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Abstract: Manufacturing processes that consist of time series data are frequently monitored by forecast-based 

quality control schemes. These control schemes are based on the application of a time series forecast to the 

process and monitoring the resultant forecast errors with a tracking signal. This study compares the 

performance of tracking signals in their ability to detect the presence of changes in the process mean (step shift) 

and additive outliers in an autocorrelated manufacturing process.  The criteria used are the Average Run 

Length (ARL) and Cumulative Distribution Function (CDF) of the run lengths. The CDF is offered an 

alternative performance evaluation criterion, for forecast-based schemes. Based on the CDF criterion, the 

Smoothed Error Tracking Signal offers the greatest probability of early detection of a step shift and an additive 

outlier in an autocorrelated process. 
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I. Introduction 
The occurrence of large unusual observations is not uncommon in time series data. These outliers may 

be due to recording errors or to one-time unique situations such as an unexpected change in demand for a 

product or a change in a production system. Fox (1972) defines two types of outliers may occur in practice. An 

additive outlier corresponds to an external disturbance that affects the value of a single observation. An 

innovational outlier refers to an internal disturbance that changes the value of an observation and all other 

successive observations. Typically, in process control environments, monitoring schemes are compared based on 

their ability to detect step shifts or innovational outliers in the level of a process. However, which monitoring 

scheme detects the presence of an additive outlier most quickly is also of interest.  

Autocorrelation implies the existence of a relationship between consecutive observations and can be of 

two types. A process that tends to drift over time is characteristic of positive autocorrelation and results when 

successive observations are similar in value. Negative autocorrelation is depicted by a sawtooth pattern and 

results when consecutive observations are dissimilar. High volume manufacturing processes along with an 

increased frequency of sampling by automated gages, gives rise to autocorrelated data.         

The presence of autocorrelation creates unique problems for production monitoring schemes. Positive 

autocorrelation tends to increase the frequency of out-of-control signals that are detected by monitoring schemes. 

Positive autocorrelation occurs most often in production environments and chemical operations (Woodall and 

Faltin (1993)).     

In the forecasting and time series fields, tracking signals are used to monitor forecasting systems. Alwan 

and Roberts (1988) have proposed a method for monitoring autocorrelated data that involves the application of a 

time-series forecast to the process and monitoring the forecast errors. Unusual behavior in the process should 

result in a large error that is reflected as a signal on a tracking signal.  

Traditionally, monitoring tools have been compared on the basis of Average Run Lengths (ARLs). The 

ARL is the expected number of observations required to detect an out-of-control situation. However, simple 

exponential smoothing forecasts recover quickly from step increases in the time series process that it monitors. 

This would suggest that the performance of forecast-based schemes should be based on the probability of "early 

detection". As an average measure that is inflated by long run lengths, the ARL is an inadequate measure of 

quick recovery, that is characterized by short run lengths. Hence the cumulative distribution function (CDF) of 

the run lengths is offered as an alternative criterion to the average run length (ARL) for the selection of an 

appropriate monitoring scheme. The CDF provides the cumulative probability of a signal occuring by the ith 

time period after a disturbance.  

This paper compares the performance of a Smoothed Error (ETS) tracking signal and a Cumulative 

Sum (CUSUM) tracking signal in monitoring forecast errors from exponential smoothing forecasts applied to 

autoregressive process data of order one, denoted by AR (1), in the presence of a changes in the process mean 
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and additive outliers. Superville and Yorke (2012) compared the performance on control charts in detecting 

additive outliers. The study shows that the ETS tracking signal offers the highest probability of early detection of 

a shift in the mean and an additive outlier in AR (1) manufacturing processes. 

 

II. A Model For Autocorrelated Data 
A time series model that is widely used in inventory and quality control applications is the autoregressive 

integrated moving average (ARIMA) model. The ARIMA(p,d,q) model is denoted by 

 

      p (B) d Xt = q (B)t                                                                (1) 

 

where p (B) = (1-1B-2B2-...-pBp) is an autoregressive polynomial of order p,  

q (B) = (1-1B-2B2-...-qBq) is a moving average polynomial of order q, B is the backshift operator,  is the 

backward difference operator and t, the white noise,  is a sequence of independent normal random errors with 

mean zero and variance 2, denoted by t ~ N(0, 2). 

       A special case of  the ARIMA(p,d,q) model that has been found to be useful in production and quality 

control environments is the ARIMA(1,0,0), referred to as the first-order autoregressive model and denoted by 

AR(1). It is represented by 

 

          Xt =  + Xt-1 + t .                                                                           (2) 

 

Without loss of generality it is assumed that t ~  N(0,1). It is also assumed that an AR(1) model is applicable in 

this article. Montgomery and Mastrangelo (1991) show that a number of chemical and manufacturing processes 

conform to this model.   

The simple exponential smoothing forecast, also known as an exponentially weighted moving average (EWMA) 

forecast is given by 

 

Ft+1 = FXt + (1-F)Ft  ,                   0 F 1 .                      (3)  

       

where Xt represents the process observation at time period t, and Ft+1  represents the one-step-ahead forecast 

for observation Xt+1 at time period t.  The forecast error at time period t, denoted by et, is defined as 

 

   et = XtFt. 

Alwan and Roberts (1988) have observed that processes that do not drift too rapidly are well modeled by simple 

exponential smoothing. For the AR(1) model, Cox (1961) has shown that optimal simple exponential smoothing 

in terms of minimum mean square forecast error is given by 

 

 
F

=1–  ½[(1- ) / ] ,         1 /3  <     1      (4) 
 

where  is the parameter of the AR(1) process. This result is used in the simulations discussed in the following 

sections. 

 

III. Tracking Signals 
In this study, the Smoothed Error (ETS) and Cumulative Sum (CTS) tracking signals are applied to exponential 

smoothing forecast errors and their performances evaluated. 

 

The Smoothed Error Tracking Signal 

 Trigg's (1964) Smoothed Error (ETS) tracking signal is given by 

 

ETSt = Et / MADt                                                                         (5) 

where 

Et = 1et + (1-1)Et-1 ,                                        0 1 1                 (6) 

and 

MADt = 2et + (1-2)MADt-1 ,                          0 2 1 .             (7) 

 

Typically, E0 = 0 and MAD0 is set equal to its expected value which is approximately equal to 0.8e (where e 
is the standard deviation of the forecast errors). A signal occurs if ETSt exceeds a critical value K1. Gardner 

(1983) suggests that the value of K1 should be set to achieve a desired in-control ARL. 
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 The Cumulative Sum Tracking Signal  

       Brown's (1959)  Cumulative Sum (CTS) tracking signal is given by 

 

CTSt = SUMt / MADt                                                           (8) 

where 

SUMt = et + SUMt-1 .                                                               (9) 

The value of MAD0 is set equal to its expected value as with ETS0. The value of SUM0 is set equal to zero.  A 

signal occurs if the value of CTSt exceeds a critical value K2.  Gardner (1983) suggests that the value of  K2 
should be set to achieve a desired in-control ARL. 

      Concerning the choice of parameters for the forecast model (F), and tracking signals (1 and 2), 

McKenzie (1978) and Gardner (1985) recommend that F 1, with 1= 0.1 commonly used in practice. Small 

values of 1 allow the ETS to respond more quickly to small disturbances in the demand process. Traditionally, 

the smoothing parameters in the numerator and denominator of the ETS have been set equal to each other, that 

is, 1=2. More recently, McClain (1988) has suggested that the smoothing parameter in the MAD,2, be 

smaller than the parameter in the numerator, 1, so that the variance of the forecast errors may be stabilized.  

 

IV. Evaluation Criteria: Arl Vs. CDF 
The ARL is a criterion on which the relative performance of both tracking signals has been based.  

However, exponentially smoothed forecasts tend to recover quickly from disturbances in the time series that it 

monitors.  In general, the rate of forecast recovery depends on the type of shift, the underlying model and the 

forecasting tool in use.  In most cases, forecast recovery is shown to significantly impact ARLs.      

The necessity of quick detection of process shifts leads one to the cumulative probability of a signal 

following a process shift as a meaningful criterion for the comparison of forecast-based monitoring schemes. The 

use of the cumulative distribution functions (CDF) as an evaluation criterion is not new. Barnard (1959), Bissell 

(1968) and Gan (1991) recommend its use on independent observations. Referred to as a ‘response to a change 

in demand', McClain (1988) advocates its use for forecast-based schemes which incorporate tracking signals. 

The CDF measures the cumulative percentage of disturbances in a time series that are detected early.   

 

V. Design Of The Simulation Study 

In this simulation study, two monitoring schemes were compared. They are the ETS and CTS. ARLs and CDFs 

are provided for each monitoring scheme for outliers of size 3.0p, where 2
p= 2/ (1-2), is the variance of an 

AR(1) process.  

The initial values of the smoothed-error for the ETS (equation 5) and the sum of errors for the CTS (equation 8) 

are set to zero as suggested by Gardner (1985) and McClain (1988). The smoothing constants 1and 2 were set 

to 0.10 as suggested by McKenzie (1978).  

The simulation study was conducted as follows: 

i) AR(1) series with autoregressive parameter values of   =0.0, 0.5, 0.7, and 0.9 and N(0,1) are generated by the 

IMSL (1991, p.1350-1351) subroutine RNARM / DRNARM. The parameter  was set equal to zero, without 

loss of generality, 

 ii) the first fifty observations are used to allow for a burn-in period, 

 iii) the forecast is started at time period 2 with its initial value set equal to the first observed data point, 

iv) fifty (50) preliminary sequences of forecast errors are used to estimate the variance of the forecast errors for a 

step increase of zero (the in-control state), 

v) tracking signals and control charts are constructed based on the estimates obtained in step (iv). The initial 

MAD values are set to 0.8e (e is the standard deviation of the forecast errors) as suggested by Montgomery, 

Johnson and Gardiner (1990), 

vi) the monitoring schemes are applied to the forecast errors, 

vii) steps (i)-(iii), (v) and (vi) are repeated 1000 times. For each monitoring scheme, the run length for each 

simulation iteration is recorded. These run lengths are used to obtain 

the ARLs and CDFs after a shift of size 0.0, 1p and 3p and then an additive outlier of size 3.0p. 

 

VI. Simulation Results 
Table I displays simulated ARLs and CDFs for the ETS and CTS tracking signals applied to the optimal 

exponential smoothing forecast errors from an AR(1) process with  ranging from 0.0 to 0.9, after a shift of size 

0.0, 1p and 3p. Table 2 displays simulated ARLs and CDFs for the ETS and CTS tracking signals applied to 

the optimal exponential smoothing forecast errors from an AR(1) process with  ranging from 0.0 to 0.9, with 

outliers simulated as 3p.  
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For step shifts (Table 1), the results may be summarizes as follows: 

1. For step shifts of 1 and 3, the ARLs for the autocorrelated cases (>0) are substantially larger for the 

independent case (=0). This is a result of the quick recovery of the forecast of the forecast illustrated by 

short run length and the inability of ARLs to adequately reflect these short run lengths. In the calculation of 

the ARL, longer run lengths mask shorter run lengths. 

2. Based on CDFs, the ETS provides a higher probability of early detection of a step shift than the CTS for the 

autocorrelated cases (>0). This occurs although the CTS has shorter ARLs than for these cases. The 

detection of a step shift early is critical, since the forecast recovers quickly. This suggests the use of the ETS 

for autocorrelated cases. 

3. Neither tracking signal provides a very high probability of early detection. By the 4
th

 time period after a step 

shift of 3, the CTS detects 47.2% of shifts and the ETS detects 49.8%  for =0.5. These detection 

probabilities decrease dramatically for the cases where >0.5.  

 

For outliers (Table II), the results can be summarized as follows: 

1. For the independent case (=0), the ETS has a substantially smaller ARL (4.3)  compared to the CTS (21.9).  

The ETS also has a larger probability of early detection of an outlier (92.2%  by the sixth observation compared 

to 0% for the ETS). Recall that the ARL, as an average measure, is inflated by long run lengths. It is unable to 

adequately reflect short run lengths that are indicative of quick forecast recovery. For forecast-based schemes, 

ARLs are not informative.  

2.  Based on CDFs, the ETS provides a higher probability of early detection of an outlier for the autocorrelated 

cases where =0.5, 0.7 and 0.9. This occurs although the ETS control chart may have a longer ARL than the 

CTS. As an example, consider the case where =0.9. The ETS provides a higher probability of early detection 

on the first observation after the outlier (30.2% compared to 0.9% for the CTS) despite having a longer ARL 

(61.9) than the CTS (52.6). The detection of an outlier early, that is, within the first few observations after the 

occurrence of an outlier is critical since the forecast recovers quickly. This suggests the use of the ETS chart for 

the autocorrelated cases. 

 

VII. Conclusions 
This paper has compared tracking signals for monitoring autocorrelated observations in the presence 

shifts in a process mean and additive outliers. The quick recovery property of forecasting tools suggests that the 

performance of tracking signals applied to forecast errors be based on the CDF on the run lengths and not on the 

ARL. The Smoothed Error Tracking Signal is recommended over the CUSUM tracking signals as it offers the 

highest probability of early detection of change in a process mean and an additive outlier in an AR(1) process. 

 

TABLE I. Average Run Lengths and Percentage of Signals detected by the ith observation after a shift of size . 

The ETS and CTS tracking signals are applied to forecast errors from AR(1) processes with autoregressive 

parameters  and an in-control ARL of 250. 

 
  Monitoring 

Scheme 

ARL Number of time periods after an outlier 

    1                2               3               4              5                6     

 

 

 

 

0 

 

0.0 

 

 

1.0 

 

 

3.0 

CTS 

ETS 

 

CTS 

ETS 

 

CTS 

ETS 

252 

248 

 

26.8 

11.2 

 

21.9 

4.4 

0.2 

1.1 

 

0.7 

0.9 

 

0.4 

3.0 

0.3 

1.7 

 

0.7 

0.2 

 

0.4 

11.1 

 

 

0.3 

2.4 

 

0.8 

4.6 

 

0.4 

28.8 

 

 

0.3 

2.6 

 

0.9 

7.1 

 

0.4 

53.6 

 

 

0.4 

3.2 

 

1.0 

11.7 

 

0.4 

54.2 

 

 

0.4 

3.7 

 

1.2 

17.4 

 

0.4 

91.1 

 

 

 

 

0.5 

0.0 

 

 

1.0 

 

 

3.0 

CTS 

ETS 

 

CTS 

ETS 

 

CTS 

ETS 

250 

250 

 

37.2 

213.2 

 

5.7 

70.6 

0.2 

0.3 

 

0.6 

1.3 

 

3.9 

8.6 

0.9 

0.9 

 

2.4 

2.7 

 

14.9 

24.6 

 

 

1.2 

1.2 

 

3.5 

4.7 

 

30.5 

38.3 

 

 

1.6 

1.8 

 

5.7 

6.2 

 

47.2 

49.8 

 

 

2.0 

2.1 

 

7.2 

8.3 

 

59.9 

55.9 

 

 

2.4 

2.2 

 

9.3 

10.3 

 

70.5 

61.2 
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0.7 

0.0 

 

 

1.0 

 

 

3.0 

CTS 

ETS 

 

CTS 

ETS 

 

CTS 

ETS 

251 

251 

 

90.2 

238.9 

 

11.8 

158.6 

0.5 

0.6 

 

1.0 

1.0 

 

5.0 

9.6 

1.5 

0.9 

 

2.3 

2.6 

 

10.8 

16.3 

 

 

1.8 

1.7 

 

3.2 

3.7 

 

16.3 

20.1 

 

 

2.1 

2.1 

 

4.0 

4.3 

 

22.3 

24.1 

 

 

2.5 

2.3 

 

5.2 

4.9 

 

27.9 

27.0 

 

 

2.6 

2.7 

 

6.7 

5.4 

 

33.5 

29.4 

 

 

 

 

0.9 

0.0 

 

 

1.0 

 

 

3.0 

CTS 

ETS 

 

CTS 

ETS 

 

CTS 

ETS 

251 

251 

 

181.6 

233.5 

 

108.6 

179.1 

0.1 

0.5 

 

0.3 

1.5 

 

0.2 

6.2 

0.1 

0.8 

 

0.3 

2.7 

 

0.7 

7.4 

 

 

0.1 

1.2 

 

0.3 

2.7 

 

1.1 

9.0 

 

 

0.1 

1.5 

 

0.6 

3.5 

 

1.7 

9.8 

 

 

0.1 

2.0 

 

0.6 

3.9 

 

2.4 

10.2 

 

 

0.4 

2.2 

 

0.8 

4.3 

 

3.1 

11.0 

 

VIII. Conclusions 
This paper has compared tracking signals for monitoring autocorrelated observations in the presence 

shifts in a process mean and additive outliers. The quick recovery property of forecasting tools suggests that the 

performance of tracking signals applied to forecast errors be based on the CDF on the run lengths and not on the 

ARL. The Smoothed Error Tracking Signal is recommended over the CUSUM tracking signals as it offers the 

highest probability of early detection of change in a process mean and an additive outlier in an AR(1) process. 

 

TABLE II. Average Run Lengths and Percentage of Signals detected by the ith observation after an outlier of 

size 3p. The ETS and CTS tracking signals are applied to forecast errors from AR(1) processes with 

autoregressive parameters  and an in-control ARL of 250. 
 Monitoring 

Scheme 

ARL Number of time periods after an outlier 

    1                2               3               4              5                6     

0.0 

 

 

0.5 

 

 

0.7 

 

 

0.9 

ETS 

CTS 

 

ETS 

CTS 

 

ETS 

CTS 

 

ETS 

CTS 

4.3 

21.9 

 

43.1 

4.5 

 

90.0 

6.4 

 

61.9 

52.6 

3.9 

0.0 

 

12.6 

5.4 

 

20.2 

9.9 

 

30.2 

0.9 

12.7 

0.0 

 

32.8 

21.6 

 

34.1 

22.6 

 

35.6 

2.0 

30.5 

0.0 

 

48.3 

40.3 

 

40.5 

34.5 

 

38.0 

3.1 

53.9 

0.0 

 

60.0 

58.7 

 

46.6 

45.9 

 

39.5 

5.0 

75.7 

0.0 

 

67.5 

73.0 

 

49.4 

54.2 

 

39.8 

7.6 

92.2 

0.0 

 

72.6 

83.2 

 

52.4 

61.7 

 

40.3 

10.3 
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