Do macroeconomic variables influence Bombay Stock Exchange (BSE 30) stock prices in India?

P R Venugopal¹, K Sudha Sahithi²

¹(Assistant Professor, Department of Commerce, Bhavan's Vivekananda College of Science, Humanities and Commerce, India)

²(B. Com (Hons), Bhavan's Vivekananda College of Science, Humanities and Commerce, India)

Abstract: Nowadays, financial well-being of a country is being measured by stock market indices. Broadly, the stock markets are a coalescence of exchanges and markets dealing with issuance and trading of securities. Such markets allow firms to procure long-term financesin exchange for a part of their profits to investors. Similarly, there are varied macroeconomic factors which connote a country's financial status and these two vital segments of India's economy might as well be related or impacted by each other's movements through time. This study's fundamental objective is to appraise the relationship linking select macroeconomic variables viz., call money rate, money supply (M3), exchange rate, gold &silver prices, forex reserves, and consumer price index as a proxy for inflation, and the stock prices of 30firms which form the basis for the principal barometer of India's economy, Bombay Stock Exchange's Sensex (BSE30). It tries to understand the degree of impact of select macroeconomic variables on prices of stocks and vice-versa. In this study, time series data is used. The required data is collected from reliable secondary sources such as RBI, BSE and other international sites. This study is conducted for the period Jan 2000- Aug 2017 month-wise and results were anticipated using OLS method and Granger causality test. And found Call Money rate, Exchange rate and Forex reserves showing significant impact on theIndian BSE 30 Index.

Keywords: BSE Sensex, macroeconomic variables, stock prices, OLS method, Granger Causality test

I. Introduction

A place where purchasers and vendors exchange securities at a price in a secondary market is referred to as Stock Exchange. Stock Exchanges played a vital function in the pooling of capital in emerging countries, leading to the increase of business of the country, because of liberalized and globalized policies adopted by Indian government after 1991, New Economic Policy.There are many aspects which can indicate volatility in the stock exchanges while expectingreturns and such factors are aggregate (macroeconomic) variables. Similarly, BSE 30 Index also changes due to the impact of some macroeconomic variables. This study will be helpful for investors as a guiding factor in knowing which economic variables to be considered whileinvesting to get some advantage to make better investment decisions.

The current research looks at seven macroeconomic variables as the independent variables: Consumer Price Index (CPI), Exchange Rate (ER), Money Supply (M3), Foreign Reserves (FR), Gold Prices(GP), Silver Prices(SP), Call Money Rate (CMR) and Bombay Stock Exchange's flagship index, BSE30 as the dependent variable. In thestudy, Sensex (BSE 30) and macroeconomic variablesimpact is tested using the Granger Causality Test using monthly data from January 2000 to August 2017. The ADF test is used to examine the stationarity of the data and diagnose the residuals for white noise. The objective is to investigate the effect of macroeconomic variables on the Bombay stock exchange (BSE 30) during the period 2000-2017. The present study adds literature to the existing literature.

II. Theoretical Framework

Many theories have been put forward by researchers to estimate the fluctuations in stock markets through the changes in macroeconomic variables. The Market Hypothesis Theorydeveloped by Fama (1970) and the Arbitrage Pricing Theory (APT) developed by Ross (1976) are famous ones. These theories are discussed as they relate the macroeconomic variables to stock market return. The Efficient Market Hypothesis widely known as random walk theory assumes that market prices should assimilate all available information at any juncture. The term "efficient market" was initiated by Eugene Fama (1970) who said that, "in an efficient market, on the average, competition will cause asymmetrical flow of informationwhich bring changes in intrinsic values to be reflected on actual prices".

Fama defined an efficient market as "a market where prices always reflect all available information". Indeed, profiting from predicted price activity is improbable and very tough as this theory proposes that the main factor behind price changes is the influx of new information. However, there are distinct forms of information that affect security values. Consequently, Fama's theory is explained in three variations namely: the weak form hypothesis, semi-strong form hypothesis and the strong form hypothesis depending on what "available information" means. This paper emphasizes on the semi-strong hypothesis as this is the most relevant for the study. The semi-strong hypothesis expounds that all publicly available information is hitherto incorporated into current prices, i.e., the asset prices reflect the accessible public information.

Indeed, the semi-strong hypothesis is utilized to inspect the positive or negative relationship between stock return and macroeconomic variables since it hypothesizes that economic factors are fully mirrored in the price of stocks. Public information can also include data stated in companies' financial statements, financial state of their competitors, for the analysis of pharmaceutical companies. Hence, information is public and is impossible to make profit using information that everybody else knows. So, the existence of market analysts is required to be able to understand the implication of vast financial information as well as to comprehend processes in product and input market.

2.1 The Arbitrage Pricing Theory

Developed by Ross (1976), the Arbitrage Pricing Theory (ATP) is another manner of relating macroeconomic variables to stock market return. It is an extension of the Capital Asset Pricing Model (CAPM) which is based on the mean variance framework by the assumption of the process generating security. In other words, CAPM is based on one factor, meaning that there is only one independent variable, which is the risk premium of the market. There are similar assumptions between CAPM and APT namely: the assumption of homogeneous expectations, perfectly competitive markets and frictionless capital markets. However, Ross (1976) proposes a multifactor approach to explaining asset pricing through the arbitrage pricing theory (APT). According to him, the primary influences on stock returns are some economic forces such as (1) unanticipated shifts in risk premiums; (2) changes in the expected level of industrial production; (3) unanticipated inflation and (4) unanticipated movements in the shape of the term structure of interest rate. These factors are denoted with factor specific coefficients that measure the sensitivity of the assets to each factor. APT is a different approach to determining asset prices and it derives its basis from the law of one price. As a matter of fact, in an efficient market, two items that are the same cannot sell at different prices; otherwise an arbitrage opportunity would exit.

APT requires that the returns on any stock should be linearly related to a set of indexes as shown in the following equation:

(1) $R_i = a_i + b_{i1}I_1 + b_{i2}I_2 + \dots + b_{ij}I_j + e_i$

Where, a_i = the expected level of return for stock i if all indices have a value of zero

 I_i = the return on stock I will be impacted by the value of the j_{th} index

 \dot{b}_{ij} = the sensitivity of stock i's return to the j_{th} index

 $e_i = a$ random error term with mean equal to zero and variance equal to

According to Chen and Ross (1986), individual stock depends on anticipated and unanticipated factors. They believe that most of the return realized by investors is the result of unanticipated events and these factors are related to the overall economic conditions. In fact, although asset returns can also be affected by influences that are not systematic to the economy, returns on portfolios are influenced by systematic risk because distinctive returns on individual assets are cancelled out through the process of diversification.

III. Keview of Literature					
S. No	Title	Author's Name	Variables	Methodology& Period	Results
1.	Impact Of macroeconomic variables on stock market performance in India: An empirical analysis (2014)	Venkatraja B	Independent Variables: IIP ¹ , WPI ² , GP ³ , FII ⁴ and REER ⁵ Dependent Variables: Sensex	Multiple regression model, ANOVA ⁶ on monthly data for Apr 2010- Jun 2014	Combined influence of WPI, IIP, FII, GP and REER on Sensex is strong and coefficients of all variables except IIP are statistically significant
2.	The impact of macroeconomic fundamentals on stock prices revised: A study of Indian stock market (2016)	Gurmeet Singh	Independent Variables: IIP, WPI, MS ⁷ , T-bill Rates, ER ⁸ Dependent Variables: Sensex	ADF ⁹ unit root test to check stationarity, Johansen's Co- integration test, VECM ¹⁰ and Granger Causality	Stock prices are positively related to WPI, MS, IR. IIP and ER negatively related to stock prices. Bidirectional causality between ER and stock price index & IR

21 |Page

III. Review of Literature

				framework on monthly data for Jan 2007- Mar 2014	and stock price index
3.	The effect of macroeconomic determinants on the performance of the Indian stock market (2012)	Samveg Patel	Independent Variables:IR ¹¹ , CPI ¹² , ER, IIP, MS, GP, SP ¹³ , OP ¹⁴ Dependent Variables: Sensex and S&P CNX Nifty ¹⁵	ADF Unit root test, Johansen Co- integration test, Granger Causality test and VECM on monthly data from Jan 1991- Dec 2011	IR is I(0); Sensex, Nifty, ER, IIP, GP, SP and OP, are I (1); and CPI and MS are I (2)
4.	An impact of macroeconomic variables on the functioning of Indian stock market: A study of manufacturing firms of BSE 500 (2015)	Gurloveleen K and Bhatia BS	Independent Variables: MS, CMR ¹⁶ , OP, ER, FR ¹⁷ , FII, GFD ¹⁸ , IIP, WPI, T-bill rates Dependent Variables: BSE 500 ¹⁹	ADF Unit root test, Granger Causality test, Multiple regression on monthly data from Apr 2006- Mar 2015	FII and ER found significant under multiple regression. No relationship between variables and BSE 500
5.	Impact of macroeconomic variables on the stock market prices of the Stockholm stock exchange (OMXS30) (2013)	Joseph Tagne Talla	Independent Variables: IR, ER, MS Dependent Variables: OMXS30 ²⁰	ADF Unit root test, Multivariate Regression Model, OLS method and Granger causality test on monthly data from Jan 1993- Dec 2012	CPI and ERhave significant negative influence on stock prices. IR has insignificant negative influence on stock price. MS is insignificant but positively associated to stock prices. Unidirectional causal relation from stock prices to CPI
6.	The impact of macroeconomic fundamentals on stock prices revisited: An evidence from Indian data (2012)	Naik Pramod Kumar and Padhi Puja	Independent Variables: IIP, WPI, MS, T-bill rates, ER Dependent Variables: Sensex	Johansen's co- integration and VECM, Granger causality test on monthly data from Apr 1994–Jul 2011	Stock prices positively relate to MS and IIP but negatively relate to WPI. Bidirectional causality exists between IIP and stock prices whereas, unidirectional causality from MS to stock price, stock price to WPI and interest rates to stock prices
7.	Macroeconomic indicators and Saudi equity market: A time series analysis (2016)	Ammar Yasser Almansour, Bashar Yaser Almansour	Independent Variables:IF, MS, OP, IR Dependent Variables:Saudi stock returns	ADF unit root test, Granger Causality Test, OLS on monthly data from Jan 2010- Dec 2014	Significant positive relationship between OP and stock returns. Unidirectional relationship between stock return and OP. Stock return Granger causes OP
8.	Macroeconomic link to Indian capital market: A post- liberalization evidence (2014)	Hirak Ray, Joy Sarkar	Independent Variables:IIP, WPI, T- bill rates, GB ²¹ , ER, MS Dependent Variables: Sensex	ADF unit root test, DF-GLS ²² test; VAR; Johansen Co- integration test, VECM, Granger causality test on monthly data from Jan 1991- Apr 2008	Indian stock market leads the economic activities and the core determinants of the asset market are IIP, MS and ER. Weak influence of other macroeconomic variables on stock market

IV. Research Gap

The previous studies have been conducted by taking a period of 10 years or lesser to analyze the effect on the stock returns over such period. This study is considering a large period of 17 years ranging from January 2000 – August 2017 month wise 212 observations which allows a more elaborate and comprehensive understanding of the impact of macroeconomic variables on stock returns. The Methodology corresponds to this study and selection of the variables have been chosen after due consideration to literature reviewed. BSE Sensex impacts varied financial strategies and it is the leading indicator of financial health of the Indian economy.

Methodology

V.

In this study the data wasobtained from RBI website and this is a time series data. The data is run in EViews software and the result found for each variable data is of non-stationarity. To make the data stationary the Augmented Dickey Fuller (ADF) test was conducted but the data failed to attain stationarity at Level, first difference and even at second difference. This can be seen in the output sheets put in annexure. Then the data was converted to log values for each of the eight variables. Again, the data was tested for stationarity, however the data could not attain stationarity. Then the data was put to Dlog (variable) for both the dependent variable and the independent variables i.e. First Difference and Second Difference.

After the data is obtained as stationary, the other tests like Unit Root Test, Normality Test, Heteroskedasticity Test, Serial Correlation LM Test and Granger Causality Test were conducted to know which variables were influencing the stock returns.

5.1 Unit Root Test

H_o: P = 1 Unit Root (Variable is not Stationary)

H₁: P < 1 No Unit Root (Variable is Stationary)

If the P value is lesser than 0.05, then we can reject the H_0 .

5.2 Serial Correlation LM Test

The presence of serial correlation is examined by Breusch - Godfrey serial correlation LM test.

H_o: No Auto Correlation

H₁: Auto Correlation

If the Probability value > 0.05 then we can accept H_0 . Hence, no auto correlation was found.

5.3 Heteroskedasticity test

This test is important to confirm the robustness of the OLS output since the results cannot be reliable in the presence of Heteroskedasticity.

Ho: No Heteroskedasticity

H₁: Heteroskedasticity

If the Probability Value is > 0.05 then we can accept the H₀. Hence, no heteroskedasticity was found.

5.4 Normality Test

This test is again very important test to find out whether the error term follows Normal Distribution and the hypotheses are stated as follows:

H_o: Residuals are normally distributed

H₁: Residuals are not normally distributed.

Again, if the Probability value > 0.05 then we can accept H₀.

5.5 Ordinary Least Square Method (OLS Method)

When the original data was run in the software, the conditions of heteroscedacity and auto correlation were not satisfied. Therefore, the variables were converted into log variables. The same were tested. But this data could not satisfy the conditions. The log variables were then converted into stationarity and then the OLS method and Granger Causality test were used.

(2) Sensex = f (CMR, GP, ER, FR, SP, CPI, M3)

The OLS equation is obtained.

(3) LBSE30 = f(c, LCMR, LCPI, DLM3, LER, LFR, LGP, LSP)

Then the OLS equation is obtained.

(4) D(LBSE30) = f(c, LCMR, DDLCPI, DDLM3, DLER, DLFR, DLGP, DLSP)

The data in this study hassatisfied all the conditions described in the methodology such as the residual normality test, Auto Correlation and Heteroskedasticitytest, hence the same are shown in the output sheets.

5.6 Granger Causality Test

The Granger Causality test is a statistical test which determines significance of a time series in forecasting another. This test aims at determining whether past values of a variable help to predict changes in another variable (Granger, 1988). Also, it says variableY is Granger caused by variable X if variable X helps in predicting the value of variable Y(Sarbapriya, 2012). Granger Causality test is applied to know whether there is unidirectional causal relation or there is bi-directional causal relation between the macroeconomic variables and the BSE 30 Index.

VI. Results

The original variables have failed to satisfy the Heteroskedacity test as the p values were less than 0.05 (as enclosed in the annexure). Therefore, we reject the null hypothesis meaning, there is a Heteroskedacity problem with the original data. Hence, Log has been introduced for the same variables. The results are shown below.

6.1 Unit Root Test

		Table 1: Unit Root	Test	
S. No.	Variable	Level	First Difference	Second Difference
1.	LBSE30 Index	0.3712	0.0000	-
2.	LCMR	0.0000	-	-
3.	LCPI	0.8943	0.1642	0.0000
4.	LER	0.8267	0.0000	-
5.	LFR	0.0154	0.0001	-
`6.	LM3	0.4399	0.6160	0.0000
7.	LGP	0.6678	0.0003	-
8.	LSP	0.6442	0.0000	-

Log variables denoted by "L".

From the above results we can say that the LBSE 30, LCPI, LER, LFR, LGP, LSP have attained stationarity after first difference and two variables LCPI and LM3 have attained Stationarity after Second difference and one variable LCMR attained Stationarity at level. After the log variables satisfied the unit root test we continue to conduct heteroskedacity test but the same problem of heteroskedacity persists.

To solve the problem of heteroskedacity, D, DD for the log variables were introduced. Now, unit root test is checked using ADF and the results are as below.

6.1.1 ADF test

	Table2: ADF test results are shown below for all the eight variables						
S. No	Variable	Null Hypothesis	P Value	Accept / Reject	Result		
1.	*D (LBSE 30)	Non-Stationary	0.0000	Reject	Stationary		
2.	LCMR	Non-Stationary	0.0000	Reject	Stationary		
3.	**DD(LCPI)	Non-Stationary	0.0000	Reject	Stationary		
4.	*D(LER)	Non-Stationary	0.0000	Reject	Stationary		
5.	*D(LFR)	Non-Stationary	0.0000	Reject	Stationary		
6.	**DD(LM3)	Non-Stationary	0.0000	Reject	Stationary		
7.	*D(LGP)	Non-Stationary	0.0000	Reject	Stationary		
8.	*D(LSP)	Non-Stationary	0.0000	Reject	Stationary		

**DD = Second difference *D = First difference L = log values

After the variables attained stationarity, OLS Method is applied to find the impact of the variables on the BSE 30 Index. The OLS model applied is as follows:

After the OLS output is obtained, the Heteroskedasticity test, Serial Correlation LM test and the Normality test were conducted, and the results were positive, satisfying all the conditions specified in the methodology.

6.2Serial Correlation LM Test

F-statistic Obs*R-squared	0.563409 4.770882			0.8070
Test Equation: Dependent Variable: RI Method: Least Squares Date: 11/01/17 Time: 2 Sample: 2000M03 2017 Included observations: Presample missing val	22:00 7M06 208	duals set to zer	·o.	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DDLM3 DDLM3 LDLER DLFR DLFR DLSP RESID(-1) RESID(-2) RESID(-2) RESID(-3) RESID(-5) RESID(-6) RESID(-7) RESID(-7)	0.000361 -0.050785 -55280 -0.019829 -0.019929 -0.007402 -0.07402 -0.07402 -0.07402 -0.07402 -0.07402 -0.07652 -0.07852 -0.022354 -0.022354 -0.078761	0.026109 0.490027 0.307297 0.291848 0.291848 0.257095 0.043313 0.073084 0.072447 0.072447 0.074551 0.072561 0.072861 0.072863 0.072368	0.013832 -0.193638 -0.19362 -0.19342 -0.170730 0.0243394 -0.170888 -0.728589 -0.58922 0.358478 -1.080957 -0.306937 -0.306937 -1.073506	0.989 0.917 0.847 0.996 0.864 0.864 0.864 0.868 0.868 0.868 0.720 0.281 0.928 0.729 0.284
Adjusted R-squared -0.053396 S.D. dependent var S.E. of regression 0.062076 Akaike info criterion Sum squared resid 0.739853 Schwarz criterion Log likelihood 291.3004 Hannan-Quinn criter.		-7.94E-1 0.06048 -2.64711 -2.39038 -2.54330 1.98354		

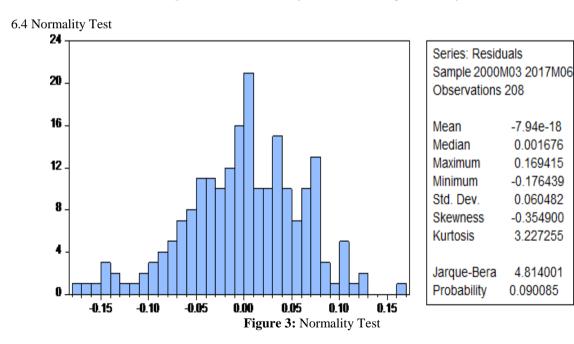
Figure 1: Breuch-Godfrey Serial Correlation LM Test

Name of Conference: International Conference on "Paradigm Shift in Taxation, Accounting, Finance and Insurance"

⁽⁵⁾ DLBSE 30 = f (C, DDLCPI, DDLM3, DLER, DLFR, LCMR, DLGP, DLSP)

From the table we can see that the Probability value is 0.8070, which is more than 0.05 and hencethe null hypothesis can be accepted. Thus, there is no auto correlation.

6.3 Heteroskedasticity test


From fig 2., we can see that the probability value is 0.3911 which is more than 0.05, enabling us to accept the null hypothesis. This means that the data has no problem of heteroskedasticity.

F-statistic	1.059494	Prob. F(7,200)	0.3911
Obs*R-squared	7.437321	Prob. Chi-Square(7)	0.3848
Scaled explained SS	7.657549	Prob. Chi-Square(7)	0.3638

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 11/01/17 Time: 21:32 Sample: 2000M03 2017M06 Included observations: 208

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005722	0.002269	2.521795	0.0125
DDLCPI	0.081866	0.042448	1.928635	0.0552
DDLM3	-0.008965	0.026576	-0.337327	0.7362
LCMR	-0.001279	0.001194	-1.071280	0.2853
DLER	0.037774	0.024930	1.515217	0.1313
DLFR	0.017443	0.018413	0.947306	0.3446
DLGP	-0.002775	0.004901	-0.566190	0.5719
DLSP	0.003128	0.003762	0.831355	0.4068
R-squared	0.035756	Mean depend	lent var	0.003640
Adjusted R-squared	0.002008	S.D. depende	ent var	0.005446
S.E. of regression	0.005441	Akaike info cr	iterion	-7.552118
Sum squared resid	0.005920	Schwarz crite	rion	-7.423751
Log likelihood	793.4203	Hannan-Quin	n criter.	-7.500213
F-statistic	1.059494	Durbin-Watso	on stat	1.999017
Prob(F-statistic)	0.391135			

Figure 2: Heteroskedacity Test: Breuch-Pagan-Godfrey

From the above table, it is clear that the probability value is 0.09 which is more than 0.05, thus we can accept the null hypothesis. The data has passed the normality test. Therefore, we can proceed for further analysis. 6.5OLS test

The data set has passed all the required tests we need to consider the OLS method to understand the impact of thevariables on te BSE30 Index. The OLS Method is applied to get the required output.

Name of Conference: International Conference on "Paradigm Shift in Taxation, Accounting, Finance and Insurance"

Dependent Variable: DLBSE30 Method: Least Squares Date: 11/01/17 Time: 21:31 Sample (adjusted): 2000M03 2017M06 Included observations: 208 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.047607	0.025660	1.855305	0.0650
DDLCPI	-0.391002	0.480063	-0.814481	0.4163
DDLM3	0.020254	0.300555	0.067388	0.9463
LCMR	-0.022615	0.013505	-1.674570	0.0956
DLER	-1.222109	0.281940	-4.334643	0.0000
DLFR	0.427571	0.208239	2.053275	0.0413
DLGP	0.014844	0.055433	0.267779	0.7891
DLSP	-0.047335	0.042549	-1.112487	0.2673
R-squared	0.199153	Mean depend	lent var	0.008348
Adjusted R-squared	0.171123	S.D. depende		0.067585
S.E. of regression	0.061531	Akaike info cr		-2.700838
Sum squared resid	0.757221	Schwarz criterion		-2.572471
Log likelihood 288.8872		Hannan-Quinn criter.		-2.648933
F-statistic 7.105081		Durbin-Watso	on stat	2.088122
Prob(F-statistic)	0.000000			

Figure 4: Least Square Method

It is evident that the exchange rate is highly significant on BSE30 Index. The next variable having significant impact on BSE 30 Index is found to be the forex reserves and third variable showing impact on the BSE 30 index is the call money rate but not as high as influencing as the first two variables. These results are taken at 10% level of significance.

6.6 Granger CausalityTest

VAR Lag Order Selection Criteria Endogenous variables: DLBSE30 Exogenous variables: C DDLCPI DDLM3 LCMR DLER DLFR DLGP DLSP Date: 11/01/17 Time: 20:12 Sample: 2000M01 2017M08 Included observations: 201

Lag	LogL	LR	FPE	AIC	SC	HQ
0	282.3584	NA*	0.003819*	-2.729934*	-2.598459*	-2.676734*
1	282.8259	0.893094	0.003839	-2.724636	-2.576726	-2.664785
2	282.8795	0.101946	0.003876	-2.715219	-2.550876	-2.648719
3	283.2157	0.635517	0.003902	-2.708614	-2.527836	-2.635463
4	283.4210	0.386209	0.003933	-2.700707	-2.503495	-2.620906
5	283.7677	0.648489	0.003958	-2.694206	-2.480559	-2.607755
6	284.4045	1.184799	0.003973	-2.690592	-2.460511	-2.597491
7	284.7283	0.599430	0.004000	-2.683864	-2.437349	-2.584113
8	286.0947	2.515115	0.003986	-2.687509	-2.424559	-2.581108

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

Figure 5: VAR Lag Order Selection Criteria

In the present study the Granger Causality test is applied to study the causal relationship between the macroeconomic variables and the BSE30 index.Before the Granger Causality test was applied the ADF test conducted to convert the non-stationary data to a stationary data. After the data attained Stationarity Lag of 8 was chosen by conducting Lag selection. Granger Causality test concluded that there is a Unidirectional relationship between LCMR and DLBSE 30 and the Bi-directional relationship between DLER, DLFR and DLBSE 30. The variables DLER, DLFR & LCMR show there is a significant influence of these variables on the BSE 30 Index at 0.10 level of significance.

Pairwise Granger Causa lityTests Date: 11/01/17 Time: 20:01 Sample: 2000M01 2017M08 Lags: 8

Lags. 0			
Null Hypothesis:	Obs	F-Statistic	Prob.
DDLCPI does not Granger Cause DLBSE30 DLBSE30 does notGranger Cause DDLCPI	202	0.99576 0.49650	0.4409 0.8577
DDLM3 does not Granger Cause DLBSE30 DLBSE30 does notGranger Cause DDLM3	202	0.24997 0.82552	0.9806 0.5811
LCMR does not Granger Cause DLBSE30 DLBSE30 does notGranger Cause LCMR	203	2.81070 0.37578	0.0058
DLER does not Granger Cause DLBSE30 DLBSE30 does notGranger Cause DLER	203	1.9662.9 3.1206.6	0.0528 0.0025
DLFR does not Granger Cause DLBSE30 DLBSE30 does not Granger Cause DLFR	201	1.77307 2.27703	0.0848 0.0240
DLGP does not Granger Cause DLBSE30 DLBSE30 does not Granger Cause DLGP	203	0.98350 1.35749	0.4503 0.2179
DLSP does not Granger Cause DLBSE30 DLBSE30 does not Granger Cause DLSP	203	1.14988 0.51033	0.3321

Figure 6: Pairwise Granger Causality Tests

VII. Conclusion

In this Study, both the tests i.e. OLS test and Pair-wise Granger Causality Test have shown the same results i.e. the LCMR, DLER, and DLFR have significant influence on the Stock Prices. Meaning the Macro Economic Variables, namely Call Money Rate, Exchange Rate and Foreign Exchange Reserves have shown the significant impact on the Indian Stock Prices of BSE 30 Index.Further research can be done to understand the impact of other macroeconomic variables like WPI, fiscal deficit, real effective exchange rate, T-bill rates, FDI's, FII's, IIP's etc., on sector specific indices of both NSE and BSE. Such will be a comparative study of the indices of NSE and BSE.

References

- [1]. Fama, E., Efficient capital markets: A review of theory and empirical work, The Journal of Finance, Vol. 25, No. 2, 1970, 383-417.
- [2]. Ross, Stephen A., The arbitrage theory of capital asset pricing, Journal of Economic Theory 13, 1976, 341-60
- [3]. Chen, N. F., Richard Roll and Stephen A. Ross (1986) "Economic Forces and the Stock Market", *Journal of Business*, 59, pp. 383-403.
- [4]. VenkatrajaB, Impact of macroeconomic variables on stock market performance in India: An empirical analysis, International Journal of Business Quantitative Economics and Applied Management Research, Volume 1, Issue 6, 2014, 71-85.
- [5]. Singh G, The impact of macroeconomic fundamentals on stock prices revised: A study of Indian stock market, *Journal of International Economics*, 7(1), 2016, 76-91.
- [6]. Patel S, The effect of macroeconomic determinants on the performance of the Indian stock market, *NMIMS Management Review* 22, 2012, 117-127.
- [7]. Gurloveleen K, Bhatia BS, An impact of macroeconomic variables on the functioning of Indian stock market: A study of manufacturing firms of BSE 500, *J Stock Forex Trad*, 5: 160, doi:10.4172/2168-9458.1000160, 2015, 1-7.
- [8]. Talla, J. T., Impact of macroeconomic variables on the stock market prices of the Stockholm stock exchange (OMXS30), Jönköping International Business School, Jönköping University, Sweden, 2013.
- [9]. data. Eurasian Journal of Business and Economics, Vol. 5 (10), 2012, 25-44.
- [10]. Almansour, A.Y., &Almansour, B.Y., Macroeconomic indicators and Saudi equity market: A time series analysis, British Journal of Economics, Finance and Management Sciences, Vol. 12(2), 2016, 59-72.
- [11]. Ray, H., & Sarkar, J., Macroeconomic link to Indian capital market: A post liberalization evidence. *Modern Economy, Vol. 5, No.* 04, 2014, 272-288.
- [12]. Granger, C. W. J., Some properties of time series data and their use in econometric model specification, *Journal of Econometrics, Annals of Applied Econometrics,* 16,1981, 121-30.
- [13]. Sarbapriya, Ray, Foreign exchange reserve and its impact on stock market capitalization: Evidence from India, *Research on Humanities and Social Sciences, Vol.2, No.2,*2012.

Websites

- [14]. <u>https://dbie.rbi.org.in</u>
- [15]. http://databank.worldbank.org/data/home.aspx
- [16]. <u>http://www.bseindia.com/sensexview/IndexArchiveData.aspx?expandable=3</u>
- [17]. <u>http://www.ajournal.co.uk</u>
- [18]. <u>http://www.scirp.org</u>
- [19]. <u>https://www.ejbe.org</u>
- [20]. <u>http://citeseerx.ist.psu.edu</u>
- [21]. https://ideas.repec.org/a/eee/econom/v16y1981i1p121-130.html
- [22]. www.diva-portal.org
- [23]. https://www.omicsonline.org

- [24]. http://www.nmims.edu/NMIMSmanagementreview/pdf/august-2012/06-effect-macroeco-performance-indian-stock-market.pdf
- [25]. https://papers.ssrn.com
- [26]. [27]. http://rady.ucsd.edu http://efinance.org.cn

VIII.	Annexure
Heteros	kedasticity Test: Breusch-Pagan-Godfrey

F-statistic	10.51042	Prob. F(7,202)	0.0000
Obs*R-squared	56.06617	Prob. Chi-Square(7)	0.0000
Scaled explained SS	72.81676	Prob. Chi-Square(7)	0.0000

Dependent Variable: BSE30							
Method: Least Squares							
Date: 10/31/17 Time: 21:50							
Sample (adjusted): 2000M01 2017M06							
Included observations: 210 after adjustments							

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/31/17 Time: 21:53

Sample: 2000M01 2017M06

Included observations:	210 after adjus	tments	Included observations:	210					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	17035.62	3490.719	4.880261	0.0000	С	-18162786	8411132.	-2.159375	0.0320
CMR	180.0458	67.94192	2.649996	0.0087	CMR	547504.7	163710.8	3.344340	0.0010
CPI	162.8462	53.78222	3.027882	0.0028	CPI	239913.1	129592.0	1.851295	0.0656
FR	0.007749	0.004917	1.575920	0.1166	FR	50.38346	11.84886	4.252179	0.0000
ER	-556.0925	66.56534	-8.354084	0.0000	ER	101611.8	160393.9	0.633514	0.5271
GP	-0.229471	0.073296	-3.130736	0.0020	GP	-842.0605	176.6126	-4.767839	0.0000
M3	0.224597	0.054272	4.138372	0.0001	M3	-229.8892	130.7716	-1.757944	0.0803
SP	-0.046544	0.027671	-1.682024	0.0941	SP	154.0310	66.67572	2.310151	0.0219
R-squared	0.960197	Mean depend	lent var	14338.20	R-squared	0.266982	Mean depend	dent var	2821422.
Adjusted R-squared	0.958818	S.D. depende	ent var	8439.402	Adjusted R-squared	0.241580	S.D. depende	ent var	4738628.
S.E. of regression	1712.647	Akaike info cr	iterion	17.76682	S.E. of regression	4126744.	Akaike info cr	iterion	33.34123
Sum squared resid	5.92E+08	Schwarz crite	rion	17.89433	Sum squared resid	3.44E+15	Schwarz crite	rion	33.46874
Log likelihood	-1857.516	Hannan-Quin	n criter.	17.81837	Log likelihood	-3492.829	Hannan-Quir	n criter.	33.39277
F-statistic	696.1389	Durbin-Watso	on stat	0.337068	F-statistic	10.51042	Durbin-Watso	on stat	0.645316
Prob(F-statistic)	0.000000				Prob(F-statistic)	0.000000			

Heteroskedasticity Test: Breusch-Pagan-Godfrey

D ep endent Variable: LE	3SE30				F-statistic Obs*R-squared Scaled explained SS	7.084278 41.39231 32.95052	Prob. F(7,202 Prob. Chi-Squ Prob. Chi-Squ	uare(7)	0.0000 0.0000 0.0000
Method: Least Squares Date: 10/31/17 Time: 2 Sample (adjusted): 200 Included observations:	22:02 00M01 2017M06				Test Equation: Dependent Variable: RE Method: Least Squares Date: 10/31/17 Time: 2				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Sample: 2000M01 2017 Included observations: 2	M06			
LCMR LCPI	0.113491 1.513189	0.044952 0.626063	2.524706 2.416992	0.0123 0.0165	variable	Coefficient	Std. Error	t-Statistic	Prob.
LER	-2.044562	0.294927	-6.932444	0.0000	С	0.309780	0.215755	1.435793	0.1526
LFR	0.129391	0.154687	0.836469	0.4039		0.001466	0.009771	0.150039	0.8809
LGP	-0.443130	0.147830	-2.997571	0.0031		-0.179039	0.136087	-1.315618	0.1898
LM3	0.692927	0.443948	1.560828	0.1201		-0.038427 -0.057775	0.064108 0.033624	-0.599406 -1.718242	0.5496 0.0873
LSP	0.103673	0.105714	0.980694	0.3279	LIR	-0.125455	0.032134	-3.904169	0.0001
С	4.566225	0.992571	4.600400	0.0000	LM3	0.163428	0.096501	1.693542	0.0919
					LSP	0.082410	0.022979	3.586301	0.0004
R-squared	0.938046	Mean depend	dent var	9.337975					
Adjusted R-squared	0.935899	S.D. depende			R-squared	0.197106	Mean depend		0.034200
S.E. of regression	0.188560	Akaike info cr	iterion	-0.461449	Adjusted R-squared	0.169283	S.D. depende		0.044970
Sum squared resid	7.182095	Schwarz crite	rion	-0.333940	S.E. of regression	0.040987 0.339351	Akaike info cr Schwarz crite		-3.513759 -3.386251
Log likelihood	56.45213	Hannan-Quin	nn criter.	-0.409902	Sum squared resid	376.9447	Hannan-Quin		-3.386251
F-statistic	436.9232	Durbin-Watso	on stat	0.177847	F-statistic	7.084278	Durbin-Watso		0.541141
Prob(F-statistic)	0.000000				Prob(F-statistic)	0.000000			

Null Hypothesis: D(LBSE30) has a unit root Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=14)

								t-Statistic	Prob.*
					Augmented Dickey-			-13.32629	0.0000
					Test critical values:	1% level		-3.461478	
						5% level		-2.875128	
						10% level		-2.574090	
Dependent Variab					*MacKinnon (1996)	one-sided p-value	s.		
Method: Least Squ Date: 10/31/17 T									
Sample (adjusted					Augmented Dickey-	Fuller Test Fauatio	an		
Included observat	tions: 209 after a	adjustments			Dependent Variable				
Variable	Coeffic	ient Std.	Error t-Sta	tistic P	_{rob.} Method: Least Squa	ares			
					Date: 11/01/17 Tim		0		
DLCMR	0.021				274(Sample (adjusted): 249!Included observatio				
DLCPI	-0.036					ns. 210 alter aujus	siments		
DLER	-1.289				000	0 # +		4 04-4-4-	Deels
DLFR	0.521				013: Variable	Coefficient	Std. Error	t-Statistic	Prob
DLGP	0.019				727				
DLM3	-0.357				398(D(LBSE30(-1))	-0.920993	0.069111	-13.32629	0.000
DLSP	-0.048				260: C	0.007702	0.004684	1.644395	0.101
С	0.009	559 0.007	7440 1.28	4745 0.2	200/				
D	0.400			0.00	R-squared	0.460567	Mean depen	dent var	-0.00033
R-squared	0.192		lependent var	0.008	352 ⁴ Adjusted R-squared	0.457974	S.D. depend	ent var	0.09142
Adjusted R-squar			ependent var	0.06	4/ CF of regression	0.007040	Akaike info c	riterion	-2.54947
S.E. of regression			info criterion	-2.090	Sum squared resid	0.942432	Schwarz crite		-2.51759
Sum squared res	id 0.764		rz criterion	-2.568	374'Log likelibood	269.6948	Hannan-Qui		-2.53658
Log likelihood	289.8		n-Quinn criter.	-2.644	³⁷⁴ Log likelihood ⁴⁹⁵ F-statistic	177.5901	Durbin-Wats		1.98308
F-statistic	6.859		-Watson stat	2.068	Prob(F-statistic)	0.000000	Durbin-wats	onstat	1.50500
Prob(F-statistic)	0.000	000			FIOD(I -Statistic)	0.000000			
enous: Constant .ength: 10 (Automa	itic - based on S	SIC, maxlag=	14) t-Statistic	Prob.*					
		SIC, maxlag=		Prob.*					
ength: 10 (Automa.	e <u>r test statistic</u> 1% level	SIC, maxlag=	t-Statistic -11.93432 -3.463235		Null Hypothesis: I CM	R has a unit root			
ength: 10 (Automa	er test statistic 1% level 5% level	SIC, maxlag=	t-Statistic -11.93432 -3.463235 -2.875898		Null Hypothesis: LCM				
ength: 10 (Automa	e <u>r test statistic</u> 1% level	SIC, maxlag=	t-Statistic -11.93432 -3.463235		Exogenous: Constant		C, maxlaq=14)	
ength: 10 (Automa	er test statistic 1% level 5% level 10% level		t-Statistic -11.93432 -3.463235 -2.875898				C, maxlag=14		Proh *
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one	er test statistic 1% level 5% level 10% level -sided p-values		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom	atic - based on SI	C, maxlag=14	t-Statistic	Prob.*
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu	atic - based on SI	C, maxlag=14	t-Statistic	Prob.*
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle endent Variable: D()	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom	atic - based on SI	C, maxlag=14	t-Statistic	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one mented Dickey-Fulle indent Variable: D((od: Least Squares	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3)		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu	atic - based on SI		t-Statistic	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Full ndent Variable: D(i od: Least Squares 11/01/17 Time: 1	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu	atic - based on SI Iller test statistic 1% level		t-Statistic -5.094119 -3.461327	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle ndent Variable: D() od: Least Squares 11/01/17 Time: 1 ole (adjusted): 200	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu	atic - based on SI uller test statistic 1% level 5% level		t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Full ndent Variable: D(i od: Least Squares 11/01/17 Time: 1	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08		t-Statistic -11.93432 -3.463235 -2.875898		Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu	atic - based on SI Iller test statistic 1% level 5% level 10% level		t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle ndent Variable: D() od: Least Squares 11/01/17 Time: 1 ole (adjusted): 200	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08		t-Statistic -11.93432 -3.463235 -2.875898	0.0000 Prob.	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or	titic - based on SI Iller test statistic 1% level 5% level 10% level ne-sided p-values	· · ·	t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle ndent Variable: D() od: Least Squares 11/01/17 Time: 1 ole (adjusted): 200 ded observations; / Variable	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust	n ments	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501	0.0000 Prob.	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu	tiler test statistic 1% level 5% level 10% level ne-sided p-values	· · ·	t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one mented Dickey-Fulle indent Variable: D() od: Least Squares 11/01/17 Time: 1 ole (adjusted): 200 ded observations: 2 Variable D(LCPI(-1),2)	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432	0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1	tiller test statistic 1% level 5% level 10% level ne-sided p-values iller Test Equatior D(LCMR)	· · ·	t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one mented Dickey-Fulle mented Dickey-Fulle andent Variable: D((od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: : Variable D(LCPI(-1),2) D(LCPI(-1),3)	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373	0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1	tiller test statistic 1% level 5% level 10% level ne-sided p-values iller Test Equatior D(LCMR)	· · ·	t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle od: Least Squares : 11/01/17 Time: 1 ple (adjusted): 200 ded observations: Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-2),3)	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388	ments Std. Error 0.654960 0.618222 0.568277	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983	0.0000 0.0000 Prob. 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square	titic - based on SI atic - based on SI Iller test statistic 1% level 5% level 10% level ne-sided p-values uller Test Equation D(LCMR)	· · ·	t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa hented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D(od: Least Squares 11/01/17 Time: 1 ble (adjusted): 200 ded observations: Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-3),3)	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069	ments Std. Error 0.654960 0.618222 0.568277 0.507768	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 11/01/17 Time	atic - based on SI atic - based on SI 1% level 5% level 10% level ne-sided p-values uller Test Equation D(LCMR) is : 19:32		t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D((dd: Least Squares :11/01/17 Time: 1 ole (adjusted): 200 ded observations: : Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-3),3) D(LCPI(-4),3)	er test statistic 1% level 5% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20	iller test statistic 1% level 5% level 10% level 10% level iller Test Equation D(LCMR) is 19:32 000M02 2017M08		t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle mented Dickey-Fulle indent Variable: D(od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-2),3) D(LCPI(-5),3)	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.625160	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations	iller test statistic 1% level 5% level 10% level 10% level iller Test Equation D(LCMR) is 19:32 000M02 2017M08		t-Statistic -5.094119 -3.461327 -2.875062	
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-2),3) D(LCPI(-5),3) D(LCPI(-5),3)	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.6225160 8.752263	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations	iller test statistic 1% level 5% level 10% level 10% level ne-sided p-values iller Test Equation D(LCMR) is : 19:32 000M02 2017M08 :: 211 after adjust	n. ments	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054	0.0000
Length: 10 (Automa hented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D(bd: Least Squares 11/01/17 Time: 1 ble (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-3),3) D(LCPI(-3),3) D(LCPI(-6),3) D(LCPI(-7),3)	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489	ments Std. Error 0.654960 0.618222 0.568277 0.507768 0.445059 0.388296 0.319703 0.260263	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.437983 9.319357 9.152105 8.625160 8.752263 7.770939	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable	iller test statistic 1% level 5% level 10% level 10% level iller Test Equation D(LCMR) is 19:32 000M02 2017M08		t-Statistic -5.094119 -3.461327 -2.875062	0.0000
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D((dd: Least Squares : 11/01/17 Time: 1 ble (adjusted): 200 ded observations; : Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3)	er test statistic 1% level 5% level 10% level 10% level er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489 1.399720		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.625160 8.752263 7.770939 7.180047	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable	iller test statistic 1% level 5% level 10% level 10% level ne-sided p-values iller Test Equation D(LCMR) is : 19:32 000M02 2017M08 :: 211 after adjust	n. ments	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054	0.0000
Length: 10 (Automa hented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D(bd: Least Squares 11/01/17 Time: 1 ble (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-3),3) D(LCPI(-3),3) D(LCPI(-6),3) D(LCPI(-7),3)	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489	ments Std. Error 0.654960 0.618222 0.568277 0.507768 0.445059 0.388296 0.319703 0.260263	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.437983 9.319357 9.152105 8.625160 8.752263 7.770939	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable	atic - based on SI atic - based on SI 1% level 5% level 10% level 10% level ne-sided p-values uller Test Equation D(LCMR) is 19:32 000M02 2017M08 s: 211 after adjust Coefficient	ments Std. Error	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic	0.0000
Length: 10 (Automa hented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D() od: Least Squares 11/01/17 Time: 1 ble (adjusted): 200 ded observations: Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-5),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-7),3) D(LCPI(-6),3) D(LCPI(-7),3) D(LCPI(-10),3) D(LCPI(-10),3)	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 4.732269 4.073223 3.349116 5.363388 4.732069 4.073223 3.349116 0.376251		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 -2.574501 -2.574501 -11.93432 9.896373 9.437983 9.319357 9.152105 8.6225160 8.752263 7.770939 7.180047 6.582012 5.558546	0.0000 Prob. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C	iller test statistic 1% level 5% level 10% level 10% level iller Test Equation D(LCMR) is 19:32 000002 2017M08 is: 211 after adjust Coefficient -0.219955	ments Std. Error 0.043178	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119	0.0000 Prob
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle mented Dickey-Fulle indent Variable: D(od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-9),3)	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 11/02 2017/M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732059 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.6225160 8.752263 7.770339 7.180047 6.582012	0.0000 Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C	atic - based on SI atic - based on SI 1% level 5% level 10% level 10% level ne-sided p-values uller Test Equation D(LCMR) is 19:32 000M02 2017M08 s: 211 after adjust Coefficient	ments Std. Error	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic	0.0000 Prob
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle rendent Variable: D((od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-7),3) D(LCPI(-8),3) D(LCPI(-9),3) D(LCPI(-10),3) C	er test statistic 1% level 5% level 10% level 10% level er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061 0.376251 9.64E-06	 ments Std. Error 0.654960 0.618222 0.568277 0.507768 0.445059 0.388296 0.319703 0.260263 0.349464 0.127174 0.067689 0.000454	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.43783 9.319357 9.152105 8.625160 8.752263 7.770339 7.180047 6.582012 5.558546 0.021204	0.0000 Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C R-squared	iller test statistic 1% level 5% level 10% level 10% level iller Test Equation D(LCMR) is 19:32 000002 2017M08 is: 211 after adjust Coefficient -0.219955	ments Std. Error 0.043178	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic t-Statistic -5.094119 4.998482	0.0000 Prob
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one nented Dickey-Fulle endent Variable: D(od: Least Squares 11/01/17 Time: 1 ple (adjusted): 200 ded observations: : Variable D(LCPI(-1),2) D(LCPI(-1),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-5),3) D(LCPI(-6),3) D(LCPI(-9),3) D(LCPI(-9),3) D(LCPI(-10),3) C C uared	er test statistic 1% level 5% level 10% level 10% level er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061 0.376251 9.64E-06 0.828732	ments Std. Error 0.654960 0.618222 0.568277 0.507768 0.45059 0.388296 0.319703 0.260263 0.127174 0.067689 0.000454 Mean depending	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.6225160 8.752263 7.770399 7.180047 6.582012 5.558546 0.021204 Ident var	0.0000 Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C R-squared	intic - based on SI atic - based on SI 1% level 5% level 10% level 10% level ne-sided p-values inter Test Equation D(LCMR) is: 19:32 000M02 2017M08 is: 211 after adjust Coefficient -0.219955 0.404551 0.110449		t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119 4.998482 lent var	0.0000 Prob 0.000 -0.00136
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one mented Dickey-Fulle indent Variable: D() od: Least Squares 11/01/17 Time: 1 ole (adjusted): 200 ded observations: 2 Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-3),3) D(LCPI(-3),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-10),3) C uared ted R-squared	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061 0.376251 9.64E-06 0.828732 0.818658	ments Std. Error 0.654960 0.618222 0.568277 0.507768 0.445059 0.388296 0.319703 0.260263 0.194946 0.127174 0.067689 0.000454 Mean depent S.D. dependo	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 -2.574501 -2.574501 -11.93432 9.896373 9.437983 9.319357 9.152105 8.625160 8.752263 7.77039 7.180047 -5.558546 0.021204 Ident var Ident var	0.0000 Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Date: 11/01/17 Time	atic - based on SI atic - based on SI 1% level 1% level 1% level 10% level ne-sided p-values Iller Test Equation D(LCMR) Is: 19:32 000M02 2017M08 S: 211 after adjust Coefficient -0.219955 0.404551 0.110449 0.106193	ments Std. Error 0.043178 0.080935 Mean depende S.D. depende	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119 4.998482 lent var ent var	0.0000 Prob 0.000 0.000 -0.00136 0.21775
Length: 10 (Automa nented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle endent Variable: D((dd: Least Squares : 11/01/17 Time: 1 ble (adjusted): 200 ded observations; : Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-5),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-7),3) D(LCPI(-10),3) D(LCPI(-10),3) D(LCPI(-10),3) C uared ted R-squared of regression	er test statistic 1% level 5% level 10% level 10% level er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.073223 3.349116 2.708128 2.022489 1.399720 0.837061 0.376251 9.64E-06 0.828732 0.818658 0.006408		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.437983 9.437983 9.437983 9.437983 9.152105 8.625160 8.752263 7.770939 7.180047 6.582012 5.558546 0.021204 addent var lent var iterion	0.0000 Prob. 0.0000 0.00154 -7.20454 -7.20454 -7.20454 -7.20454 -7.20454 -7.204545 -7.20454 -7.2045	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 11/01/17 Time Date: 11/01/17 Time Cample (adjusted): 22 Included observations Variable LCMR(-1) C	inter - based on SI inter - based on SI inter - based on SI 1% level 5% level 10% level 10% level inter - Test Equation D(LCMR) is: 19:32 000M02 2017M08 s: 211 after adjust Coefficient -0.219955 0.404551 0.110449 0.106193 0.205903	ments Std. Error 0.043178 0.080935 Mean depend S.D. depende Akaike info cri	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119 4.998482 lent var iterion	0.0000 0.000 Prob 0.000 0.00136 0.21776 -0.31335
Length: 10 (Automa Inented Dickey-Fulle critical values: Kinnon (1996) one mented Dickey-Fulle mented Dickey-Fulle variable: D((od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-7),3) D(LCPI(-8),3) D(LCPI(-10),3) C uared sted R-squared of regression squared resid	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.073223 3.349116 2.798128 2.022489 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061 0.376251 9.64E-06 0.828732 0.818658 0.006408 0.007679	Std. Error 0.654960 0.618222 0.568277 0.507768 0.445059 0.38296 0.319703 0.260263 0.194946 0.127174 0.067689 0.000454 Mean depen S.D. depend S.D. depend S.D. depend S.D. depend S.D. depend S.D. depend S.D. depend	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.625160 8.752263 7.770339 7.180047 6.582012 5.558546 0.021204 Ident var erion	0.0000 Prob. Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom: Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	inter - based on SI atic - based on SI 1% level 5% level 10% level 10% level ne-sided p-values iller Test Equation D(LCMR) is : 19:32 000M02 2017M08 :: 211 after adjust Coefficient -0.219955 0.404551 0.110449 0.106193 0.205903 8.860775	ments Std. Error 0.043178 0.080935 Mean depende S.D. depende Akaike info cri Schwarz crite	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119 4.998482 lent var ent var titerion rion	0.0000 Prob 0.000 0.21775 -0.31335 -0.28161
Length: 10 (Automa hented Dickey-Fulle critical values: Kinnon (1996) one hented Dickey-Fulle indent Variable: D() od: Least Squares 11/01/17 Time: 1 ole (adjusted): 200 ded observations: Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-3),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-10),3) D(LCPI(-10),3) C uared ted R-squared of regression squared resid ikelihood	er test statistic 1% level 5% level 10% level 10% level 10% level er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.732069 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061 0.376251 9.64E-06 0.828732 0.818658 0.006408 0.007679 728.8079		t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.6225160 8.752263 7.770939 7.180047 6.582012 5.558546 0.021204 ident var lent var criterion erion inn criter.	0.0000 0.0000 Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: 1 Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	atic - based on SI atic - based on SI 1% level 5% level 10% level 10% level ne-sided p-values iller Test Equation D(LCMR) is : 19:32 D00M02 2017M08 is: 211 after adjust Coefficient -0.219955 0.404551 0.110449 0.106193 0.205903 8.860775 35.06259	 ments Std. Error 0.043178 0.080935 Mean depende Akaike info cri Schwarz crite Hannan-Quin	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119 4.998482 lent var int var iterion rion n criter.	0.0000 Prob 0.000 0.00136 0.21775 -0.31335 -0.28161 -0.30054
Length: 10 (Automa Inented Dickey-Fulle critical values: Kinnon (1996) one mented Dickey-Fulle mented Dickey-Fulle variable: D((od: Least Squares : 11/01/17 Time: 1 ole (adjusted): 200 ded observations: ' Variable D(LCPI(-1),2) D(LCPI(-1),2) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-4),3) D(LCPI(-6),3) D(LCPI(-6),3) D(LCPI(-7),3) D(LCPI(-8),3) D(LCPI(-10),3) C uared sted R-squared of regression squared resid	er test statistic 1% level 5% level 10% level 10% level -sided p-values er Test Equation LCPI,3) 9:33 1M02 2017M08 199 after adjust Coefficient -7.816498 6.118151 5.363388 4.073223 3.349116 2.798128 2.022489 4.073223 3.349116 2.798128 2.022489 1.399720 0.837061 0.376251 9.64E-06 0.828732 0.818658 0.006408 0.007679	Std. Error 0.654960 0.618222 0.568277 0.507768 0.445059 0.38296 0.319703 0.260263 0.194946 0.127174 0.067689 0.000454 Mean depen S.D. depend S.D. depend S.D. depend S.D. depend S.D. depend S.D. depend S.D. depend	t-Statistic -11.93432 -3.463235 -2.875898 -2.574501 t-Statistic -11.93432 9.896373 9.437983 9.319357 9.152105 8.6225160 8.752263 7.770939 7.180047 6.582012 5.558546 0.021204 ident var lent var criterion erion inn criter.	0.0000 0.0000 Prob. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000	Exogenous: Constant Lag Length: 0 (Autom: Augmented Dickey-Fu Test critical values: *MacKinnon (1996) or Augmented Dickey-Fu Dependent Variable: I Method: Least Square Date: 11/01/17 Time Sample (adjusted): 20 Included observations Variable LCMR(-1) C R-squared Adjusted R-squared S.E. of regression Sum squared resid	inter - based on SI atic - based on SI 1% level 5% level 10% level 10% level ne-sided p-values iller Test Equation D(LCMR) is : 19:32 000M02 2017M08 :: 211 after adjust Coefficient -0.219955 0.404551 0.110449 0.106193 0.205903 8.860775	ments Std. Error 0.043178 0.080935 Mean depende S.D. depende Akaike info cri Schwarz crite	t-Statistic -5.094119 -3.461327 -2.875062 -2.574054 t-Statistic -5.094119 4.998482 lent var int var iterion rion n criter.	

Null Hypothesis: D(LFR) has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic - based on SIC maxlag=14)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-4.889219 -3.462095 -2.875398 -2.574234	0.0001

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LFR,2) Method: Least Squares Date: 11/01/17 Time: 19:40 Sample (adjusted): 2000M05 2017M06 Included observations: 206 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LFR(-1)) D(LFR(-1),2) D(LFR(-2),2) C	-0.401097 -0.287379 -0.207026 0.004689	0.082037 0.081713 0.068781 0.001734	-4.889219 -3.516929 -3.009935 2.705033	0.0000 0.0005 0.0029 0.0074
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.343492 0.333742 0.020879 0.088054 506.7395 35.22951 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	ent var iterion rion n criter.	5.68E-05 0.025579 -4.880966 -4.816347 -4.854832 2.015617

Null Hypothesis: D(LGP) has a unit root Exogenous: Constant

Lag Length: 11 (Automatic - based on SIC, maxlag=14)

								t-Statistic	Prob.*
Null Hypothesis: D(LER Exogenous: Constant Lag Length: 0 (Automati			Augmented Dickey-Full Test critical values:	<u>er test statistic</u> 1% level 5% level 10% level		-4.471541 -3.463235 -2.875898 -2.574501	0.0003		
			t-Statistic	Prob.*	*MacKinnon (1996) one	e-sided p-value	s.		
Augmented Dickey-Fulle Test critical values: *MacKinnon (1996) one-	1% level 5% level 10% level	s.	-10.38943 -3.461478 -2.875128 -2.574090	0.0000	Augmented Dickey-Full Dependent Variable: D Method: Least Squares Date: 11/01/17 Time: Sample (adjusted): 200 Included observations:	(LGP,2) 19:41 01M02 2017M0	8		
					Variable	Coefficient	Std. Error	t-Statistic	Prob.
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 11/01/17 Time: 1 Sample (adjusted): 2000 Included observations: 2	LER,2) 9:39 0M03 2017M08	3			D(LGP(-1)) D(LGP(-1),2) D(LGP(-2),2) D(LGP(-3),2) D(LGP(-4),2) D(LGP(-5),2) D(LGP(-6),2)	-1.890176 0.923726 0.836189 0.410227 0.428894 0.345245 -0.016773	0.422712 0.391380 0.360870 0.324025 0.292069 0.259699 0.220788	-4.471541 2.360178 2.317147 1.266035 1.468466 1.329403 -0.075968	0.0000 0.0193 0.0216 0.2071 0.1437 0.1853 0.9395
Variable	Coefficient	Std. Error	t-Statistic	Prob.	D(LGP(-0),2) D(LGP(-7),2) D(LGP(-8),2)	0.003663	0.189916	0.019289	0.9846
D(LER(-1)) C	-0.684046 0.001233	0.065841 0.001132	-10.38943 1.089297	0.0000 0.2773	D(LGP(-9),2) D(LGP(-10),2)	-0.444557 -0.388977 -0.472557 0.017753	0.114749 0.091148 0.064509 0.006079	-3.874159 -4.267524 -7.325413 2.920224	0.0001 0.0000 0.0000 0.0039
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.341648 0.338482 0.016310 0.055332 567.3811 107.9402 0.000000	Mean depen S.D. depend Akaike info c Schwarz crite Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	-4.38E-05 0.020053 -5.384582 -5.352704 -5.371695 1.949671	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.871410 0.863114 0.065663 0.801964 266.2739 105.0385 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watse	ent var iterion rion ın criter.	0.000201 0.177477 -2.545467 -2.330326 -2.458394 1.977344

Exogenous: Constant					N <u>ull</u> Hypothesis: D(LM3,2) has a unit root Exogenous: Constant Lag Length: 10 (Automatic - based on SIC, maxlag=14)					
			t-Statistic	Prob.*				t-Statistic	Prob.*	
Augmented Dickey-Ful	ler test statistic		-5.144830	0.0000	Augmented Dickey-Full	er test statistic		-12.61635	0.0000	
Test critical values:	1% level		-3.463235		Test critical values:	1% level		-3.463235		
	5% level		-2.875898			5% level		-2.875898		
	10% level		-2.574501			10% level		-2.574501		
*MacKinnon (1996) on	e-sided p-value	s.			*MacKinnon (1996) one	-sided p-value	s.			
Augmented Dickey-Ful Dependent Variable: D Method: Least Squares Date: 11/01/17 Time: Sample (adjusted): 200 Included observations:	(LSP,2) 5 19:44 01M02 2017M0	8			Augmented Dickey-Full Dependent Variable: D(Method: Least Squares Date: 11/01/17 Time: 1 Sample (adjusted): 200 Included observations:	LM3,3) 9:43 1M02 2017M0	8			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
D(LSP(-1))	-2.343344	0.455475	-5.144830	0.0000	D/LMO(4) O)	40.40040	0.001710	10.01005	0.000	
D(LSP(-1),2)	1.268399	0.425036	2.984211	0.0032	D(LM3(-1),2)	-10.49316	0.831712	-12.61635	0.000	
D(LSP(-2),2)	1.233587	0.392058	3.146438	0.0019	D(IM2(2)2)	8.443896	0.796739 0.745984	10.59806 9.980353	0.000 0.000	
D(LSP(-3),2)	0.721835	0.358226	2.015029	0.0453	D (I MO(O) O)	7.445182			0.000	
D(LSP(-4),2)	0.667452	0.325071	2.053251	0.0414		6.431871 5.425941	0.683026 0.605688	9.416723 8.958318	0.000	
D(LSP(-5),2)	0.605133	0.288873	2.094806	0.0375		4.449340	0.518077	8.588182	0.000	
D(LSP(-6),2)	0.247334	0.248774	0.994209	0.3214		3.676520	0.417158	8.813257	0.000	
D(LSP(-7),2)	0.197009	0.214529	0.918332			2.842767	0.320405	8.872427	0.000	
D(LSP(-8).2)	0.164416	0.176800	0.929955	0.3536		2.069277	0.227149	9.109790	0.000	
D(LSP(-9),2)	-0.162382	0.131626	-1.233659	0.2189		1.282356	0.143845	8.914823	0.000	
D(LSP(-10),2) D(LSP(-11),2)	-0.238048 -0.268140	0.104236 0.070655	-2.283750 -3.795060	0.0235		0.479345	0.068742	6.973082	0.000	
D(L3P(-11),2) C	0.019337	0.009399	2.057430	0.0002		-0.000414	0.000626	-0.661375	0.509	
R-squared	0.745284	Mean depend	lent var	0.000553	R-squared	0.880841	Mean depend	dent var	0.00012	
Adjusted R-squared	0.728851	S.D. depende			Adjusted R-squared	0.873832	S.D. depende		0.02481	
S.E. of regression	0.121945	Akaike info cr			S.E. of regression	0.008816	Akaike info cr		-6.56616	
Sum squared resid	2.765935	Schwarz crite			Sum squared resid	0.014533	Schwarz crite		-6.36757	
Log likelihood	143.0859	Hannan-Quin	n criter.		Log likelihood	665.3330	Hannan-Quir	nn criter.	-6.48578	
F-statistic	45.35213	Durbin-Watso	on stat	1.971534	F-statistic	125.6667	Durbin-Watso	on stat	2.09508	

IX. Acronyms

S. No	Acronyms	Used for
	IIP	Index of Industrial Production of respective countries
	WPI	Wholesale Price Index of respective countries
	GP	Gold Prices in the respective countries
	FII	Foreign Institutional Investors in the respective countries
	REER	Real Effective Exchange Rates of the respective countries
	ANOVA	Analysis of Variance
	MS	Money Supply of the respective countries
	ER	Exchange Rate of the respective currencies
	ADF	Augmented Dickey-Fuller unit root test to examine stationarity of data
	VECM	Vector Error Correction Model
	IR	Interest Rate
	CPI	Consumer Price Index of the respective countries
	SP	Silver Prices in the respective countries
	OP	Oil Prices in the respective countries
	S&P CNX Nifty	Standard & Poor's 50 largest stocks on the National Stock Exchange (NSE) of India
	CMR	Call Money Rate of the respective countries
	FR	Foreign Reserves of the respective countries
	GFD	Gross Fiscal Deficit of the respective countries
	BSE 500	Bombay Stock Exchange Top 500 stocks index
	OMXS30	A stock market index of Stockholm Stock Exchange consisting of 30 most-traded stocks
	GB	Government Bonds of the respective countries
	DF-GLS Test	A test for a unit root in an economic time series sample