quad \boxed{(C)^{(4)} = \frac{(\nu_1)^{(4)} - (\nu_0)^{(4)}}{(\nu_0)^{(4)} - (\nu_2)^{(4)}}}$$

it follows
$$(v_0)^{(4)} \le v^{(4)}(t) \le (v_1)^{(4)}$$

In the same manner, we get

$$\nu^{(4)}(t) \leq \frac{(\bar{v}_1)^{(4)} + (\bar{c})^{(4)}(\bar{v}_2)^{(4)} e^{\left[-(a_{25})^{(4)}\left((\bar{v}_1)^{(4)} - (\bar{v}_2)^{(4)}\right)t\right]}}{4 + (\bar{c})^{(4)} e^{\left[-(a_{25})^{(4)}\left((\bar{v}_1)^{(4)} - (\bar{v}_2)^{(4)}\right)t\right]}} \quad , \quad \boxed{(\bar{C})^{(4)} = \frac{(\bar{v}_1)^{(4)} - (\bar{v}_0)^{(4)}}{(v_0)^{(4)} - (\bar{v}_2)^{(4)}}}$$

www instinuteds org

From which we deduce $(v_0)^{(4)} \le v^{(4)}(t) \le (\bar{v}_1)^{(4)}$

(e) If
$$0 < (\nu_1)^{(4)} < (\nu_0)^{(4)} = \frac{G_{24}^0}{G_{25}^0} < (\bar{\nu}_1)^{(4)}$$
 we find like in the previous case,

$$(\nu_1)^{(4)} \leq \frac{(\nu_1)^{(4)} + (\mathcal{C})^{(4)}(\nu_2)^{(4)} e^{\left[-(a_{25})^{(4)} \left((\nu_1)^{(4)} - (\nu_2)^{(4)}\right)t\right]}}{1 + (\mathcal{C})^{(4)} e^{\left[-(a_{25})^{(4)} \left((\nu_1)^{(4)} - (\nu_2)^{(4)}\right)t\right]}} \leq \nu^{(4)}(t) \leq$$

$$\frac{(\overline{v}_{1})^{(4)} + (\bar{c})^{(4)}(\overline{v}_{2})^{(4)} e^{\left[-(a_{25})^{(4)}\left((\overline{v}_{1})^{(4)} - (\overline{v}_{2})^{(4)}\right)t\right]}}{1 + (\bar{c})^{(4)} e^{\left[-(a_{25})^{(4)}\left((\overline{v}_{1})^{(4)} - (\overline{v}_{2})^{(4)}\right)t\right]}} \leq (\overline{v}_{1})^{(4)}$$

(f) If
$$0 < (\nu_1)^{(4)} \le (\bar{\nu}_1)^{(4)} \le \overline{(\nu_0)^{(4)} = \frac{G_{24}^0}{G_{25}^0}}$$
, we obtain

$$(\nu_1)^{(4)} \leq \nu^{(4)}(t) \leq \frac{(\overline{\nu}_1)^{(4)} + (\overline{C})^{(4)}(\overline{\nu}_2)^{(4)} e^{\left[-(\alpha_{25})^{(4)}\left((\overline{\nu}_1)^{(4)} - (\overline{\nu}_2)^{(4)}\right)t\right]}}{1 + (\overline{C})^{(4)} e^{\left[-(\alpha_{25})^{(4)}\left((\overline{\nu}_1)^{(4)} - (\overline{\nu}_2)^{(4)}\right)t\right]}} \leq (\nu_0)^{(4)}$$

And so with the notation of the first part of condition (c) , we have **Definition of** $\, \nu^{(4)}(t) :$

$$(m_2)^{(4)} \le v^{(4)}(t) \le (m_1)^{(4)}, \quad v^{(4)}(t) = \frac{G_{24}(t)}{G_{25}(t)}$$

In a completely analogous way, we obtain

<u>Definition of</u> $u^{(4)}(t)$:-

$$(\mu_2)^{(4)} \le u^{(4)}(t) \le (\mu_1)^{(4)}, \quad u^{(4)}(t) = \frac{T_{24}(t)}{T_{25}(t)}$$

Now, using this result and replacing it in Global equations we get easily the result stated in the theorem.

Particular case:

If $(a_{24}^{''})^{(4)} = (a_{25}^{''})^{(4)}$, then $(\sigma_1)^{(4)} = (\sigma_2)^{(4)}$ and in this case $(\nu_1)^{(4)} = (\bar{\nu}_1)^{(4)}$ if in addition $(\nu_0)^{(4)} = (\nu_1)^{(4)}$ then $\nu^{(4)}(t) = (\nu_0)^{(4)}$ and as a consequence $G_{24}(t) = (\nu_0)^{(4)}G_{25}(t)$ this also defines $(\nu_0)^{(4)}$ for the special case .

Analogously if $(b_{24}^{''})^{(4)} = (b_{25}^{''})^{(4)}$, then $(\tau_1)^{(4)} = (\tau_2)^{(4)}$ and then $(u_1)^{(4)} = (\bar{u}_4)^{(4)}$ if in addition $(u_0)^{(4)} = (u_1)^{(4)}$ then $T_{24}(t) = (u_0)^{(4)}T_{25}(t)$ This is an important consequence of the relation between $(\nu_1)^{(4)}$ and $(\bar{\nu}_1)^{(4)}$, and definition of $(u_0)^{(4)}$.

Proof: From concatenated set of equations we obtain

$$\frac{dv^{(5)}}{dt} = (a_{28})^{(5)} - \left((a_{28}')^{(5)} - (a_{29}')^{(5)} + (a_{28}')^{(5)} (T_{29}, t) \right) - (a_{29}')^{(5)} (T_{29}, t) v^{(5)} - (a_{29})^{(5)} v^{(5)}$$

Definition of
$$v^{(5)} := v^{(5)} = \frac{G_{28}}{G_{29}}$$

It follows

$$-\left((a_{29})^{(5)}\left(v^{(5)}\right)^2+(\sigma_2)^{(5)}v^{(5)}-(a_{28})^{(5)}\right)\leq \frac{dv^{(5)}}{dt}\leq -\left((a_{29})^{(5)}\left(v^{(5)}\right)^2+(\sigma_1)^{(5)}v^{(5)}-(a_{28})^{(5)}\right)$$

From which one obtains

<u>Definition of</u> $(\bar{\nu}_1)^{(5)}$, $(\nu_0)^{(5)}$:

(g) For
$$0 < |(\nu_0)^{(5)} = \frac{G_{28}^0}{G_{29}^0}| < (\nu_1)^{(5)} < (\bar{\nu}_1)^{(5)}$$

$$\nu^{(5)}(t) \ge \frac{(\nu_1)^{(5)} + (C)^{(5)}(\nu_2)^{(5)} e^{\left[-(\alpha_{29})^{(5)} \left((\nu_1)^{(5)} - (\nu_0)^{(5)}\right)t\right]}}{5 + (C)^{(5)} e^{\left[-(\alpha_{29})^{(5)} \left((\nu_1)^{(5)} - (\nu_0)^{(5)}\right)t\right]}} \quad , \quad \left[(C)^{(5)} = \frac{(\nu_1)^{(5)} - (\nu_0)^{(5)}}{(\nu_0)^{(5)} - (\nu_2)^{(5)}}\right]$$

it follows $(v_0)^{(5)} \le v^{(5)}(t) \le (v_1)^{(5)}$

In the same manner, we get

$$\nu^{(5)}(t) \leq \frac{(\bar{v}_1)^{(5)} + (\bar{c})^{(5)}(\bar{v}_2)^{(5)} e^{\left[-(a_{29})^{(5)}((\bar{v}_1)^{(5)} - (\bar{v}_2)^{(5)})t\right]}}{5 + (\bar{c})^{(5)} e^{\left[-(a_{29})^{(5)}((\bar{v}_1)^{(5)} - (\bar{v}_2)^{(5)})t\right]}} \quad , \quad \left[(\bar{C})^{(5)} = \frac{(\bar{v}_1)^{(5)} - (v_0)^{(5)}}{(v_0)^{(5)} - (\bar{v}_2)^{(5)}}\right]$$

From which we deduce $(v_0)^{(5)} \le v^{(5)}(t) \le (\bar{v}_5)^{(5)}$

(h) If
$$0 < (\nu_1)^{(5)} < (\nu_0)^{(5)} = \frac{G_{28}^0}{G_{20}^0} < (\bar{\nu}_1)^{(5)}$$
 we find like in the previous case,

$$(\nu_1)^{(5)} \leq \frac{(\nu_1)^{(5)} + (C)^{(5)}(\nu_2)^{(5)} e^{\left[-(a_{29})^{(5)} \left((\nu_1)^{(5)} - (\nu_2)^{(5)}\right)t\right]}}{1 + (C)^{(5)} e^{\left[-(a_{29})^{(5)} \left((\nu_1)^{(5)} - (\nu_2)^{(5)}\right)t\right]}} \leq \nu^{(5)}(t) \leq$$

$$\frac{(\overline{v}_{1})^{(5)} + (\overline{c})^{(5)}(\overline{v}_{2})^{(5)} e^{\left[-(a_{29})^{(5)}\left((\overline{v}_{1})^{(5)} - (\overline{v}_{2})^{(5)}\right)t\right]}}{1 + (\overline{c})^{(5)} e^{\left[-(a_{29})^{(5)}\left((\overline{v}_{1})^{(5)} - (\overline{v}_{2})^{(5)}\right)t\right]}} \le (\overline{v}_{1})^{(5)}$$
(i) If $0 < (v_{1})^{(5)} \le (\overline{v}_{1})^{(5)} \le \left[(v_{0})^{(5)} = \frac{G_{28}^{0}}{G_{29}^{0}}\right]$, we obtain

$$(\nu_1)^{(5)} \leq \nu^{(5)}(t) \leq \frac{(\overline{\nu}_1)^{(5)} + (\overline{C})^{(5)}(\overline{\nu}_2)^{(5)} e^{\left[-(a_{29})^{(5)}((\overline{\nu}_1)^{(5)} - (\overline{\nu}_2)^{(5)})t\right]}}{1 + (\overline{C})^{(5)} e^{\left[-(a_{29})^{(5)}((\overline{\nu}_1)^{(5)} - (\overline{\nu}_2)^{(5)})t\right]}} \leq (\nu_0)^{(5)}$$

And so with the notation of the first part of condition (c) , we have **Definition of** $\, \nu^{(5)}(t) :$

$$(m_2)^{(5)} \le v^{(5)}(t) \le (m_1)^{(5)}, \quad v^{(5)}(t) = \frac{G_{28}(t)}{G_{29}(t)}$$

In a completely analogous way, we obtain

Definition of $u^{(5)}(t)$:-

$$(\mu_2)^{(5)} \le u^{(5)}(t) \le (\mu_1)^{(5)}, \quad u^{(5)}(t) = \frac{T_{28}(t)}{T_{29}(t)}$$

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.

Particular case:

If $(a_{28}^{''})^{(5)} = (a_{29}^{''})^{(5)}$, then $(\sigma_1)^{(5)} = (\sigma_2)^{(5)}$ and in this case $(\nu_1)^{(5)} = (\bar{\nu}_1)^{(5)}$ if in addition $(\nu_0)^{(5)} = (\nu_5)^{(5)}$ then $\nu^{(5)}(t) = (\nu_0)^{(5)}$ and as a consequence $G_{28}(t) = (\nu_0)^{(5)}G_{29}(t)$ this also defines $(\nu_0)^{(5)}$ for the special case .

Analogously if
$$(b_{28}^{''})^{(5)} = (b_{29}^{''})^{(5)}$$
, then $(\tau_1)^{(5)} = (\tau_2)^{(5)}$ and then $(u_1)^{(5)} = (\bar{u}_1)^{(5)}$ if in addition $(u_0)^{(5)} = (u_1)^{(5)}$ then $T_{28}(t) = (u_0)^{(5)}T_{29}(t)$ This is an important consequence of the relation between $(v_1)^{(5)}$ and $(\bar{v}_1)^{(5)}$, and definition of $(u_0)^{(5)}$.

Proof: From Global equations we obtain

$$\frac{dv^{(6)}}{dt} = (a_{32})^{(6)} - \left((a_{32}^{'})^{(6)} - (a_{33}^{'})^{(6)} + (a_{32}^{''})^{(6)} (T_{33}, t) \right) - (a_{33}^{''})^{(6)} (T_{33}, t) v^{(6)} - (a_{33})^{(6)} v^{(6)}$$

Definition of
$$v^{(6)}$$
:- $v^{(6)} = \frac{G_{32}}{G_{33}}$

It follows

$$-\left((a_{33})^{(6)}\left(v^{(6)}\right)^2+(\sigma_2)^{(6)}v^{(6)}-(a_{32})^{(6)}\right)\leq \frac{dv^{(6)}}{dt}\leq -\left((a_{33})^{(6)}\left(v^{(6)}\right)^2+(\sigma_1)^{(6)}v^{(6)}-(a_{32})^{(6)}\right)$$

From which one obtains

<u>Definition of</u> $(\bar{\nu}_1)^{(6)}$, $(\nu_0)^{(6)}$:

(j) For
$$0 < (\nu_0)^{(6)} = \frac{G_{32}^0}{G_{33}^0} < (\nu_1)^{(6)} < (\bar{\nu}_1)^{(6)}$$

$$\nu^{(6)}(t) \ge \frac{(\nu_1)^{(6)} + (C)^{(6)}(\nu_2)^{(6)} e^{\left[-(a_{33})^{(6)} \left((\nu_1)^{(6)} - (\nu_0)^{(6)}\right)t\right]}}{1 + (C)^{(6)} e^{\left[-(a_{33})^{(6)} \left((\nu_1)^{(6)} - (\nu_0)^{(6)}\right)t\right]}} \quad , \quad \left[(C)^{(6)} = \frac{(\nu_1)^{(6)} - (\nu_0)^{(6)}}{(\nu_0)^{(6)} - (\nu_2)^{(6)}}\right]$$

it follows $(v_0)^{(6)} \le v^{(6)}(t) \le (v_1)^{(6)}$

In the same manner, we get

440

$$\nu^{(6)}(t) \leq \frac{(\bar{\nu}_1)^{(6)} + (\bar{C})^{(6)}(\bar{\nu}_2)^{(6)} e^{\left[-(a_{33})^{(6)}\left((\bar{\nu}_1)^{(6)} - (\bar{\nu}_2)^{(6)}\right)t\right]}}{1 + (\bar{C})^{(6)} e^{\left[-(a_{33})^{(6)}\left((\bar{\nu}_1)^{(6)} - (\bar{\nu}_2)^{(6)}\right)t\right]}} \quad , \quad \left[(\bar{C})^{(6)} = \frac{(\bar{\nu}_1)^{(6)} - (\nu_0)^{(6)}}{(\nu_0)^{(6)} - (\bar{\nu}_2)^{(6)}}\right]$$

From which we deduce $(v_0)^{(6)} \le v^{(6)}(t) \le (\bar{v}_1)^{(6)}$

(k) If
$$0 < (\nu_1)^{(6)} < (\nu_0)^{(6)} = \frac{G_{32}^0}{G_{33}^0} < (\bar{\nu}_1)^{(6)}$$
 we find like in the previous case,

$$(\nu_1)^{(6)} \leq \frac{(\nu_1)^{(6)} + (\mathcal{C})^{(6)}(\nu_2)^{(6)} e^{\left[-(a_{33})^{(6)}\left((\nu_1)^{(6)} - (\nu_2)^{(6)}\right)t\right]}}{1 + (\mathcal{C})^{(6)} e^{\left[-(a_{33})^{(6)}\left((\nu_1)^{(6)} - (\nu_2)^{(6)}\right)t\right]}} \leq \nu^{(6)}(t) \leq$$

$$\frac{(\overline{v}_{1})^{(6)} + (\overline{c})^{(6)}(\overline{v}_{2})^{(6)} e^{\left[-(a_{33})^{(6)}\left((\overline{v}_{1})^{(6)} - (\overline{v}_{2})^{(6)}\right)t\right]}}{1 + (\overline{c})^{(6)} e^{\left[-(a_{33})^{(6)}\left((\overline{v}_{1})^{(6)} - (\overline{v}_{2})^{(6)}\right)t\right]}} \le (\overline{v}_{1})^{(6)}$$
(I) If $0 < (v_{1})^{(6)} \le (\overline{v}_{1})^{(6)} \le \left[(v_{0})^{(6)} = \frac{G_{32}^{0}}{G_{33}^{0}}\right]$, we obtain

$$(\nu_1)^{(6)} \leq \nu^{(6)}(t) \leq \frac{(\overline{\nu}_1)^{(6)} + (\overline{C})^{(6)}(\overline{\nu}_2)^{(6)} e^{\left[-(a_{33})^{(6)}\left((\overline{\nu}_1)^{(6)} - (\overline{\nu}_2)^{(6)}\right)t\right]}}{1 + (\overline{C})^{(6)} e^{\left[-(a_{33})^{(6)}\left((\overline{\nu}_1)^{(6)} - (\overline{\nu}_2)^{(6)}\right)t\right]}} \leq (\nu_0)^{(6)}$$

And so with the notation of the first part of condition (c) , we have **Definition of** $v^{(6)}(t)$:-

$$(m_2)^{(6)} \le v^{(6)}(t) \le (m_1)^{(6)}, \quad v^{(6)}(t) = \frac{G_{32}(t)}{G_{33}(t)}$$

In a completely analogous way, we obtain

Definition of $u^{(6)}(t)$:

$$(\mu_2)^{(6)} \le u^{(6)}(t) \le (\mu_1)^{(6)}, \quad u^{(6)}(t) = \frac{T_{32}(t)}{T_{33}(t)}$$

Now, using this result and replacing it in global equations we get easily the result stated in the theorem.

Particular case:

If $(a_{32}^{''})^{(6)} = (a_{33}^{''})^{(6)}$, then $(\sigma_1)^{(6)} = (\sigma_2)^{(6)}$ and in this case $(\nu_1)^{(6)} = (\bar{\nu}_1)^{(6)}$ if in addition $(\nu_0)^{(6)} = (\nu_1)^{(6)}$ then $\nu^{(6)}(t) = (\nu_0)^{(6)}$ and as a consequence $G_{32}(t) = (\nu_0)^{(6)}G_{33}(t)$ this also defines $(\nu_0)^{(6)}$ for the special case .

Analogously if $(b_{32}^{"})^{(6)} = (b_{33}^{"})^{(6)}$, then $(\tau_1)^{(6)} = (\tau_2)^{(6)}$ and then $(u_1)^{(6)} = (\bar{u}_1)^{(6)}$ if in addition $(u_0)^{(6)} = (u_1)^{(6)}$ then $T_{32}(t) = (u_0)^{(6)}T_{33}(t)$ This is an important consequence of the relation between $(v_1)^{(6)}$ and $(\bar{v}_1)^{(6)}$, and definition of $(u_0)^{(6)}$.

We can prove the following

Theorem 3: If $(a_i^{''})^{(1)}$ and $(b_i^{''})^{(1)}$ are independent on t, and the conditions

$$(a'_{13})^{(1)}(a'_{14})^{(1)} - (a_{13})^{(1)}(a_{14})^{(1)} < 0$$

$$(a_{13}^{'})^{(1)}(a_{14}^{'})^{(1)} - (a_{13})^{(1)}(a_{14})^{(1)} + (a_{13})^{(1)}(p_{13})^{(1)} + (a_{14}^{'})^{(1)}(p_{14})^{(1)} + (p_{13})^{(1)}(p_{14})^{(1)} > 0$$

$$(b_{13}^{'})^{(1)}(b_{14}^{'})^{(1)}-(b_{13})^{(1)}(b_{14})^{(1)}>0\;,$$

$$(b_{13}^{'})^{(1)}(b_{14}^{'})^{(1)} - (b_{13})^{(1)}(b_{14})^{(1)} - (b_{13}^{'})^{(1)}(r_{14})^{(1)} - (b_{14}^{'})^{(1)}(r_{14})^{(1)} + (r_{13})^{(1)}(r_{14})^{(1)} < 0$$

with $(p_{13})^{(1)}$, $(r_{14})^{(1)}$ as defined are satisfied, then the system

If $(a_i^{''})^{(2)}$ and $(b_i^{''})^{(2)}$ are independent on t, and the conditions

$$(a'_{16})^{(2)}(a'_{17})^{(2)} - (a_{16})^{(2)}(a_{17})^{(2)} < 0$$

$$(a_{16}^{'})^{(2)}(a_{17}^{'})^{(2)} - (a_{16})^{(2)}(a_{17})^{(2)} + (a_{16})^{(2)}(p_{16})^{(2)} + (a_{17}^{'})^{(2)}(p_{17})^{(2)} + (p_{16})^{(2)}(p_{17})^{(2)} > 0$$

$$(b_{16}^{'})^{(2)}(b_{17}^{'})^{(2)}-(b_{16})^{(2)}(b_{17})^{(2)}>0\;,$$

$$(b_{16}^{'})^{(2)}(b_{17}^{'})^{(2)} - (b_{16})^{(2)}(b_{17})^{(2)} - (b_{16}^{'})^{(2)}(r_{17})^{(2)} - (b_{17}^{'})^{(2)}(r_{17})^{(2)} + (r_{16})^{(2)}(r_{17})^{(2)} < 0$$

with $(p_{16})^{(2)}$, $(r_{17})^{(2)}$ as defined are satisfied , then the system

: If
$$(a_i^{''})^{(3)}$$
 and $(b_i^{''})^{(3)}$ are independent on t , and the conditions

$$(a_{20}^{'})^{(3)}(a_{21}^{'})^{(3)} - (a_{20})^{(3)}(a_{21})^{(3)} < 0$$

$$(a_{20}^{'})^{(3)}(a_{21}^{'})^{(3)} - (a_{20})^{(3)}(a_{21})^{(3)} + (a_{20})^{(3)}(p_{20})^{(3)} + (a_{21}^{'})^{(3)}(p_{21})^{(3)} + (p_{20})^{(3)}(p_{21})^{(3)} > 0$$

$$(b_{20}^{'})^{(3)}(b_{21}^{'})^{(3)} - (b_{20})^{(3)}(b_{21})^{(3)} > 0$$
,

$$(b_{20}^{'})^{(3)}(b_{21}^{'})^{(3)} - (b_{20})^{(3)}(b_{21})^{(3)} - (b_{20}^{'})^{(3)}(r_{21})^{(3)} - (b_{21}^{'})^{(3)}(r_{21})^{(3)} + (r_{20})^{(3)}(r_{21})^{(3)} < 0$$

with $(p_{20})^{(3)}$, $(r_{21})^{(3)}$ as defined are satisfied, then the system

We can prove the following

If $(a_i^{''})^{(4)}$ and $(b_i^{''})^{(4)}$ are independent on t , and the conditions

446

$$(a_{24}^{'})^{(4)}(a_{25}^{'})^{(4)} - (a_{24})^{(4)}(a_{25})^{(4)} < 0$$

$$(a_{24}^{'})^{(4)}(a_{25}^{'})^{(4)} - (a_{24})^{(4)}(a_{25})^{(4)} + (a_{24})^{(4)}(p_{24})^{(4)} + (a_{25}^{'})^{(4)}(p_{25})^{(4)} + (p_{24})^{(4)}(p_{25})^{(4)} > 0$$

$$(b_{24}^{'})^{(4)}(b_{25}^{'})^{(4)} - (b_{24})^{(4)}(b_{25})^{(4)} > 0$$

$$(b_{24}^{'})^{(4)}(b_{25}^{'})^{(4)} - (b_{24})^{(4)}(b_{25})^{(4)} - (b_{24}^{'})^{(4)}(r_{25})^{(4)} - (b_{25}^{'})^{(4)}(r_{25})^{(4)} + (r_{24})^{(4)}(r_{25})^{(4)} < 0$$

with $(p_{24})^{(4)}$, $(r_{25})^{(4)}$ as defined are satisfied, then the system

If
$$(a_i^{"})^{(5)}$$
 and $(b_i^{"})^{(5)}$ are independent on t, and the conditions

$$(a'_{28})^{(5)}(a'_{29})^{(5)} - (a_{28})^{(5)}(a_{29})^{(5)} < 0$$

$$(a_{28}^{'})^{(5)}(a_{29}^{'})^{(5)} - (a_{28})^{(5)}(a_{29})^{(5)} + (a_{28})^{(5)}(p_{28})^{(5)} + (a_{29}^{'})^{(5)}(p_{29})^{(5)} + (p_{28})^{(5)}(p_{29})^{(5)} > 0$$

$$(b'_{28})^{(5)}(b'_{29})^{(5)} - (b_{28})^{(5)}(b_{29})^{(5)} > 0$$
,

$$(b_{28}^{'})^{(5)}(b_{29}^{'})^{(5)} - (b_{28})^{(5)}(b_{29})^{(5)} - (b_{28}^{'})^{(5)}(r_{29})^{(5)} - (b_{29}^{'})^{(5)}(r_{29})^{(5)} + (r_{28})^{(5)}(r_{29})^{(5)} < 0$$

with $(p_{28})^{(5)}$, $(r_{29})^{(5)}$ as defined are satisfied, then the system

If
$$(a_i^{"})^{(6)}$$
 and $(b_i^{"})^{(6)}$ are independent on t, and the conditions

$$(a_{32}^{'})^{(6)}(a_{33}^{'})^{(6)} - (a_{32})^{(6)}(a_{33})^{(6)} < 0$$

$$(a_{32}^{'})^{(6)}(a_{33}^{'})^{(6)} - (a_{32})^{(6)}(a_{33})^{(6)} + (a_{32})^{(6)}(p_{32})^{(6)} + (a_{33}^{'})^{(6)}(p_{33})^{(6)} + (p_{32})^{(6)}(p_{33})^{(6)} > 0$$

$$(b_{32}^{'})^{(6)}(b_{33}^{'})^{(6)} - (b_{32})^{(6)}(b_{33})^{(6)} > 0$$
,

$$(b_{32}^{'})^{(6)}(b_{33}^{'})^{(6)} - (b_{32})^{(6)}(b_{33})^{(6)} - (b_{32}^{'})^{(6)}(r_{33})^{(6)} - (b_{33}^{'})^{(6)}(r_{33})^{(6)} + (r_{32})^{(6)}(r_{33})^{(6)} < 0$$

with $(p_{32})^{(6)}$, $(r_{33})^{(6)}$ as defined are satisfied, then the system Boolean satisfiability problem and N puzzle

$$(a_{13})^{(1)}G_{14} - \left[(a'_{13})^{(1)} + (a''_{13})^{(1)}(T_{14}) \right]G_{13} = 0$$
⁴⁵⁰

$$(a_{14})^{(1)}G_{13} - \left[(a'_{14})^{(1)} + (a''_{14})^{(1)}(T_{14}) \right]G_{14} = 0$$
⁴⁵¹

$$(a_{15})^{(1)}G_{14} - \left[(a_{15}')^{(1)} + (a_{15}'')^{(1)}(T_{14}) \right]G_{15} = 0$$
⁴⁵²

$$(b_{13})^{(1)}T_{14} - [(b_{13}')^{(1)} - (b_{13}')^{(1)}(G)]T_{13} = 0$$
⁴⁵³

$$(b_{14})^{(1)}T_{13} - [(b_{14}')^{(1)} - (b_{14}')^{(1)}(G)]T_{14} = 0$$
⁴⁵⁴

$$(b_{15})^{(1)}T_{14} - [(b_{15}')^{(1)} - (b_{15}'')^{(1)}(G)]T_{15} = 0$$
⁴⁵⁵

has a unique positive solution, which is an equilibrium solution for the system

$$(a_{16})^{(2)}G_{17} - [(a'_{16})^{(2)} + (a''_{16})^{(2)}(T_{17})]G_{16} = 0$$
⁴⁵⁶

$$(a_{17})^{(2)}G_{16} - [(a'_{17})^{(2)} + (a''_{17})^{(2)}(T_{17})]G_{17} = 0$$

$$(a_{18})^{(2)}G_{17} - [(a'_{18})^{(2)} + (a''_{18})^{(2)}(T_{17})]G_{18} = 0$$
⁴⁵⁸

$$(b_{16})^{(2)}T_{17} - [(b_{16}')^{(2)} - (b_{16}'')^{(2)}(G_{19})]T_{16} = 0$$
⁴⁵⁹

$$(b_{17})^{(2)}T_{16} - [(b_{17}')^{(2)} - (b_{17}'')^{(2)}(G_{19})]T_{17} = 0$$

$$(b_{18})^{(2)}T_{17} - [(b_{18}')^{(2)} - (b_{18}'')^{(2)}(G_{19})]T_{18} = 0 461$$

has a unique positive solution, which is an equilibrium solution for the system

$$(a_{20})^{(3)}G_{21} - [(a'_{20})^{(3)} + (a''_{20})^{(3)}(T_{21})]G_{20} = 0$$
⁴⁶³

$$(a_{21})^{(3)}G_{20} - [(a'_{21})^{(3)} + (a''_{21})^{(3)}(T_{21})]G_{21} = 0$$
⁴⁶⁴

$$(a_{22})^{(3)}G_{21} - [(a'_{22})^{(3)} + (a''_{22})^{(3)}(T_{21})]G_{22} = 0$$

$$(b_{20})^{(3)}T_{21} - [(b_{20}')^{(3)} - (b_{20}'')^{(3)}(G_{23})]T_{20} = 0$$

$$(b_{21})^{(3)}T_{20} - [(b'_{21})^{(3)} - (b''_{21})^{(3)}(G_{23})]T_{21} = 0$$

$$(b_{22})^{(3)}T_{21} - [(b_{22}')^{(3)} - (b_{22}')^{(3)}(G_{23})]T_{22} = 0$$

has a unique positive solution, which is an equilibrium solution for the system

$$(a_{24})^{(4)}G_{25} - [(a'_{24})^{(4)} + (a''_{24})^{(4)}(T_{25})]G_{24} = 0$$
⁴⁶⁹

$$(a_{25})^{(4)}G_{24} - [(a'_{25})^{(4)} + (a''_{25})^{(4)}(T_{25})]G_{25} = 0$$
⁴⁷⁰

$$(a_{26})^{(4)}G_{25} - [(a'_{26})^{(4)} + (a''_{26})^{(4)}(T_{25})]G_{26} = 0$$
⁴⁷¹

$$(b_{24})^{(4)}T_{25} - [(b_{24}')^{(4)} - (b_{24}')^{(4)}((G_{27}))]T_{24} = 0$$
472

$$(b_{25})^{(4)}T_{24} - [(b_{25}')^{(4)} - (b_{25}'')^{(4)}((G_{27}))]T_{25} = 0$$
473

$$(b_{26})^{(4)}T_{25} - [(b_{26}')^{(4)} - (b_{26}'')^{(4)}((G_{27}))]T_{26} = 0$$
⁴⁷⁴

has a unique positive solution , which is an equilibrium solution for the system

$$(a_{28})^{(5)}G_{29} - [(a'_{28})^{(5)} + (a''_{28})^{(5)}(T_{29})]G_{28} = 0$$
⁴⁷⁵

$$(a_{29})^{(5)}G_{28} - \left[(a_{29}')^{(5)} + (a_{29}'')^{(5)}(T_{29}) \right]G_{29} = 0$$

$$476$$

$$(a_{30})^{(5)}G_{29} - [(a'_{30})^{(5)} + (a''_{30})^{(5)}(T_{29})]G_{30} = 0$$

$$(b_{28})^{(5)}T_{29} - [(b_{28}')^{(5)} - (b_{28}'')^{(5)}(G_{31})]T_{28} = 0$$
⁴⁷⁸

$$(b_{29})^{(5)}T_{28} - [(b_{29}')^{(5)} - (b_{29}'')^{(5)}(G_{31})]T_{29} = 0$$
⁴⁷⁹

$$(b_{30})^{(5)}T_{29} - [(b_{30}')^{(5)} - (b_{30}'')^{(5)}(G_{31})]T_{30} = 0$$

$$480$$

has a unique positive solution, which is an equilibrium solution for the system

$$(a_{32})^{(6)}G_{33} - [(a'_{32})^{(6)} + (a''_{32})^{(6)}(T_{33})]G_{32} = 0$$
⁴⁸¹

$$(a_{33})^{(6)}G_{32} - [(a'_{33})^{(6)} + (a''_{33})^{(6)}(T_{33})]G_{33} = 0$$

$$482$$

$$(a_{34})^{(6)}G_{33} - [(a'_{34})^{(6)} + (a''_{34})^{(6)}(T_{33})]G_{34} = 0$$
⁴⁸³

$$(b_{32})^{(6)}T_{33} - [(b_{32}')^{(6)} - (b_{32}'')^{(6)}(G_{35})]T_{32} = 0$$
⁴⁸⁴

$$(b_{33})^{(6)}T_{32} - [(b'_{33})^{(6)} - (b''_{33})^{(6)}(G_{35})]T_{33} = 0$$

$$485$$

$$(b_{34})^{(6)}T_{33} - [(b'_{34})^{(6)} - (b''_{34})^{(6)}(G_{35})]T_{34} = 0$$

$$486$$

has a unique positive solution, which is an equilibrium solution for the system

<u>Proof:</u> 487

488

489

490

491

(a) Indeed the first two equations have a nontrivial solution G_{13} , G_{14} if

$$F(T) = (a'_{13})^{(1)}(a'_{14})^{(1)} - (a_{13})^{(1)}(a_{14})^{(1)} + (a'_{13})^{(1)}(a''_{14})^{(1)}(T_{14}) + (a'_{14})^{(1)}(a''_{13})^{(1)}(T_{14}) + (a''_{13})^{(1)}(T_{14})(a''_{14})^{(1)}(T_{14}) = 0$$

Indeed the first two equations have a nontrivial solution G_{16} , G_{17} if

$$F(T_{19}) = (a'_{16})^{(2)}(a'_{17})^{(2)} - (a_{16})^{(2)}(a_{17})^{(2)} + (a'_{16})^{(2)}(a''_{17})^{(2)}(T_{17}) + (a'_{17})^{(2)}(a''_{16})^{(2)}(T_{17}) + (a''_{16})^{(2)}(T_{17})(a''_{17})^{(2)}(T_{17}) = 0$$

(a) Indeed the first two equations have a nontrivial solution G_{20} , G_{21} if

$$F(T_{23}) = (a'_{20})^{(3)}(a'_{21})^{(3)} - (a_{20})^{(3)}(a_{21})^{(3)} + (a'_{20})^{(3)}(a''_{21})^{(3)}(T_{21}) + (a'_{21})^{(3)}(a''_{20})^{(3)}(T_{21}) + (a''_{20})^{(3)}(T_{21})(a''_{21})^{(3)}(T_{21}) = 0$$

(a) Indeed the first two equations have a nontrivial solution G_{24} , G_{25} if

$$F(T_{27}) = (a'_{24})^{(4)}(a'_{25})^{(4)} - (a_{24})^{(4)}(a_{25})^{(4)} + (a'_{24})^{(4)}(a''_{25})^{(4)}(T_{25}) + (a'_{25})^{(4)}(a''_{24})^{(4)}(T_{25}) + (a''_{24})^{(4)}(T_{25})(a''_{25})^{(4)}(T_{25}) = 0$$

(a) Indeed the first two equations have a nontrivial solution G_{28} , G_{29} if

$$F(T_{31}) = (a'_{28})^{(5)}(a'_{29})^{(5)} - (a_{28})^{(5)}(a_{29})^{(5)} + (a'_{28})^{(5)}(a''_{29})^{(5)}(T_{29}) + (a'_{29})^{(5)}(a''_{29})^{(5)}(T_{29}) + (a''_{28})^{(5)}(T_{29}) = 0$$

(a) Indeed the first two equations have a nontrivial solution G_{32} , G_{33} if

$$(a_{32}^{"})^{(6)}(T_{33})(a_{33}^{"})^{(6)}(T_{33}) = 0$$

Definition and uniqueness of T₁₄*:-

492

After hypothesis f(0) < 0, $f(\infty) > 0$ and the functions $(a_{\ell}^{''})^{(1)}(T_{14})$ being increasing, it follows that there exists a unique T_{14}^* for which $f(T_{14}^*) = 0$. With this value, we obtain from the three first equations

$$G_{13} = \frac{(a_{13})^{(1)}G_{14}}{[(a_{13}^{'})^{(1)} + (a_{13}^{''})^{(1)}(T_{14}^{*})]} \quad , \quad G_{15} = \frac{(a_{15})^{(1)}G_{14}}{[(a_{15}^{'})^{(1)} + (a_{15}^{''})^{(1)}(T_{14}^{*})]}$$

Definition and uniqueness of T_{17}^* :

493

After hypothesis f(0) < 0, $f(\infty) > 0$ and the functions $(a_i^{"})^{(2)}(T_{17})$ being increasing, it follows that there exists a unique T_{17}^* for which $f(T_{17}^*) = 0$. With this value, we obtain from the three first equations

$$G_{16} = \frac{(a_{16})^{(2)}G_{17}}{[(a'_{16})^{(2)} + (a''_{16})^{(2)}(T_{17}^*)]} , G_{18} = \frac{(a_{18})^{(2)}G_{17}}{[(a'_{18})^{(2)} + (a''_{18})^{(2)}(T_{17}^*)]}$$

$$494$$

Definition and uniqueness of T₂₁*:-

495

After hypothesis f(0) < 0, $f(\infty) > 0$ and the functions $(a_i^{''})^{(1)}(T_{21})$ being increasing, it follows that there exists a unique T_{21}^* for which $f(T_{21}^*) = 0$. With this value, we obtain from the three first equations

$$G_{20} = \frac{(a_{20})^{(3)}G_{21}}{[(a_{20}^{'})^{(3)} + (a_{20}^{''})^{(3)}(T_{21}^{*})]} \quad , \quad G_{22} = \frac{(a_{22})^{(3)}G_{21}}{[(a_{22}^{'})^{(3)} + (a_{22}^{''})^{(3)}(T_{21}^{*})]}$$

Definition and uniqueness of T₂₅*:-

496

After hypothesis f(0) < 0, $f(\infty) > 0$ and the functions $(a_i^n)^{(4)}(T_{25})$ being increasing, it follows that there exists a unique T_{25}^* for which $f(T_{25}^*) = 0$. With this value, we obtain from the three first equations

$$G_{24} = \frac{(a_{24})^{(4)} G_{25}}{[(a_{24}^{'})^{(4)} + (a_{24}^{''})^{(4)} (T_{25}^{*})]} \quad , \quad G_{26} = \frac{(a_{26})^{(4)} G_{25}}{[(a_{26}^{'})^{(4)} + (a_{26}^{''})^{(4)} (T_{25}^{*})]}$$

Definition and uniqueness of T₂₉*:

497

After hypothesis f(0) < 0, $f(\infty) > 0$ and the functions $(a_i^{''})^{(5)}(T_{29})$ being increasing, it follows that there exists a unique T_{29}^* for which $f(T_{29}^*) = 0$. With this value, we obtain from the three first equations

$$G_{28} = \frac{(a_{28})^{(5)}G_{29}}{[(a_{28}^{'})^{(5)} + (a_{28}^{''})^{(5)}(T_{29}^{*})]} \quad , \quad G_{30} = \frac{(a_{30})^{(5)}G_{29}}{[(a_{30}^{'})^{(5)} + (a_{30}^{''})^{(5)}(T_{29}^{*})]}$$

Definition and uniqueness of T₃₃ :-

498

499

After hypothesis f(0) < 0, $f(\infty) > 0$ and the functions $(a_i^{''})^{(6)}(T_{33})$ being increasing, it follows that there exists a unique T_{33}^* for which $f(T_{33}^*) = 0$. With this value, we obtain from the three first equations

$$G_{32} = \frac{(a_{32})^{(6)}G_{33}}{[(a'_{32})^{(6)} + (a''_{32})^{(6)}(T^*_{33})]}$$
, $G_{34} = \frac{(a_{34})^{(6)}G_{33}}{[(a'_{34})^{(6)} + (a''_{34})^{(6)}(T^*_{33})]}$

(e) By the same argument, the equations of global system admit solutions G_{13} , G_{14} if

 $\varphi(G) = (b'_{13})^{(1)}(b'_{14})^{(1)} - (b_{13})^{(1)}(b_{14})^{(1)} -$

$$[(b_{13}^{'})^{(1)}(b_{14}^{''})^{(1)}(G) + (b_{14}^{'})^{(1)}(b_{13}^{''})^{(1)}(G)] + (b_{13}^{''})^{(1)}(G)(b_{14}^{''})^{(1)}(G) = 0$$

Where in $G(G_{13}, G_{14}, G_{15})$, G_{13} , G_{15} must be replaced by their values from 96. It is easy to see that φ is a decreasing function in G_{14} taking into account the hypothesis $\varphi(0) > 0$, $\varphi(\infty) < 0$ it follows that there exists a unique G_{14}^* such that $\varphi(G^*) = 0$

(f) By the same argument, the equations 92,93 admit solutions G_{16} , G_{17} if

$$\varphi(G_{19}) = (b_{16}^{'})^{(2)}(b_{17}^{'})^{(2)} - (b_{16})^{(2)}(b_{17})^{(2)} -$$

$$[(b_{16}^{'})^{(2)}(b_{17}^{"})^{(2)}(G_{19}) + (b_{17}^{'})^{(2)}(b_{16}^{"})^{(2)}(G_{19})] + (b_{16}^{"})^{(2)}(G_{19})(b_{17}^{"})^{(2)}(G_{19}) = 0$$

Where in $(G_{19})(G_{16}, G_{17}, G_{18})$, G_{16} , G_{18} must be replaced by their values from 96. It is easy to see that φ is a decreasing function in G_{17} taking into account the hypothesis $\varphi(0) > 0$, $\varphi(\infty) < 0$ it follows that there exists a unique G_{14}^* such that $\varphi((G_{19})^*) = 0$

(g) By the same argument, the equations of the global system admit solutions G_{20} , G_{21} if

$$\varphi(G_{23}) = (b'_{20})^{(3)}(b'_{21})^{(3)} - (b_{20})^{(3)}(b_{21})^{(3)} -$$

$$[(b_{20}^{\prime})^{(3)}(b_{21}^{\prime\prime})^{(3)}(G_{23}) + (b_{21}^{\prime})^{(3)}(b_{20}^{\prime\prime})^{(3)}(G_{23})] + (b_{20}^{\prime\prime})^{(3)}(G_{23})(b_{21}^{\prime\prime})^{(3)}(G_{23}) = 0$$

Where in $G_{23}(G_{20}, G_{21}, G_{22})$, G_{20} , G_{22} must be replaced by their values from 96. It is easy to see that φ is a decreasing function in G_{21} taking into account the hypothesis $\varphi(0) > 0$, $\varphi(\infty) < 0$ it follows that there exists a unique G_{21}^* such that $\varphi((G_{23})^*) = 0$

(h) By the same argument, the equations of the global system admit solutions G_{24} , G_{25} if

503

$$\varphi(G_{27}) = (b_{24}^{'})^{(4)}(b_{25}^{'})^{(4)} - (b_{24})^{(4)}(b_{25})^{(4)} -$$

$$\left[(b_{24}^{'})^{(4)}(b_{25}^{''})^{(4)}(G_{27})+(b_{25}^{'})^{(4)}(b_{24}^{''})^{(4)}(G_{27})\right]+(b_{24}^{''})^{(4)}(G_{27})(b_{25}^{''})^{(4)}(G_{27})=0$$

Where in $(G_{27})(G_{24}, G_{25}, G_{26})$, G_{24} , G_{26} must be replaced by their values. It is easy to see that φ is a decreasing function in G_{25} taking into account the hypothesis $\varphi(0) > 0$, $\varphi(\infty) < 0$ it follows that there exists a unique G_{25}^* such that $\varphi((G_{27})^*) = 0$

(i) By the same argument, the global equations admit solutions G_{28} , G_{29} if

504

$$\varphi(G_{31}) = (b_{28}^{'})^{(5)}(b_{29}^{'})^{(5)} - (b_{28})^{(5)}(b_{29})^{(5)} -$$

$$\left[(b_{28}^{'})^{(5)}(b_{29}^{''})^{(5)}(G_{31})+(b_{29}^{'})^{(5)}(b_{28}^{''})^{(5)}(G_{31})\right]+(b_{28}^{''})^{(5)}(G_{31})(b_{29}^{''})^{(5)}(G_{31})=0$$

Where in $(G_{31})(G_{28}, G_{29}, G_{30})$, G_{28} , G_{30} must be replaced by their values from 96. It is easy to see that φ is a decreasing function in G_{29} taking into account the hypothesis $\varphi(0) > 0$, $\varphi(\infty) < 0$ it follows that there exists a unique G_{29}^* such that $\varphi((G_{31})^*) = 0$

(j) By the same argument, the global equations admit solutions G_{32} , G_{33} if $\varphi(G_{35}) = (b_{32}^{'})^{(6)}(b_{33}^{'})^{(6)} - (b_{32})^{(6)}(b_{33})^{(6)} -$

$$\left[(b_{32}^{'})^{(6)}(b_{33}^{''})^{(6)}(G_{35}) + (b_{33}^{'})^{(6)}(b_{32}^{''})^{(6)}(G_{35}) \right] + (b_{32}^{''})^{(6)}(G_{35})(b_{33}^{''})^{(6)}(G_{35}) = 0$$

Where in $(G_{35})(G_{32}, G_{33}, G_{34})$, G_{32} , G_{34} must be replaced by their values from 96. It is easy to see that φ is a decreasing function in G_{33} taking into account the hypothesis $\varphi(0) > 0$, $\varphi(\infty) < 0$ it follows that there exists a

unique G_{33}^* such that $\varphi(G^*) = 0$

Finally we obtain the unique solution of the global system:

506

 G_{14}^* given by $\varphi(G^*) = 0$, T_{14}^* given by $f(T_{14}^*) = 0$ and

$$G_{13}^* = \tfrac{(a_{13})^{(1)}G_{14}^*}{[(a_{13}^{'})^{(1)} + (a_{13}^{''})^{(1)}(T_{14}^*)]} \quad , \quad G_{15}^* = \tfrac{(a_{15})^{(1)}G_{14}^*}{[(a_{15}^{'})^{(1)} + (a_{15}^{''})^{(1)}(T_{14}^*)]}$$

$$T_{13}^* = \frac{(b_{13})^{(1)}T_{14}^*}{\left[(b_{13}^{'})^{(1)}-(b_{13}^{''})^{(1)}(G^*)\right]} \quad , \quad T_{15}^* = \frac{(b_{15})^{(1)}T_{14}^*}{\left[(b_{15}^{'})^{(1)}-(b_{15}^{''})^{(1)}(G^*)\right]}$$

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

507 508

509

$$G_{17}^*$$
 given by $\varphi((G_{19})^*) = 0$, T_{17}^* given by $f(T_{17}^*) = 0$ and

$$G_{16}^* = \frac{(a_{16})^{(2)} G_{17}^*}{[(a_{16}^{'})^{(2)} + (a_{16}^{''})^{(2)} (T_{17}^*)]} \quad , \quad G_{18}^* = \frac{(a_{18})^{(2)} G_{17}^*}{[(a_{18}^{'})^{(2)} + (a_{18}^{''})^{(2)} (T_{17}^*)]}$$

$$T_{16}^* = \frac{(b_{16})^{(2)} T_{17}^*}{\left[(b_{16}^{'})^{(2)} - (b_{16}^{''})^{(2)}((G_{19})^*)\right]} \quad , \quad T_{18}^* = \frac{(b_{18})^{(2)} T_{17}^*}{\left[(b_{18}^{'})^{(2)} - (b_{18}^{''})^{(2)}((G_{19})^*)\right]}$$

Obviously, these values represent an equilibrium solution 511

Finally we obtain the unique solution

512

513

 G_{21}^* given by $\varphi((G_{23})^*) = 0$, T_{21}^* given by $f(T_{21}^*) = 0$ and

$$G_{20}^* = \frac{(a_{20})^{(3)} G_{21}^*}{[(a'_{20})^{(3)} + (a''_{20})^{(3)} (T_{21}^*)]} \quad , \quad G_{22}^* = \frac{(a_{22})^{(3)} G_{21}^*}{[(a'_{22})^{(3)} + (a''_{22})^{(3)} (T_{21}^*)]}$$

$$T_{20}^* = \frac{(b_{20})^{(3)} T_{21}^*}{[(b_{20}^{'})^{(3)} - (b_{20}^{''})^{(3)} (G_{23}^*)]} \quad , \quad T_{22}^* = \frac{(b_{22})^{(3)} T_{21}^*}{[(b_{22}^{'})^{(3)} - (b_{22}^{''})^{(3)} (G_{23}^*)]}$$

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

 G_{25}^* given by $\varphi(G_{27})=0$, T_{25}^* given by $f(T_{25}^*)=0$ and

$$G_{24}^* = \frac{(a_{24})^{(4)} G_{25}^*}{[(a_{24}^{'})^{(4)} + (a_{24}^{''})^{(4)}(T_{25}^*)]} \quad , \quad G_{26}^* = \frac{(a_{26})^{(4)} G_{25}^*}{[(a_{26}^{'})^{(4)} + (a_{26}^{''})^{(4)}(T_{25}^*)]}$$

$$T_{24}^* = \frac{(b_{24})^{(4)} T_{25}^*}{\left[(b_{24})^{(4)} - (b_{24})^{(4)} ((G_{27})^*) \right]} , \quad T_{26}^* = \frac{(b_{26})^{(4)} T_{25}^*}{\left[(b_{26})^{(4)} - (b_{26})^{(4)} ((G_{27})^*) \right]}$$
 514

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

515

 G_{29}^* given by $\varphi((G_{31})^*) = 0$, T_{29}^* given by $f(T_{29}^*) = 0$ and

$$G_{28}^* = \frac{(a_{28})^{(5)} G_{29}^*}{\left[(a_{28}^{'})^{(5)} + (a_{28}^{''})^{(5)} (T_{29}^*) \right]} \quad , \quad G_{30}^* = \frac{(a_{30})^{(5)} G_{29}^*}{\left[(a_{30}^{'})^{(5)} + (a_{30}^{''})^{(5)} (T_{29}^*) \right]}$$

$$T_{28}^* = \frac{(b_{28})^{(5)} T_{29}^*}{\left[(b_{28}^{'})^{(5)} - (b_{28}^{'})^{(5)} ((G_{31})^*) \right]} , \quad T_{30}^* = \frac{(b_{30})^{(5)} T_{29}^*}{\left[(b_{30}^{'})^{(5)} - (b_{30}^{''})^{(5)} ((G_{31})^*) \right]}$$

$$516$$

Obviously, these values represent an equilibrium solution

 G_{33}^* given by $\varphi((G_{35})^*) = 0$, T_{33}^* given by $f(T_{33}^*) = 0$ and

$$G_{32}^* = \tfrac{(a_{32})^{(6)}G_{33}^*}{[(a_{32}^{'})^{(6)} + (a_{32}^{'})^{(6)}(T_{33}^*)]} \quad , \quad G_{34}^* = \tfrac{(a_{34})^{(6)}G_{33}^*}{[(a_{34}^{'})^{(6)} + (a_{34}^{'})^{(6)}(T_{33}^*)]}$$

$$T_{32}^* = \frac{(b_{32})^{(6)} T_{33}^*}{\left[(b_{32}^{'})^{(6)} - (b_{32}^{'})^{(6)}((G_{35})^*) \right]} , \quad T_{34}^* = \frac{(b_{34})^{(6)} T_{33}^*}{\left[(b_{34}^{'})^{(6)} - (b_{34}^{''})^{(6)}((G_{35})^*) \right]}$$

$$518$$

Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions $(a_i^{''})^{(1)}$ and $(b_i^{''})^{(1)}$ Belong to $C^{(1)}(\mathbb{R}_+)$ then the above equilibrium point is asymptotically stable.

Proof:_Denote

<u>Definition of</u> \mathbb{G}_i , \mathbb{T}_i :-

$$G_i = G_i^* + \mathbb{G}_i$$
 , $T_i = T_i^* + \mathbb{T}_i$

$$\frac{\frac{\partial (a_{14}^{''})^{(1)}}{\partial T_{14}}(T_{14}^*) = (q_{14})^{(1)} \ , \, \frac{\partial (b_i^{''})^{(1)}}{\partial G_j}(G^*) = s_{ij}$$

Then taking into account equations of global system neglecting the terms of power 2, we obtain

$$\frac{d \,\mathbb{G}_{13}}{dt} = -\left((a'_{13})^{(1)} + (p_{13})^{(1)} \right) \mathbb{G}_{13} + (a_{13})^{(1)} \mathbb{G}_{14} - (q_{13})^{(1)} G_{13}^* \,\mathbb{T}_{14}$$

$$520$$

$$\frac{d\,\mathbb{G}_{14}}{dt} = -\left((a_{14}^{'})^{(1)} + (p_{14})^{(1)} \right) \mathbb{G}_{14} + (a_{14})^{(1)} \mathbb{G}_{13} - (q_{14})^{(1)} G_{14}^* \mathbb{T}_{14}$$

$$521$$

$$\frac{d\mathbb{G}_{15}}{dt} = -\left((a'_{15})^{(1)} + (p_{15})^{(1)} \right) \mathbb{G}_{15} + (a_{15})^{(1)} \mathbb{G}_{14} - (q_{15})^{(1)} G_{15}^* \mathbb{T}_{14}$$
522

$$\frac{d\mathbb{T}_{13}}{dt} = -\left((b'_{13})^{(1)} - (r_{13})^{(1)} \right) \mathbb{T}_{13} + (b_{13})^{(1)} \mathbb{T}_{14} + \sum_{j=13}^{15} \left(s_{(13)(j)} T_{13}^* \, \mathbb{G}_j \right)$$

$$523$$

$$\frac{d\mathbb{T}_{14}}{dt} = -\left((b'_{14})^{(1)} - (r_{14})^{(1)}\right)\mathbb{T}_{14} + (b_{14})^{(1)}\mathbb{T}_{13} + \sum_{j=13}^{15} \left(s_{(14)(j)}T_{14}^*\mathbb{G}_j\right)$$
524

$$\frac{d\mathbb{T}_{15}}{dt} = -\left((b_{15}^{'})^{(1)} - (r_{15})^{(1)} \right) \mathbb{T}_{15} + (b_{15})^{(1)} \mathbb{T}_{14} + \sum_{j=13}^{15} \left(s_{(15)(j)} T_{15}^* \mathbb{G}_j \right)$$
⁵²⁵

If the conditions of the previous theorem are satisfied and if the functions $(a_i^n)^{(2)}$ and $(b_i^n)^{(2)}$ Belong to $C^{(2)}(\mathbb{R}_+)$ then the above equilibrium point is asymptotically stable

Definition of \mathbb{G}_i , \mathbb{T}_i :-

$$G_i = G_i^* + \mathbb{G}_i \qquad , T_i = T_i^* + \mathbb{T}_i$$

$$\frac{\partial (a_{17}^{"})^{(2)}}{\partial T_{17}}(T_{17}^{*}) = (q_{17})^{(2)} , \frac{\partial (b_{i}^{"})^{(2)}}{\partial G_{i}}((G_{19})^{*}) = s_{ij}$$
528

taking into account equations (global) and neglecting the terms of power 2, we obtain

$$\frac{\mathrm{d}\mathbb{G}_{16}}{\mathrm{d}t} = -\left((a'_{16})^{(2)} + (p_{16})^{(2)} \right) \mathbb{G}_{16} + (a_{16})^{(2)} \mathbb{G}_{17} - (q_{16})^{(2)} \mathbb{G}_{16}^* \mathbb{T}_{17}$$

$$529$$

$$\frac{\mathrm{d}\mathbb{G}_{17}}{\mathrm{d}t} = -\left((a'_{17})^{(2)} + (p_{17})^{(2)} \right) \mathbb{G}_{17} + (a_{17})^{(2)} \mathbb{G}_{16} - (q_{17})^{(2)} \mathbb{G}_{17}^* \mathbb{T}_{17}$$

$$530$$

$$\frac{\mathrm{d}\mathbb{G}_{18}}{\mathrm{d}t} = -\left((a_{18}')^{(2)} + (p_{18})^{(2)}\right)\mathbb{G}_{18} + (a_{18})^{(2)}\mathbb{G}_{17} - (q_{18})^{(2)}\mathbb{G}_{18}^*\mathbb{T}_{17}$$
531

$$\frac{\mathrm{d}\mathbb{T}_{16}}{\mathrm{d}t} = -\left((b_{16}^{'})^{(2)} - (r_{16})^{(2)} \right) \mathbb{T}_{16} + (b_{16})^{(2)} \mathbb{T}_{17} + \sum_{j=16}^{18} \left(s_{(16)(j)} \mathbb{T}_{16}^* \mathbb{G}_j \right)$$
532

$$\frac{\mathrm{d}\mathbb{T}_{17}}{\mathrm{d}t} = -\left((b_{17}^{'})^{(2)} - (r_{17})^{(2)} \right) \mathbb{T}_{17} + (b_{17})^{(2)} \mathbb{T}_{16} + \sum_{j=16}^{18} \left(s_{(17)(j)} \mathbb{T}_{17}^* \mathbb{G}_j \right)$$
533

$$\frac{\mathrm{d}\mathbb{T}_{18}}{\mathrm{d}t} = -\left((b_{18}^{'})^{(2)} - (r_{18})^{(2)} \right) \mathbb{T}_{18} + (b_{18})^{(2)} \mathbb{T}_{17} + \sum_{j=16}^{18} \left(s_{(18)(j)} \mathbb{T}_{18}^* \mathbb{G}_j \right)$$
534

If the conditions of the previous theorem are satisfied and if the functions $(a_i^{"})^{(3)}$ and $(b_i^{"})^{(3)}$ Belong to $C^{(3)}(\mathbb{R}_+)$ then the above equilibrium point is asymptotically stable.

Denote

Definition of \mathbb{G}_i , \mathbb{T}_i :-

$$G_i = G_i^* + \mathbb{G}_i$$
 , $T_i = T_i^* + \mathbb{T}_i$

$$\tfrac{\partial (a_{21}^{''})^{(3)}}{\partial T_{21}}(T_{21}^*) = (q_{21})^{(3)} \ , \, \tfrac{\partial (b_i^{''})^{(3)}}{\partial G_i}((G_{23})^*) = s_{ij}$$

Then taking into account equations (global) and neglecting the terms of power 2, we obtain 536

$$\frac{d\mathbb{G}_{20}}{dt} = -\left((a'_{20})^{(3)} + (p_{20})^{(3)} \right) \mathbb{G}_{20} + (a_{20})^{(3)} \mathbb{G}_{21} - (q_{20})^{(3)} G_{20}^* \mathbb{T}_{21}$$

$$537$$

$$\frac{d\mathbb{G}_{21}}{dt} = -\left((a'_{21})^{(3)} + (p_{21})^{(3)} \right) \mathbb{G}_{21} + (a_{21})^{(3)} \mathbb{G}_{20} - (q_{21})^{(3)} G_{21}^* \mathbb{T}_{21}$$

$$538$$

$$\frac{d \, \mathbb{G}_{22}}{dt} = -\left((a'_{22})^{(3)} + (p_{22})^{(3)} \right) \mathbb{G}_{22} + (a_{22})^{(3)} \mathbb{G}_{21} - (q_{22})^{(3)} G_{22}^* \mathbb{T}_{21}$$

$$539$$

$$\frac{d\mathbb{T}_{20}}{dt} = -\left((b'_{20})^{(3)} - (r_{20})^{(3)}\right)\mathbb{T}_{20} + (b_{20})^{(3)}\mathbb{T}_{21} + \sum_{j=20}^{22} \left(s_{(20)(j)}T_{20}^*\mathbb{G}_j\right)$$

$$540$$

$$\frac{d\mathbb{T}_{21}}{dt} = -\left((b'_{21})^{(3)} - (r_{21})^{(3)} \right) \mathbb{T}_{21} + (b_{21})^{(3)} \mathbb{T}_{20} + \sum_{j=20}^{22} \left(s_{(21)(j)} T_{21}^* \mathbb{G}_j \right)$$
⁵⁴¹

$$\frac{d\mathbb{T}_{22}}{dt} = -\left((b'_{22})^{(3)} - (r_{22})^{(3)}\right)\mathbb{T}_{22} + (b_{22})^{(3)}\mathbb{T}_{21} + \sum_{j=20}^{22} \left(s_{(22)(j)}T_{22}^*\mathbb{G}_j\right)$$

$$542$$

If the conditions of the previous theorem are satisfied and if the functions $(a_i^{"})^{(4)}$ and $(b_i^{"})^{(4)}$ Belong to $C^{(4)}(\mathbb{R}_+)$ then the above equilibrium point is asymptotically stable.

_Denote

Definition of
$$\mathbb{G}_i$$
, \mathbb{T}_i :-

$$G_i = G_i^* + \mathbb{G}_i$$
 , $T_i = T_i^* + \mathbb{T}_i$

$$\frac{\frac{\partial (a_{25}^{''})^{(4)}}{\partial T_{25}}(T_{25}^*) = (q_{25})^{(4)} \ , \ \frac{\partial (b_i^{''})^{(4)}}{\partial G_i}((G_{27})^*) = s_{ij}$$

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

$$\frac{d\,\mathbb{G}_{24}}{dt} = -\left((a'_{24})^{(4)} + (p_{24})^{(4)} \right) \mathbb{G}_{24} + (a_{24})^{(4)} \mathbb{G}_{25} - (q_{24})^{(4)} G_{24}^* \mathbb{T}_{25}$$

$$545$$

$$\frac{d\mathbb{G}_{25}}{dt} = -\left((a'_{25})^{(4)} + (p_{25})^{(4)} \right) \mathbb{G}_{25} + (a_{25})^{(4)} \mathbb{G}_{24} - (q_{25})^{(4)} G_{25}^* \mathbb{T}_{25}$$

$$546$$

$$\frac{d\,\mathbb{G}_{26}}{dt} = -\left((a_{26}')^{(4)} + (p_{26})^{(4)} \right) \mathbb{G}_{26} + (a_{26})^{(4)} \mathbb{G}_{25} - (q_{26})^{(4)} G_{26}^* \mathbb{T}_{25}$$

$$547$$

$$\frac{d\mathbb{T}_{24}}{dt} = -\left((b'_{24})^{(4)} - (r_{24})^{(4)}\right)\mathbb{T}_{24} + (b_{24})^{(4)}\mathbb{T}_{25} + \sum_{j=24}^{26} \left(s_{(24)(j)}T_{24}^*\mathbb{G}_j\right)$$
548

$$\frac{d\mathbb{T}_{25}}{dt} = -\left((b_{25}^{'})^{(4)} - (r_{25})^{(4)}\right)\mathbb{T}_{25} + (b_{25})^{(4)}\mathbb{T}_{24} + \sum_{j=24}^{26} \left(s_{(25)(j)}T_{25}^*\mathbb{G}_j\right)$$

$$549$$

$$\frac{d\mathbb{T}_{26}}{dt} = -\left((b_{26}^{'})^{(4)} - (r_{26})^{(4)}\right)\mathbb{T}_{26} + (b_{26})^{(4)}\mathbb{T}_{25} + \sum_{j=24}^{26} \left(s_{(26)(j)}T_{26}^{*}\mathbb{G}_{j}\right)$$

If the conditions of the previous theorem are satisfied and if the functions $(a_i^{"})^{(5)}$ and $(b_i^{"})^{(5)}$ Belong to $C^{(5)}(\mathbb{R}_+)$ then the above equilibrium point is asymptotically stable.

_Denote

Definition of
$$\mathbb{G}_i$$
, \mathbb{T}_i :-

$$G_i = G_i^* + \mathbb{G}_i$$
 , $T_i = T_i^* + \mathbb{T}_i$

$$\frac{\partial (a_{29}^{''})^{(5)}}{\partial T_{29}}(T_{29}^*) = (q_{29})^{(5)} , \frac{\partial (b_i^{''})^{(5)}}{\partial G_j}((G_{31})^*) = s_{ij}$$

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

$$\frac{d\mathbb{G}_{28}}{dt} = -\left((a_{28}')^{(5)} + (p_{28})^{(5)}\right)\mathbb{G}_{28} + (a_{28})^{(5)}\mathbb{G}_{29} - (q_{28})^{(5)}G_{28}^*\mathbb{T}_{29}$$

$$552$$

$$\frac{d\mathbb{G}_{29}}{dt} = -((a'_{29})^{(5)} + (p_{29})^{(5)})\mathbb{G}_{29} + (a_{29})^{(5)}\mathbb{G}_{28} - (q_{29})^{(5)}G^*_{29}\mathbb{T}_{29}$$
553

$$\frac{d\mathbb{G}_{30}}{dt} = -\left((a'_{30})^{(5)} + (p_{30})^{(5)} \right) \mathbb{G}_{30} + (a_{30})^{(5)} \mathbb{G}_{29} - (q_{30})^{(5)} G_{30}^* \mathbb{T}_{29}$$
554

$$\frac{d\mathbb{T}_{28}}{dt} = -\left((b_{28}')^{(5)} - (r_{28})^{(5)}\right)\mathbb{T}_{28} + (b_{28})^{(5)}\mathbb{T}_{29} + \sum_{i=28}^{30} \left(s_{(28)(i)}T_{28}^*\mathbb{G}_i\right)$$
555

$$\frac{d\mathbb{T}_{29}}{dt} = -\left((b_{29}^{'})^{(5)} - (r_{29})^{(5)}\right)\mathbb{T}_{29} + (b_{29})^{(5)}\mathbb{T}_{28} + \sum_{i=28}^{30} \left(s_{(29)(i)}T_{29}^{*}\mathbb{G}_{i}\right)$$
556

$$\frac{d\mathbb{T}_{30}}{dt} = -\left((b'_{30})^{(5)} - (r_{30})^{(5)}\right)\mathbb{T}_{30} + (b_{30})^{(5)}\mathbb{T}_{29} + \sum_{j=28}^{30} \left(s_{(30)(j)}T_{30}^*\mathbb{G}_j\right)$$

$$557$$

If the conditions of the previous theorem are satisfied and if the functions $(a_i^n)^{(6)}$ and $(b_i^n)^{(6)}$ Belong to $C^{(6)}(\mathbb{R}_+)$ then the above equilibrium point is asymptotically stable.

Denote

<u>Definition of G_i, T_i:</u> - 558

$$G_i = G_i^* + \mathbb{G}_i \qquad , T_i = T_i^* + \mathbb{T}_i$$

$$\frac{\frac{\partial (a_{33}^{''})^{(6)}}{\partial T_{33}}(T_{33}^*) = (q_{33})^{(6)} \ , \ \frac{\partial (b_i^{''})^{(6)}}{\partial G_i}((G_{35})^*) = s_{ij}$$

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

$$\frac{d\mathbb{G}_{32}}{dt} = -\left((a'_{32})^{(6)} + (p_{32})^{(6)} \right) \mathbb{G}_{32} + (a_{32})^{(6)} \mathbb{G}_{33} - (q_{32})^{(6)} G_{32}^* \mathbb{T}_{33}$$

$$559$$

$$\frac{d\mathbb{G}_{33}}{dt} = -\left((a'_{33})^{(6)} + (p_{33})^{(6)}\right)\mathbb{G}_{33} + (a_{33})^{(6)}\mathbb{G}_{32} - (q_{33})^{(6)}G^*_{33}\mathbb{T}_{33}$$

$$\frac{d\mathbb{G}_{34}}{dt} = -\left((a'_{34})^{(6)} + (p_{34})^{(6)}\right)\mathbb{G}_{34} + (a_{34})^{(6)}\mathbb{G}_{33} - (q_{34})^{(6)}G^*_{34}\mathbb{T}_{33}$$
⁵⁶¹

$$\frac{d\mathbb{T}_{32}}{dt} = -\left((b'_{32})^{(6)} - (r_{32})^{(6)}\right)\mathbb{T}_{32} + (b_{32})^{(6)}\mathbb{T}_{33} + \sum_{j=32}^{34} \left(s_{(32)(j)}T_{32}^*\mathbb{G}_j\right)$$
562

$$\frac{d\mathbb{T}_{33}}{dt} = -\left((b'_{33})^{(6)} - (r_{33})^{(6)}\right)\mathbb{T}_{33} + (b_{33})^{(6)}\mathbb{T}_{32} + \sum_{j=32}^{34} \left(s_{(33)(j)}T_{33}^*\mathbb{G}_j\right)$$
563

$$\frac{d\mathbb{T}_{34}}{dt} = -\left((b'_{34})^{(6)} - (r_{34})^{(6)}\right)\mathbb{T}_{34} + (b_{34})^{(6)}\mathbb{T}_{33} + \sum_{i=32}^{34} \left(s_{(34)(i)}T_{34}^*\mathbb{G}_i\right)$$

The characteristic equation of this system is

$$((\lambda)^{(1)} + (b_{15}^{'})^{(1)} - (r_{15})^{(1)})\{((\lambda)^{(1)} + (a_{15}^{'})^{(1)} + (p_{15})^{(1)})\}$$

$$\left[\left((\lambda)^{(1)} + (a_{13}^{'})^{(1)} + (p_{13})^{(1)}\right)(q_{14})^{(1)}G_{14}^{*} + (a_{14})^{(1)}(q_{13})^{(1)}G_{13}^{*}\right)\right]$$

$$\left(\left((\lambda)^{(1)} + (b'_{13})^{(1)} - (r_{13})^{(1)} \right) s_{(14),(14)} T_{14}^* + (b_{14})^{(1)} s_{(13),(14)} T_{14}^* \right)$$

$$+ \left(\left((\lambda)^{(1)} + (a_{14}^{'})^{(1)} + (p_{14})^{(1)} \right) (q_{13})^{(1)} G_{13}^* + (a_{13})^{(1)} (q_{14})^{(1)} G_{14}^* \right)$$

$$\left(\left((\lambda)^{(1)} + (b'_{13})^{(1)} - (r_{13})^{(1)} \right) s_{(14),(13)} T_{14}^* + (b_{14})^{(1)} s_{(13),(13)} T_{13}^* \right)$$

$$\left(\left((\lambda)^{(1)}\right)^{2} + \left((a_{13}^{'})^{(1)} + (a_{14}^{'})^{(1)} + (p_{13})^{(1)} + (p_{14})^{(1)}\right)(\lambda)^{(1)}\right)$$

$$\left(\left((\lambda)^{(1)}\right)^2 + \left((b_{13}^{'})^{(1)} + (b_{14}^{'})^{(1)} - (r_{13})^{(1)} + (r_{14})^{(1)}\right)(\lambda)^{(1)}\right)$$

$$+\left(\left((\lambda)^{(1)}\right)^{2}+\left((a_{13}^{'})^{(1)}+(a_{14}^{'})^{(1)}+(p_{13})^{(1)}+(p_{14})^{(1)}\right)(\lambda)^{(1)}\right)(q_{15})^{(1)}G_{15}$$

$$+((\lambda)^{(1)}+(a_{13}^{'})^{(1)}+(p_{13})^{(1)})((a_{15})^{(1)}(q_{14})^{(1)}G_{14}^{*}+(a_{14})^{(1)}(a_{15})^{(1)}(q_{13})^{(1)}G_{13}^{*})$$

$$\left(\left((\lambda)^{(1)}+(b_{13}^{'})^{(1)}-(r_{13})^{(1)}\right)s_{(14),(15)}T_{14}^{*}+(b_{14})^{(1)}s_{(13),(15)}T_{13}^{*}\right)\}=0$$

+

$$((\lambda)^{(2)} + (b'_{18})^{(2)} - (r_{18})^{(2)})\{((\lambda)^{(2)} + (a'_{18})^{(2)} + (p_{18})^{(2)})\}$$

$$\left[\left((\lambda)^{(2)} + (a'_{16})^{(2)} + (p_{16})^{(2)} \right) (q_{17})^{(2)} G_{17}^* + (a_{17})^{(2)} (q_{16})^{(2)} G_{16}^* \right) \right]$$

$$\begin{split} &\left(\left((\lambda)^{(2)} + (b_{16}^{'})^{(2)} - (r_{16})^{(2)}\right) s_{(17),(17)} T_{17}^{*} + (b_{17})^{(2)} s_{(16),(17)} T_{17}^{*}\right) \\ &+ \left(\left((\lambda)^{(2)} + (a_{17}^{'})^{(2)} + (p_{17})^{(2)}\right) (q_{16})^{(2)} G_{16}^{*} + (a_{16})^{(2)} (q_{17})^{(2)} G_{17}^{*}\right) \\ &+ \left(\left((\lambda)^{(2)} + (b_{16}^{'})^{(2)} - (r_{16})^{(2)}\right) s_{(17),(16)} T_{17}^{*} + (b_{17})^{(2)} s_{(16),(16)} T_{16}^{*}\right) \\ &+ \left(\left((\lambda)^{(2)}\right)^{2} + \left((a_{16}^{'})^{(2)} + (a_{17}^{'})^{(2)} + (p_{16})^{(2)} + (p_{17})^{(2)}\right) (\lambda)^{(2)}\right) \\ &+ \left(\left((\lambda)^{(2)}\right)^{2} + \left((a_{16}^{'})^{(2)} + (a_{17}^{'})^{(2)} + (p_{16})^{(2)} + (r_{17})^{(2)}\right) (\lambda)^{(2)}\right) \\ &+ \left(\left((\lambda)^{(2)}\right)^{2} + \left((a_{16}^{'})^{(2)} + (a_{17}^{'})^{(2)} + (p_{16})^{(2)} + (p_{17})^{(2)}\right) (\lambda)^{(2)}\right) \\ &+ \left(\left((\lambda)^{(2)}\right)^{2} + \left((a_{16}^{'})^{(2)} + (a_{17}^{'})^{(2)} + (p_{16})^{(2)} + (p_{17})^{(2)}\right) (\lambda)^{(2)}\right) \\ &+ \left(\left((\lambda)^{(2)}\right)^{2} + \left(a_{16}^{'}\right)^{(2)} + (p_{16}^{'})^{(2)}\right) \left(\left(a_{18}\right)^{(2)} \left(q_{17}\right)^{(2)} G_{17}^{*} + (a_{17})^{(2)} \left(a_{18}\right)^{(2)} \left(q_{16}\right)^{(2)} G_{18}^{*}\right) \\ &+ \left(\left((\lambda)^{(2)}\right) + \left(a_{16}^{'}\right)^{(2)} + \left(p_{16}\right)^{(2)}\right) \left(\left(a_{18}\right)^{(2)} \left(q_{17}\right)^{(2)} G_{17}^{*} + \left(a_{17}\right)^{(2)} \left(a_{18}\right)^{(2)} \left(q_{16}\right)^{(2)} G_{16}^{*}\right) \\ &+ \left(\left((\lambda)^{(2)}\right) + \left(b_{16}^{'}\right)^{(2)} - \left(r_{16}\right)^{(2)}\right) s_{(17),(18)} T_{17}^{*} + \left(b_{17}\right)^{(2)} s_{(16),(18)} T_{16}^{*}\right) \} = 0 \\ &+ \\ &+ \left(\left((\lambda)^{(3)}\right) + \left(b_{16}^{'}\right)^{(2)} - \left(r_{16}\right)^{(2)}\right) s_{(17),(18)} T_{17}^{*} + \left(b_{17}\right)^{(2)} s_{(16),(18)} T_{16}^{*}\right) \\ &+ \left(\left((\lambda)^{(3)}\right) + \left(a_{20}^{'}\right)^{(3)} + \left(p_{20}\right)^{(3)}\right) s_{(21),(21)} T_{21}^{*} + \left(a_{17}\right)^{(2)} s_{(16),(18)} T_{16}^{*}\right) \\ &+ \left(\left((\lambda)^{(3)}\right) + \left(a_{20}^{'}\right)^{(3)} + \left(p_{20}\right)^{(3)}\right) s_{(21),(21)} T_{21}^{*} + \left(b_{21}\right)^{(3)} s_{(20),(21)} T_{21}^{*}\right) \\ &+ \left(\left((\lambda)^{(3)}\right) + \left(a_{20}^{'}\right)^{(3)} + \left(p_{20}\right)^{(3)}\right) s_{(21),(21)} T_{21}^{*} + \left(b_{21}\right)^{(3)} s_{(20),(21)} T_{20}^{*}\right) \\ &+ \left(\left((\lambda)^{(3)}\right) + \left(b_{20}^{'}\right)^{(3)} + \left(b_{21}^{'}\right)^{(3)}\right) \left(\left(a_{22}\right)^{(3)} + \left(a_{21}^{'}\right)^{(3)}\right) \left(\left(a_{22}\right)^{(3)} \left(a_{22}\right$$

$$+ \left(((\lambda)^{(4)} + (a_{23}')^{(4)} + (p_{25})^{(4)})(q_{24})^{(4)} G_{24}^* + (a_{24})^{(4)}(q_{25})^{(4)} G_{25}^* \right)$$

$$- \left(((\lambda)^{(4)} + (b_{24}')^{(4)} - (r_{24})^{(4)}) s_{(25),(24)} T_{25}^* + (b_{25})^{(4)} s_{(24),(24)} T_{24}^* \right)$$

$$- \left(((\lambda)^{(4)})^2 + ((a_{24}')^{(4)} + (a_{25}')^{(4)} + (p_{24})^{(4)} + (p_{25})^{(4)}) (\lambda)^{(4)} \right)$$

$$- \left(((\lambda)^{(4)})^2 + ((a_{24}')^{(4)} + (b_{25}')^{(4)} - (r_{24})^{(4)} + (r_{25})^{(4)}) (\lambda)^{(4)} \right)$$

$$+ \left(((\lambda)^{(4)})^2 + ((a_{24}')^{(4)} + (a_{25}')^{(4)} + (p_{24})^{(4)} + (p_{25})^{(4)}) (\lambda)^{(4)} \right) (q_{26})^{(4)} G_{26}$$

$$+ \left(((\lambda)^{(4)})^2 + ((a_{24}')^{(4)} + (p_{24}')^{(4)}) ((a_{26})^{(4)} (q_{25})^{(4)} G_{25}^* + (a_{25})^{(4)}) (\lambda)^{(4)} \right) (q_{26})^{(4)} G_{26}$$

$$+ \left(((\lambda)^{(4)} + (a_{24}')^{(4)} + (p_{24}')^{(4)}) (a_{26})^{(4)} (q_{25})^{(4)} G_{25}^* + (a_{25})^{(4)} (a_{26})^{(4)} (q_{24})^{(4)} G_{24}^* \right)$$

$$+ \left(((\lambda)^{(5)} + (b_{24}')^{(4)} - (r_{24})^{(4)}) s_{(25),(26)} T_{25}^* + (b_{25})^{(4)} s_{(24),(26)} T_{24}^* \right) \} = 0$$

$$+ \left(((\lambda)^{(5)} + (b_{20}')^{(5)} - (r_{20})^{(5)} \right) \left(((\lambda)^{(5)} + (a_{20}')^{(5)} + (p_{20})^{(5)} \right) \left((a_{29})^{(5)} G_{29}^* + (a_{29})^{(5)} (a_{29})^{(5)} G_{28}^* \right) \right]$$

$$+ \left(((\lambda)^{(5)} + (b_{20}')^{(5)} - (r_{28})^{(5)} \right) s_{(29),(29)} T_{29}^* + (b_{29})^{(5)} s_{(28),(29)} T_{29}^* \right)$$

$$+ \left(((\lambda)^{(5)} + (b_{20}')^{(5)} + (p_{29})^{(5)} \right) s_{(29),(28)} T_{29}^* + (b_{29})^{(5)} s_{(28),(28)} T_{29}^* \right)$$

$$+ \left(((\lambda)^{(5)})^2 + \left((a_{28}')^{(5)} + (b_{29}')^{(5)} + (p_{29})^{(5)} + (p_{29})^{(5)} \right) \left((\lambda)^{(5)} \right)$$

$$+ \left(((\lambda)^{(5)})^2 + \left((a_{28}')^{(5)} + (a_{29}')^{(5)} + (p_{29})^{(5)} + (p_{29})^{(5)} \right) \left((\lambda)^{(5)} \right)$$

$$+ \left(((\lambda)^{(5)} + (b_{28}')^{(5)} - (r_{28})^{(5)} \right) s_{(29),(30)} T_{29}^* + (b_{29})^{(5)} \right) s_{(28),(30)} T_{28}^* \right) \} = 0$$

$$+ \left(((\lambda)^{(5)})^2 + \left((a_{28}')^{(5)} + (a_{29}')^{(5)} + (p_{29}')^{(5)} + (p_{29}')^{(5)} \right) \left((\lambda)^{(5)} \right) \right)$$

$$+ \left(((\lambda)^{(5)})^4 + (b_{24}')^{(6)} - (r_{24})^{(6)} \right) \left\{ \left((\lambda)^{(6)} + (a_{24}')^{(6)} + (p_{23})$$

$$\left(\left((\lambda)^{(6)} + (b'_{32})^{(6)} - (r_{32})^{(6)} \right) s_{(33),(32)} T_{33}^* + (b_{33})^{(6)} s_{(32),(32)} T_{32}^* \right)$$

$$\left(\left((\lambda)^{(6)} \right)^2 + \left((a'_{32})^{(6)} + (a'_{33})^{(6)} + (p_{32})^{(6)} + (p_{33})^{(6)} \right) (\lambda)^{(6)} \right)$$

$$\left(\left((\lambda)^{(6)} \right)^2 + \left((b'_{32})^{(6)} + (b'_{33})^{(6)} - (r_{32})^{(6)} + (r_{33})^{(6)} \right) (\lambda)^{(6)} \right)$$

$$+ \left(\left((\lambda)^{(6)} \right)^2 + \left((a'_{32})^{(6)} + (a'_{33})^{(6)} + (p_{32})^{(6)} + (p_{33})^{(6)} \right) (\lambda)^{(6)} \right) (q_{34})^{(6)} G_{34}$$

$$+ \left((\lambda)^{(6)} + (a'_{32})^{(6)} + (p_{32})^{(6)} \right) \left((a_{34})^{(6)} (q_{33})^{(6)} G_{33}^* + (a_{33})^{(6)} (a_{34})^{(6)} (q_{32})^{(6)} G_{32}^* \right)$$

$$\left(\left((\lambda)^{(6)} + (b'_{32})^{(6)} - (r_{32})^{(6)} \right) s_{(33),(34)} T_{33}^* + (b_{33})^{(6)} s_{(32),(34)} T_{32}^* \right) \} = 0$$

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves the theorem.

Acknowledgments:

The introduction is a collection of information from various articles, Books, News Paper reports, Home Pages Of authors, Journal Reviews, the internet including Wikipedia. We acknowledge all authors who have contributed to the same. In the eventuality of the fact that there has been any act of omission on the part of the authors, We regret with great deal of compunction, contrition, and remorse. As Newton said, it is only because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt has been made to look slightly further. Once again, it is stated that the references are only illustrative and not comprehensive.

REFERENCES

- [1] Garey, Michael R.; Johnson, D. S. (1979). Victor Klee. Ed. Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co... pp. x+338. ISBN 0-7167-1045-5. MR 519066.
- [2] Agrawal, M.; Allender, E.; Rudich, Steven (1998). "Reductions in Circuit Complexity: An Isomorphism Theorem and a Gap Theorem". Journal of Computer and System Sciences (Boston, MA: Academic Press) 57 (2): 127–143. DOI:10.1006/jcss.1998.1583. ISSN 1090-2724
- [3] Agrawal, M.; Allender, E.; Impagliazzo, R.; Pitassi, T.; Rudich, Steven (2001). "Reducing the complexity of reductions". Computational Complexity (Birkhäuser Basel) 10 (2): 117–138.DOI:10.1007/s00037-001-8191-1. ISSN 1016-3328
- [4] Don Knuth, Tracy Larrabee, and Paul M. Roberts, Mathematical Writing § 25, MAA Notes No. 14, MAA, 1989 (also Stanford Technical Report, 1987).
- [5] Knuth, D. F. (1974). "A terminological proposal". SIGACT News 6 (1): 12–18. DOI:10.1145/1811129.1811130. Retrieved 2010-08-28
- [6] http://www.nature.com/news/2000/000113/full/news000113-10.html
- [7] Garey, M.R.; Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W.H. Freeman. ISBN 0-7167-1045-5. This book is a classic, developing the theory, and then cataloguing many NP-Complete problems.
- [8] Cook, S.A. (1971). "The complexity of theorem proving procedures". Proceedings, Third Annual ACM Symposium on the Theory of Computing, ACM, New York. pp. 151–158.DOI:10.1145/800157.805047.
- [9] Dunne, P.E. "An annotated list of selected NP-complete problems". COMP202, Dept. of Computer Science, University of Liverpool. Retrieved 2008-06-21.
- [10] Crescenzi, P.; Kann, V.; Halldórsson, M.; Karpinski, M.; Woeginger, G. "A compendium of NP optimization problems". KTH NADA, Stockholm. Retrieved 2008-06-21.
- [11] Dahlke, K. "NP-complete problems". Math Reference Project. Retrieved 2008-06-21.
- [12] Karlsson, R. "Lecture 8: NP-complete problems" (PDF). Dept. of Computer Science, Lund University, Sweden. Retrieved 2008-06-21.[dead link]
- [13] Sun, H.M. "The theory of NP-completeness" (PPT). Information Security Laboratory, Dept. of Computer Science, National Tsing Hua University, Hsinchu City, Taiwan. Retrieved 2008-06-21.
- [14] Jiang, J.R. "The theory of NP-completeness" (PPT). Dept. of Computer Science and Information Engineering, National Central University, Jhongli City, Taiwan. Retrieved 2008-06-21.
- [15] Cormen, T.H.; Leiserson, C.E., Rivest, R.L.; Stein, C. (2001). Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. Chapter 34: NP-Completeness, pp. 966–1021.ISBN 0-262-03293-7.
- [16] Sipser, M. (1997). Introduction to the Theory of Computation. PWS Publishing. Sections 7.4–7.5 (NP-completeness, Additional NP-complete Problems), pp. 248–271. ISBN 0-534-94728-X.
- [17] Papadimitriou, C. (1994). Computational Complexity (1st ed.). Addison Wesley. Chapter 9 (NP-complete problems), pp. 181–218. ISBN 0-201-53082-1.
- [18] Computational Complexity of Games and Puzzles

First Author: ¹**Mr. K. N.Prasanna Kumar** has three doctorates one each in Mathematics, Economics, Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt., for his work on 'Mathematical Models in Political Science'--- Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India

Second Author: ²**Prof. B.S Kiranagi** is the Former Chairman of the Department of Studies in Mathematics, Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent publication history.— UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India

Third Author: ³**Prof. C.S. Bagewadi** is the present Chairman of Department of Mathematics and Department of Studies in Computer Science and has guided over 25 students. He has published articles in both national and international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry, Differential Equations are coauthored by him---Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India