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ABSTRACT 
The retailer makes payment after receiving the ordered commodities in the traditional economic order quantity 

(EOQ) models. It is impractical in cases in which the supplier has the power to control the risk of the cash flow. 

This paper therefore constructs an inventory model with a partial advance payment with added considerations 

for order quantities and carbon emissions. Five practical orientations are incorporated into the proposed 

model: (1) the opportunity costs due to making advance payments; (2) the interest charge caused by the bank 

loans; (3) the carbon emission costs resulting from the deliveries; (4) the quantity discounts offered by suppliers 

to induce the retailer to order greater quantities; and (5) employing the lot-splitting delivery policy to help 

prevent there being insufficient retailer storage space or reduce storage costs. The objective of this study is to 

determine the number of shipment and the inventory lot size corresponding to unit-purchasing cost minimizing 

the annual total cost. We then develop a two-stage solution procedure and construct an efficient algorithm to 

help managers making quick and accurate decisions. Numerical examples are given to verify the validities of the 

proposed model and algorithm. Managerial implications are also explored. 
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I. INTRODUCTION 
Facing the increasingly volatile business environments, many companies employ different strategies to 

achieve competitive edges. One of the key strategies in recent is the timing of the payment for ordering cost. 

There are three different basic policies for paying the ordering cost: (i) payment at the time of delivery, (ii) 

postponed payment or credit payment, and (iii) advance payment (Taleizadeh, 2014). Although the influences of 

delayed payment on inventory policies have attracted great attention, the advance payment and its influences on 

inventory decisions are rarely addressed (Zhang et al., 2014). Thus, in this paper, we focus on advance payment 

(AP) policy in which a seller is powerful and wants to control the risk of the cash flow and he would like the 

buyer to pay in a fixed period before the date of delivery. Especially, partial advance payment is used to control 

the risk of buyer’s canceling order or to finance the procurement of material or parts used in production of the 

ordered product. One of the pioneers focusing on the AP issue is Zhang (1996) developing a model for 

determining the optimal cash deposit amount when there is a fixed per-payment cost. He used a renewal theory 

approach to obtain the long-term expected total cost per period when the bill amounts in a future period are 

deterministic, exponentially distributed, normally distributed, or Poisson occurrence based with a constant per 

occurrence charge. Maiti et al. (2009) studied the effect of advanced payment for price-dependent demand in a 

stochastic environment in which they considered the holding, ordering, purchasing and advertising costs to be 

constant in the proposed model. Although they consider the payment scheme as an additional factor to make the 

model more realistic, they did not treat it as the core topic of the paper. Gupta et al. (2009) developed an 

inventory model with the incorporation of the effect of AP by the retailer to the wholesaler and considering the 

inventory costs as interval valued numbers in which they employed genetic algorithm to solve an inventory 

model with advance payment and interval valued inventory costs. Taleizadeh et al. (2011) used uncertain 

programming to develop a multiproduct, multi-constraint inventory control problem importing raw material 

from another country for which a fraction of the purchasing cost is paid as prepayment. Thangam (2012) 

incorporated the advance payment scheme and two-echelon trade credits into a supply chain for perishable items 

in which the advance payment was used between the final customer and the retailer, and the vendor still offered 

full delayed payment to the retailer. Taleizadeh et al. (2013a) developed an economic order quantity (EOQ) 

model for a deteriorating product with and without shortage under consecutive prepayments in which they 

assumed that the supplier asks purchasers to pay a fraction of the order's cost in advance and may allow them to 

divide the prepayment into multiple equal-sized parts to be paid during a fixed lead time. Taleizadeh et al. 

(2013b) constructed a fuzzy rough EOQ problem with quantity discount and prepayment for a deteriorating 
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product as a mixed integer nonlinear programming model in which meta-heuristic algorithms were employed to 

find the optimal solution. In the mean time, Taleizadeh (2014) developed an economic order quantity model for 

a deteriorating product with partial backordering and partial consecutive prepayments with a real case study of a 

gasoline station. Zhang et al. (2014) investigates the buyer’s inventory policy under advance payment, including 

all payment in advance and partial-advanced–partial-delayed payment in which the buyer’s ordering policy is 

derived by minimizing his total inventory costs including inventory holding cost, ordering cost, and interest cost 

caused by advance payment or delayed payment. Recently, Pourmohammad-Zia and Taleizadeh (2015) 

developed an EOQ model with backordering under a hybrid payment scheme which is also linked to order 

quantity, involves multiple advance payments as well as delay payment. Based on a real-life situation in Iran, 

Lashgari1 et al. (2016) developed an EOQ model with down-stream partial delayed payment and up-stream 

partial prepayment under three different scenarios were developed in various situations with (1) no shortage, (2) 

full backordering, and (3) partial backordering. Zhang et al. (2016) proposed a two-stage optimization model to 

characterize a retailer’s ordering policy in a supply chain with demand and supply uncertainties sequentially 

realized, where the advance payment could be conducted before the selling season to stable the supplier’s 

capacity. In contrast to those previous EOQ models with advance payments such as in Taleizadeh et al. (2014) 

and Pourmohammad-Zia and Taleizadeh (2015), without taking expiration dates into consideration, Teng et al. 

(2016) have developed an EOQ model for the retailer with partial backordering and lost sales when the supplier 

requests a partial prepayment before delivery, and the product gradually deteriorates to 100% as its expiration 

date approaches. Tao and Xu (2019) focused on inventory management under two common carbon-regulation 

policies: carbon-tax regulation and cap-and-trade regulation in which they found that the allocated cap does not 

affect the optimal order size under cap-and-trade regulation. Mashud et al. (2021) aimed at reducing the carbon 

emissions of a retailer’s inventory system in which a greenhouse product retailer is investing in advanced 

technology for lower carbon emission logistics activity. Li et al. (2022) integrated economic production quantity 

with economic order quantity models and designs multiple carbon policies in which abatement rate and 

collection rate are the key variables used to explore the mechanism of the interaction between carbon tax and 

cap-and-trade, inventory dynamics of closed-loop supply chain and impact of multiple carbon policies on 

closed-loop supply chain. Other related works on carbon emission and advance payment include research 

undertaken by Singh and Chaudhary (2023), Nia et al. (2023), Dey et al. (2023), among others found in their 

references. 

Based on the above arguments, we know that the previous studies dealt with EOQ models with advance 

payment built upon the following assumptions: (1) unit purchasing cost is irrelevant with regard to ordering 

quantity; (2) a single order delivery; (3) no additional charges for carbon emissions. However, in order to 

achieve their economics of scale, the supplier usually offers quantity discounts as an incentive for the retailer to 

order larger quantities. To benefit from the quantity discounts, the retailer orders greater amounts of goods, and 

also requires the supplier to send deliveries in multiple shipments. Moreover, with there being greater 

environmental awareness, governments have begun levying carbon emission taxes or making attempts to impose 

limits on carbon emissions caused by business activities. These practical dimensions should be included in 

models examining inventory systems that entail making advance payments. This paper therefore constructs an 

inventory model with a partial advance payment with added considerations for order quantities and carbon 

emissions. Five practical orientations are incorporated into this proposed model: (1) the opportunity costs due to 

making advance payments; (2) the interest charge caused by the bank loans; (3) the carbon emission costs 

resulting from the deliveries; (4) the quantity discounts offered by suppliers to induce the retailer to order 

greater quantities; and (5) employing the lot-splitting delivery policy to help prevent there being insufficient 

retailer storage space or reduce storage costs. To the best of our knowledge, this research is the first to 

incorporate the PAP scheme, carbon emission, lot-splitting deliveries, and quantity discounts into an EOQ 

model. This paper not only to find the optimal ordering and delivery policies but also the quantity discounts 

policy by minimizing the retailer’s total cost under partial advance payment and carbon emission. An example 

incorporating with some managerial insights are also explored. 

 

II. NOTATION AND ASSUMPTIONS 
The following notation and assumptions are introduced to define the EOQ model with advance payment and 

carbon emission. 

 

Notation 

The following parameters and variables are used to develop the problem. 

D demand rate 

S cost of placing one order 

Q order size 

N number of shipments per cycle (integer value)    
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Ih holding cost rate for a unit of item per period, expressed as a fraction of dollar value 

α percent of purchase cost paid in advance, 10   

Id opportunity cost per $ investment in other market per year 

t length of advance payment 

Ic interest charges per $ investment in stocks per year  

T planning horizon   

R receiving cost per shipment 

A0 fixed transport cost of a shipment 

cd variable transport cost per unit  

A1 fixed GHG emission cost of a shipment 

Ω fuel price at the time of the order 

d distance traveled in kilometers  

l fuel consumption in liters per km 

ck unit-purchasing cost of kth level 

p unit sell price in $   

 

Assumptions 

The following assumptions are made to develop the mathematical model. 

 (1) Demand rate for item is known and constant 

(2)Shortages are not allowed 

(3) Time horizon is infinite 

(4) Replenishments are instantaneous 

(5) Ordering quantity is manufactured at one setup and the shipment is a fixed quantity and delivered at regular 

intervals 

(6) All-unit quantity discounts scheme is employed where ck be the unit-purchasing cost of kth level and Qk-1 be 

the lowest order quantity of the kth level. This means when the order quantity is between  kk QQ  ,1 , then 

the unit purchase cost is 𝑐𝑘 , where 1 kk cc  

(7) the retailer is requested by the supplier to pay part of the payment in a fixed period before the date of 

delivery and the remaining unpaid balance must be paid when the moment of the first shipment. 

(8) the retailer employs cash in hand to pay the partial advance payment and thus sustains a loss of opportunity 

cost; Alternately, he gets loan from a bank to pay the remaining unpaid balance and thus incurs a loan 

interest, Ic. 

(9) the sales revenue for the end of each sub-batch (i.e. pQ/N .) does not immediately use to pay the loan but 

use to invest another market to obtain the capital gains, 𝐼𝑑, where cd>II  . At the end of the whole cycle, 

 0T+t , all of the loans are paid. 

 

III. Mathematical model 
To control the risk of buyer’s canceling order or to finance the procurement of material used in 

production of the ordered product, the seller usually requests that the buyer pays a certain percentage of the total 

purchase cost per cycle as a partial advance payment (PAP). The decision regarding the amount of PAP to be 

made has a crucial impact in the total cost and inventory decisions because PAP is a real life phenomenon. In 

this section, we construct a mathematical model with the total cost minimization objective for retailer’s optimal 

ordering and delivery policies under advance payment and carbon emission. The time-weighted inventory 

behavior when partial payment is paid in advance is illustrated in Fig. 1 in which a single order and lot-splitting 

shipments are considered (say N shipments) during the planning horizon, T. For each shipment, the delivery 

interval and amount are the same. At time 0, the retailer pays the supplier partial advance payment and incurs an 

opportunity cost with αtDTckId, which is constant until time t. At time t, the retailer gets loans from bank to pay 

the remaining unpaid balance and thus incurs an interest. From time t, the sale begins and the revenue from sale 

is continuously used to pay the loan, and the amount of outstanding loan is decreasing. At time t+t1, all of the 

loans are paid and then the revenue begins to earn interest until time t+T. Thus, we have 
 

pD

Qc
t k


1
1

. 

 

 

 

 



Optimal Ordering And Delivery Policies Under Carbon Emission And Advance Payment 

DOI: 10.9790/487X-2506042129                                   www.iosrjournals.org                                        24 | Page 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Time-weighted inventory when partial payment is paid in advance. 

 

For the retailer, the total variable costs under lot-splitting shipments consist of the following elements: 

(1) Cost of placing order, S. 

(2) Cost of stock holding (excluding interest charge),  DNQIc hk 22
 

(3) Opportunity cost, tIQc dk  

(4) Cost of interest charge,   21 1tIQc ck  

(5) Interest earning,   2
2

1tTpDI
d

  

(6) Cost of purchasing items, ckQ 

(7) Receiving cost, NR 

(8) Cost of delivery items (including fixed and variable delivery cost),  NQcAN d0 . 

(9) Cost of carbon emission (including fixed and variable carbon emission cost),  NQdlAN 1 . 

Then, the total cost is  

 
   

22

1

2

2

11

2 tTpDItIQc
tIQc

DN

QIc
SN,QTC dck

dk
hk

k








  




















N

Q
dlAN

N

Q
cANNRQc dk 10 , rk ,...,2,1  (1) 

Because  DQT  , the total cost per unit time is  
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DdlDcDctIDc dkdk   , rk ,...,2,1    (2) 

Since the objective of this paper is to minimize the total cost per unit time by simultaneously 

determining the optimal order lot size, number of shipments and unit-purchasing cost, the convexity of the 

function needs to be proved to find the unique solution, which requires to show that the Hessian matrix of Eq. 

(2) is positively definite for finding the solution using differential calculus. However, it is not easy to determine 

the concavity of the Hessian matrix in Eq. (2). Therefore, in the following section we develop an alternative 

procedure to identify the feasible solutions and then develop an algorithm to determine the overall optimal 

solution. 

 

IV. SOLUTION PROCEDURES AND ALGORITHM 
For the derivation of the optional solution in the total cost per unit ATCk(Q,N), We need the following property. 

Property 1: For a fixed value of N, ATCk(Q,N) is convex in Q. 

Proof: For a fixed value of N, ATCk(Q,N) in Eq. (2) is a function of single variable Q.  Therefore, the sign of

  22 , QNQATCk  characterizes its convexity. Then, we have 

… 

Q/N 

Q 

αQ 

t+T/N t 
T+t t+t1 
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   
0
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3
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

Q
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, rk ,...,2,1 , 

which shows that, for a fixed value of N, ATCk(Q,N) is convex in Q for all k. 

 

Property 1 indicates there is a unique solution which minimizes Eq. (2) if the number of deliveries is 

given. Because the unit-purchasing cost depends on quantity ordered, we cannot obtain the optimal lot size form 

Eq. (2) immediately under the different cost curve corresponding to each cost level. This means the values for 

each Qk in this stage are not optimal solutions but feasible solutions by letting    0,  QNQATCk . 

Setting    0,  QNQATCk and letting it be kQ
~

corresponding to each unit-purchasing cost, we have 
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We here assume the supplier requires the rate of the partial advance payment is not significant (e.g. α<0.2 ) 

and thus
   
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. This implies the denominator in Eq. (3) is positive. 

Thus, Substituting eq. (3) into Eq. (2), we have 
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DdlDcDctIDc dkdk   , rk ,...,2,1    (4) 

Ignoring the terms independent of N and taking square of ATCk(N), we know that minimizing ATCk(N) is 

equivalent to minimizing the following: 
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Treating N as a continuous variable and taking the first and the second derivative of Zk(N)with respect to N, 

one has 
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Therefore, we know Zk(N) is convex in N. This implies ATCk(N) is also convex in N. Letting

   0dNNdZk , we have 
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Because the denominator in Eq. (6) is positive, we have kN  is also positive. However, kN  is an integer 
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value of the discrete variable. Eq. (6) does not guarantee an integer could be provided. Thus, employing the 

following relationships, 

     11  NZNZNZ kkk . 

One can obtain the following condition to determine the candidate optional number of shipments: 
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Plugging N̂ obtained from Eq. (7) into Eq. (3), we therefore obtain  NQk
ˆˆ corresponding to each 

unit-purchasing cost (i.e. ck). We note that  NQk
ˆˆ is valid when the condition   kkk QNQQ 

ˆˆ
1 holds. This 

indicates that if  NQk
ˆˆ is invalid corresponding to ck, two cases occur: 

Case I：   kk QNQ ˆˆ , where 
kQ is an upper bound of ordering quantity corresponding to ck.  

In this case, the vendor may adopt the lower unit-purchasing cost (e.g. cx for cx<ck) to obtain the lot 

size  NQk
ˆˆ . This implies    NATCNATC kx

ˆˆ 
 
from Eq. (4). This result indicates the optical 

solution may not occur at this case. 

Case II：   1
ˆˆ

 kk QNQ , where 
1kQ is a lower bound of ordering quantity corresponding tock.  

In this case, we can fix Q and N individually when ck is given. Two possible candidates under ck may 

exist. 

Scenario 1：The perspective of break point 
1kQ  corresponding to ck 

In this scenario, the candidate optimal lot size may occur at the breakpoint 
1kQ  with its corresponding 

candidate number of deliveries. Therefore, for given 
1kQ , corresponding to ck, one may determine the 

candidate integer deliveries for kN
~

 is given by  

 
 

 1
2

1
10




 kk
hk

kk N
~

N
~

AARD

Ic
N
~

N
~

, rk ,...,2,1   (8) 

Scenario 2：The perspective of fixed N 

Given a reasonable N, the candidate optimal solution may occur at   NNQk ,
in which the condition 

of   kkk QNQQ 
ˆˆ

1  holds. Plugging Eq. (3) into  NQQ kk
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Solving Eq. (9) for N, we have 
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Taking  kk NN 
in which  kN  is the smallest integer larger than 

kN , We then have  

kk NQ from 

Eq. (3). Alternatively, if   kkk QNQ 
, no feasible solution occurs in this scenario. 

We now have obtained some potential sets of optimal lot size and shipments from above discussions. 

However, the optimal solution until now could not be obtained. We therefore develop an algorithm to find the 

optimal ordering quantities and shipments as follows: 
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Algorithm: 

Step 1: Obtain kN̂  from Eq. (7) 

Step 2: Plugging kN̂  obtained in Step1 into Eq. (3) and then obtain  kk N̂Q̂ , where r,...,,k 21 . 

Step 3: FOR k=1 to r 

IF   kkk QN̂Q̂  , NEXT k 

ELSE { 

    IF   kkkk QN̂Q̂Q 1 , DO { 

{Compute  kkk N̂,Q̂ATC  from Eq. (2) and record them} 

{NEXT k} 

} 

} 

ELSE { 

    IF   1-kkk QN̂Q̂  , DO { 

{Obtain kN
~

 from Eq. (8) and compute  kkk N
~

,QATC 1  from Eq. (2) and record 

them} 

{Obtain 
kN  from Eq. (10) and take  kk NN 


; Compute  

kk NQ  from Eq. 

(3). 

If   kkkk QNQQ 


1 , { 

Compute  

kkk N,QATC  from Eq. (2) and record them 

} 

ELSE { 

  


kkk N,QATC  and record them 

} 

} 

{       

 kkkkkk

@

k

@

kk N,QATC,N
~

,QATCMinN,QATC 1  and then record 

them}. 

{NEXT j} 

} 

} 

Step 4:       @@** ,,ˆ,ˆ , kkkkkk NQATCNQATCMinNQATC   

Step 5: The optional order lot size is Q* corresponding to its unit-purchasing cost; the optimal number of 

shipments is N*; and the minimum cost is ATC(Q*,N*). 

 

V. NUMERICAL EXAMPLE 
To illustrate the behaviors of the optimal order lot size Q*, the optimal number of shipments N*, and the 

minimum cost ATC(Q*,N*), let us consider the following example. All necessary variable costs and fixed costs 

are estimated from existing data and listed in Table 1. 

Table 1. All necessary variable costs and fixed costs 

Description and parameters Value Unit 
Demand rate (D) 96000 units/year 

Ordering cost (S) 1200 $/cycle 

Receiving cost (R) 10 $/shipment 

Holding cost rate for a unit of item (a fraction of dollar value) (Ih) 0.20 $/unit/year 
Unit sell price of  items (p) 50 $/unit 

Fixed transport cost of a shipment (A0) 153.2 $/shipment 

Fixed GHG emission cost of a shipment (A1) 40.46 $/shipment 

Interest charges(Ic) 0.15 $/dollar/year 

Length of advance payment(t) 0.1 year 

Opportunity cost (Id) 0.1 $/dollar/year 
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Variable transport (cd) 0.1 $/unit 

Distance traveled(d) 500 km 

Fuel consumption(l) 0.3 litters/km 

Fuel price (Ω) 0.5107 $/(litters˙unit)/shipment 

Percent of purchase cost paid in advance(α) 0.16  

 

In addition, the supplier provides a price discount schedule as the following intervals:  3000,1  

corresponding to 15.201 c ,  ,60003000  corresponding to 10.202 c ,  6000,10000  corresponding 

to 05.203 c ,  010000,1500  corresponding to 02.204 c , and  15000,  corresponding to 205 c

. 

Using the algorithm developed in Section 4, one has the optimal ordering quantity, number of shipments and 

minimum annual total cost as follows: 

Step 1: From Eq. (7), we have 

3ˆ kN , 5,...,2,1k . 

Step 2: Plugging 3ˆ kN ( 5,...,2,1k ) into Eq. (3) and then obtain 

  7.145703ˆ
1 Q ,   3.146323ˆ

2 Q ,   7.146943ˆ
3 Q , 

  5.147323ˆ
4 Q ,   8.147573ˆ

5 Q  

Step 3: (1) Because   30003ˆ
1 Q ,   60003ˆ

2 Q   100003ˆ
3 Q , This implies the optimal solution may not 

occur at these results. We therefore do not further compute them.  

(2) Because 15000ˆ10000 4 Q , we substitute 5.14732ˆ
4 Q  and 3ˆ

4 N  into Eq. (2) and thus 

obtain   0.93122773,5.147324 ATC  

(3) Because 15000ˆ
5 Q , from Eq. (8), we then have 

5
~

5 N  and   4.93089235,150005 ATC  

(4) Obtaining
5N  from Eq. (10) and take  55 NN 


, we have 45 


N  

 Computing  45


Q  from Eq. (3), one has   1.1749945 


Q  

Because   1500045 


Q , we have   0.93506524,1.174995 ATC  

(5) Taking       
 555545

@

5

@

55 ,,
~

, , NQATCNQATCMinNQATC , we have  

    4.93089235,15000, 5

@

5

@

55  ATCNQATC  

Step 4: Taking       @

5

@

55444

** ,,ˆ,ˆ , NQATCNQATCMinNQATC  , one has 

    4.93089235,15000, 5

**  ATCNQATC  

Step 5: The optional order lot size is 15000 units corresponding to its unit-purchasing cost $20; the optimal 

number of shipments is 5 times; and the minimum cost is $9308923.4. 

Based on the above discussion, we know that the optimal solution for the given parameter set is 

Q*=15000 units and N*=5 times, and the annual total cost is $9308923.4., which meets the results obtained in 

our developed Algorithm. Note that if a single delivery policy is adopted, the optimal order quantity obtained 

from Eq. (3) is then 7931.9 units. The annual total cost is   9.93255361,9.79313 ATC . Thus, the effects 

of multiple deliveries and quantity discounts, in general, for the powerful retailer is larger than the effect of 

carbon emission under single delivery.  

 

VI. CONCLUSION 

In contrast to those previous EOQ models with advance payment, we have taken quantity discount, lot-

splitting deliveries, and carbon emission into consideration. As a result, this paper has developed the retailer’s 

optimal policy when the supplier requests a partial advance payment before delivery and provides quantity 

discounts. We then demonstrate how the constructed model is a convex function and also derive property to help 
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develop a two-stage solution procedure. An efficient algorithm has been developed to help managers make 

quick and accurate decisions. Numerical results in general showed that: (1) the lowest unit purchasing cost in 

the cost discount schedule may not guarantee that the retailer could obtain minimum annual total cost because 

the extra quantity purchased may add additional holding cost and thus add the annual total cost; (2) the length of 

the advance payment, the quantity discounts, and the cost of carbon emissions do impact the retailer’s inventory 

policy; and (3) in general, the more carbon emission cost is, the larger ordering quantity is and the less number 

of shipment is. 
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