Fisioterapia Esportiva: Efeitos Do Exercício Resistido E Aeróbico Na Performance De Atletas

Ana Caroline Queiroz Trigueiro

Centro Universitário De Patos - UNIFIP Fisioterapeuta E Mestra

Resumo

A fisioterapia esportiva desempenha papel central na maximização da performance atlética, integrando protocolos de exercício resistido e aeróbico com foco na prevenção de lesões, no aumento da força e resistência e na recuperação funcional. O exercício resistido tem se mostrado eficaz na melhora da força muscular, potência e estabilidade articular, fatores determinantes para atletas de modalidades que exigem explosão e contato físico. O exercício aeróbico, por sua vez, contribui para a otimização da capacidade cardiorrespiratória, aceleração da recuperação e manutenção do condicionamento em períodos de reabilitação. Evidências recentes sugerem que a associação equilibrada entre os dois tipos de exercício potencializa adaptações fisiológicas e reduz a incidência de lesões musculoesqueléticas. Além disso, a fisioterapia esportiva orienta a prescrição individualizada dos treinos, considerando variáveis como volume, intensidade e especificidade da modalidade. Este artigo revisa a literatura científica e relatórios clínicos, analisando efeitos combinados do treinamento resistido e aeróbico em diferentes esportes, com destaque para métricas de força, VO2máx, tempo de recuperação e incidência de lesões. Os achados indicam que a integração de abordagens é estratégica não apenas para o desempenho competitivo, mas também para a longevidade da carreira esportiva.

Palavras-chave: fisioterapia esportiva; exercício resistido; exercício aeróbico; performance; prevenção de lesões.

Date of Submission: 12-10-2025 Date of Acceptance: 22-10-2025

I. Introdução

A fisioterapia esportiva constitui um campo interdisciplinar que, nas últimas décadas, ganhou destaque como área estratégica no treinamento e acompanhamento de atletas de alto rendimento. Originalmente vinculada à reabilitação de lesões, a fisioterapia expandiu suas fronteiras para atuar de maneira preventiva e também como promotora de performance, colaborando diretamente com treinadores, médicos, nutricionistas e psicólogos do esporte (Reque et al., 2019). Essa mudança de paradigma reflete a crescente complexidade do esporte competitivo, em que a simples ausência de lesões já não é suficiente: é necessário otimizar força, resistência, recuperação e longevidade atlética.

O desenvolvimento da ciência do exercício consolidou o **treinamento resistido** e o **treinamento aeróbico** como pilares da preparação física moderna. O resistido está associado ao aumento de força, potência, hipertrofia e estabilidade articular, sendo indispensável para modalidades que exigem explosão e contato físico. Já o aeróbico contribui para a eficiência cardiorrespiratória, manutenção da intensidade de esforço e aceleração da recuperação. A integração dessas abordagens, quando conduzida sob protocolos de fisioterapia esportiva, amplia não apenas o desempenho, mas também a capacidade preventiva contra lesões musculoesqueléticas (Kraemer & Ratamess, 2004; Joyner & Coyle, 2008).

Contexto histórico e evolução da fisioterapia esportiva

A evolução da fisioterapia esportiva acompanha o próprio crescimento do esporte de alto rendimento. Nas primeiras décadas do século XX, o fisioterapeuta tinha atuação quase exclusiva em contextos clínicos, voltados à reabilitação após traumas ou cirurgias. Com a profissionalização do esporte e o aumento das demandas físicas, surgiu a necessidade de estratégias sistemáticas de prevenção, o que impulsionou a entrada da fisioterapia nas comissões técnicas (Maughan et al., 2013).

No Brasil, a partir da década de 1980, o crescimento do futebol profissional e o sucesso em modalidades olímpicas favoreceram a inserção de fisioterapeutas em clubes, seleções e centros de treinamento. Gradualmente, consolidou-se o entendimento de que a fisioterapia não deveria restringir-se ao tratamento pós-lesão, mas assumir papel ativo na **prescrição de exercícios corretivos, resistidos e aeróbicos** como forma de prevenção e otimização da performance (Reque et al., 2019).

Relevância do tema no cenário esportivo atual

O esporte de alto rendimento é caracterizado por margens de vitória cada vez menores. Diferenças de centésimos de segundo ou poucos quilos de força podem determinar resultados em competições internacionais. Nesse cenário, a fisioterapia esportiva passa a ser reconhecida como área-chave para garantir vantagem competitiva.

Estudos mostram que atletas submetidos a protocolos de fisioterapia preventiva apresentam **menor** incidência de lesões musculares e maior taxa de retorno seguro ao jogo em comparação com grupos sem acompanhamento fisioterapêutico (Ekstrand et al., 2011). Além disso, em modalidades de endurance, como corrida e ciclismo, a integração de exercícios resistidos e aeróbicos está diretamente associada à melhora do VO₂máx, da resistência muscular e da capacidade de recuperação, fatores determinantes para a manutenção de intensidade ao longo de temporadas longas (Joyner & Coyle, 2008).

A relevância se amplia quando se considera a **longevidade esportiva**. Lesões recorrentes representam um dos principais fatores de aposentadoria precoce de atletas. Programas de fisioterapia que equilibram treino resistido e aeróbico não apenas potencializam performance imediata, mas também contribuem para carreiras mais longas e sustentáveis (Kraemer & Ratamess, 2004).

Fundamentos teóricos: exercício resistido e aeróbico

O exercício resistido, também chamado de treinamento de força, baseia-se na aplicação de sobrecargas progressivas aos músculos, com objetivo de promover adaptações estruturais e funcionais. Entre seus benefícios estão o aumento da força máxima, da potência explosiva e da capacidade de estabilização articular, aspectos críticos em esportes como futebol, basquete e atletismo (Kraemer & Ratamess, 2004).

Já o exercício aeróbico, realizado em intensidades moderadas a altas e com predomínio do metabolismo oxidativo, promove adaptações cardiorrespiratórias que resultam em maior VO₂máx, eficiência cardíaca e resistência à fadiga. Modalidades como corrida de longa distância, ciclismo e natação são exemplos em que a base aeróbica é determinante para a performance (Joyner & Coyle, 2008).

A literatura mais recente indica que a **combinação dos dois métodos**, quando bem periodizada, potencializa benefícios mútuos. O resistido pode aumentar a resistência muscular periférica, enquanto o aeróbico melhora a recuperação entre sessões de força. Entretanto, deve-se observar o fenômeno da **interferência concorrente**, no qual o excesso de treinamento aeróbico pode limitar adaptações hipertróficas e de força, caso não haja equilíbrio adequado (Maughan et al., 2013).

Lacunas e desafios

Apesar dos avanços, ainda existem lacunas relevantes na literatura e na prática. Uma delas é a ausência de protocolos universais que integrem resistido e aeróbico de maneira equilibrada, respeitando especificidades de cada modalidade. Outro desafio é a **individualização**, pois fatores como idade, sexo, histórico de lesões e posição esportiva influenciam as respostas ao treinamento.

Além disso, o advento da **inteligência artificial aplicada ao esporte** e das tecnologias de monitoramento (GPS, sensores de carga, plataformas de salto) abre novas possibilidades para personalização da fisioterapia esportiva. No entanto, sua integração ainda é incipiente em muitos centros de treinamento, especialmente em países em desenvolvimento (Reque et al., 2019).

Outro ponto crítico refere-se à necessidade de maior colaboração interdisciplinar. Embora haja consenso sobre a importância da fisioterapia esportiva, em muitos clubes ainda prevalece uma visão compartimentada, em que médicos, preparadores físicos e fisioterapeutas atuam de forma paralela e não integrada. Essa fragmentação pode comprometer a eficácia de programas preventivos e de performance.

Objetivos do estudo

Diante desse contexto, o presente artigo tem como objetivo **avaliar as evidências científicas sobre os efeitos do exercício resistido e do exercício aeróbico na performance de atletas**, considerando ganhos de força, resistência, recuperação funcional e prevenção de lesões.

Os objetivos específicos são:

- 1. Identificar as principais adaptações fisiológicas promovidas pelo exercício resistido no contexto esportivo.
- 2. Analisar os efeitos do exercício aeróbico sobre performance cardiorrespiratória e recuperação.
- 3. Discutir beneficios e limitações da integração entre resistido e aeróbico sob perspectiva da fisioterapia esportiva.
- 4. Apontar lacunas de pesquisa e sugerir direções para estudos futuros.

Relevância acadêmica e prática

Este estudo possui relevância acadêmica por sintetizar evidências recentes e contribuir para o debate científico sobre fisioterapia esportiva, um campo em expansão que dialoga com fisiologia do exercício, biomecânica e ciências da saúde. Ao mesmo tempo, tem relevância prática ao oferecer subsídios para treinadores, fisioterapeutas e gestores esportivos interessados em aplicar protocolos eficazes de prevenção e performance.

A literatura evidencia que programas de fisioterapia esportiva bem estruturados podem reduzir em até 30% a incidência de lesões musculares em atletas de elite (Ekstrand et al., 2011). Esse dado demonstra que o impacto da área transcende a dimensão clínica, influenciando diretamente resultados competitivos e financeiros, considerando que lesões geram afastamentos, custos de tratamento e perda de rendimento.

Assim, ao integrar exercícios resistidos e aeróbicos em sua prática, a fisioterapia esportiva consolida-se como área estratégica para o esporte moderno, capaz de alinhar desempenho e saúde em níveis antes considerados contraditórios.

Estrutura do artigo

O presente artigo está organizado em cinco seções principais. Após esta Introdução, a **Revisão de Literatura** (seção 2) apresenta os fundamentos teóricos e evidências empíricas sobre fisioterapia esportiva, exercício resistido e exercício aeróbico. A **Metodologia** (seção 3) descreve os procedimentos da revisão integrativa, incluindo critérios de seleção e análise. A seção de **Resultados e Discussão** (seção 4) apresenta os principais achados da literatura, analisando-os de forma crítica em quatro dimensões: força, resistência, recuperação e prevenção de lesões. Por fim, a **Conclusão** (seção 5) sintetiza os resultados, discute implicações práticas e aponta caminhos para pesquisas futuras.

II. Metodologia

Delineamento do estudo

O presente artigo foi desenvolvido como uma **revisão integrativa da literatura**, modalidade metodológica que permite reunir e sintetizar resultados de pesquisas com diferentes abordagens — quantitativas, qualitativas e mistas — sobre um tema de interesse. A escolha por esse delineamento justifica-se pela amplitude de seu escopo, adequado para compreender um fenômeno multifatorial como a fisioterapia esportiva aplicada ao desempenho atlético.

Diferentemente da revisão sistemática, que exige protocolos de exclusão rígidos e foca em determinado tipo de estudo, a revisão integrativa possibilita incluir artigos científicos, revisões já publicadas e relatórios clínicos de relevância, ampliando a visão sobre o tema. Assim, tornou-se possível analisar não apenas indicadores objetivos de performance, como VO₂máx e força máxima, mas também interpretações clínicas e recomendações aplicadas à prevenção de lesões.

Fontes de dados e estratégias de busca

A coleta de dados foi realizada em três bases de referência internacional: **PubMed**, **Scopus** e **SciELO**. Essas bases foram escolhidas por cobrirem, de forma complementar, áreas como medicina esportiva, fisioterapia, fisiologia do exercício e ciências da saúde.

As buscas foram realizadas em abril de 2025, utilizando descritores controlados (DeCS e MeSH) em português e inglês. Foram aplicadas as seguintes combinações com operadores booleanos:

- "sports physiotherapy" AND "resistance exercise"
- "sports physiotherapy" AND "aerobic training"
- "resistance training" AND "athletic performance"
- "aerobic exercise" AND "injury prevention"
- "fisioterapia esportiva" AND "exercício resistido"
- "fisioterapia esportiva" AND "exercício aeróbico"

O uso de termos em dois idiomas visou captar tanto a literatura internacional quanto produções científicas brasileiras, fundamentais para contextualizar a prática em diferentes realidades.

Critérios de inclusão e exclusão

Foram estabelecidos critérios de **inclusão** para garantir a pertinência dos estudos analisados:

- Recorte temporal: artigos publicados entre 2000 e 2024, período marcado pela consolidação da fisioterapia esportiva como disciplina e pela difusão do treinamento resistido e aeróbico em protocolos de prevenção e performance.
- 2. População: estudos realizados com atletas profissionais ou amadores de modalidades esportivas reconhecidas.
- 3. **Temática central**: investigações que abordassem efeitos do exercício resistido e/ou aeróbico sobre performance, prevenção de lesões ou recuperação.

- 4. **Tipo de publicação**: ensaios clínicos, revisões sistemáticas, meta-análises, relatos de caso aplicados ao esporte competitivo e revisões narrativas de relevância reconhecida.
- 5. **Idiomas**: português, inglês e espanhol.

Os critérios de exclusão compreenderam:

- Estudos em populações clínicas não relacionadas ao esporte (ex.: idosos sedentários, pacientes cardíacos).
- Artigos de opinião sem fundamentação científica.
- Trabalhos duplicados entre bases.
- Relatos voltados exclusivamente a fisioterapia convencional sem foco esportivo.

Processo de seleção

O processo de seleção ocorreu em três etapas principais:

- 1. **Identificação inicial**: foram encontrados 1.034 registros nas três bases.
- 2. **Triagem por título e resumo**: 288 artigos foram mantidos após exclusão de duplicatas e de estudos não relacionados.
- 3. **Leitura completa**: 74 trabalhos foram analisados integralmente; destes, 42 atenderam a todos os critérios e compuseram o **corpus final**.

Esse processo foi documentado em planilhas de controle no Excel, contendo título, ano, periódico, autores, objetivo e resultados principais de cada estudo.

Categorias de análise

A análise dos estudos seguiu abordagem temática, organizada em quatro dimensões:

- 1. **Força e potência muscular** efeitos do exercício resistido sobre força máxima, potência explosiva, estabilidade articular e prevenção de lesões musculoesqueléticas.
- 2. **Resistência cardiorrespiratória** impacto do exercício aeróbico sobre VO₂máx, eficiência cardíaca, fadiga e recuperação.
- 3. **Recuperação pós-esforço** contribuições combinadas de protocolos resistidos e aeróbicos na redução de dor tardia (DOMS), aceleração da regeneração muscular e prontidão para novos treinos.
- 4. **Prevenção de lesões** análise dos efeitos preventivos do treinamento integrado sobre incidência e gravidade de lesões em diferentes modalidades.

Além disso, aspectos **transversais** foram incluídos: periodização do treinamento, interferência concorrente, individualização da prescrição e integração interdisciplinar entre fisioterapeutas, preparadores físicos e médicos.

Procedimentos de análise

Os artigos selecionados foram submetidos a leitura crítica com apoio de fichamentos estruturados. Cada trabalho foi analisado quanto a:

- Objetivo da pesquisa
- População e amostra
- Protocolo de intervenção (resistido, aeróbico ou integrado)
- Principais indicadores avaliados (força, VO2máx, tempo de recuperação, incidência de lesões, etc.)
- Resultados e conclusões

A síntese foi organizada em quadros comparativos, destacando convergências e divergências entre estudos. Posteriormente, as evidências foram agrupadas nas quatro categorias temáticas, permitindo discutir resultados sob perspectiva integrada da fisioterapia esportiva.

Validade, confiabilidade e rigor científico

Para assegurar validade e confiabilidade, foram adotadas as seguintes estratégias:

- Dupla revisão independente: dois pesquisadores revisaram de forma separada a triagem e a análise, reduzindo vieses individuais.
- **Triangulação de fontes**: combinaram-se artigos científicos e relatórios de organizações como o *American College of Sports Medicine* (ACSM) e a *International Federation of Sports Physiotherapy*.
- Registro sistemático: todas as etapas foram documentadas, garantindo rastreabilidade do processo.
- Critérios claros de inclusão/exclusão: asseguraram consistência e transparência.

Limitações metodológicas

Embora tenha seguido rigor acadêmico, esta metodologia apresenta limitações:

- 1. **Recorte temporal** publicações anteriores a 2000 não foram consideradas, embora possam conter dados históricos relevantes.
- 2. Viés linguístico estudos em línguas não selecionadas (alemão, francês, chinês) podem ter sido excluídos.
- 3. **Heterogeneidade metodológica** diferenças nos protocolos de treino analisados dificultam comparações diretas.
- 4. **Predomínio de atletas de elite** poucos estudos incluíram amadores ou atletas em formação, limitando a generalização.

Essas limitações não invalidam a revisão, mas devem ser consideradas na interpretação dos resultados.

Justificativa do método adotado

A opção pela revisão integrativa justifica-se pela necessidade de compreender os efeitos do exercício resistido e aeróbico de forma ampla e multidimensional. Além de mapear evidências técnicas, o estudo buscou identificar implicações práticas para prevenção de lesões e melhora da performance esportiva.

Assim, este método possibilitou construir uma síntese aplicável tanto ao campo acadêmico quanto ao profissional, atendendo ao objetivo do artigo: avaliar os impactos do exercício resistido e aeróbico sob a perspectiva da fisioterapia esportiva.

Síntese

A metodologia empregada permitiu selecionar e analisar 42 estudos de relevância internacional e nacional, categorizando seus achados em quatro dimensões centrais. O rigor do processo assegurou confiabilidade à análise, ao mesmo tempo em que reconheceu limitações inerentes ao campo.

Dessa forma, estabeleceu-se base sólida para a seção de **Resultados e Discussão**, que apresenta a síntese crítica das evidências e discute suas implicações para atletas, fisioterapeutas e gestores esportivos.

III. Resultado

A revisão integrativa realizada permitiu identificar 42 estudos relevantes publicados entre 2000 e 2024, envolvendo atletas de modalidades como futebol, atletismo, natação, basquete, ciclismo e esportes de combate. Os resultados foram organizados em quatro dimensões principais: (i) força e potência muscular; (ii) resistência cardiorrespiratória; (iii) recuperação pós-esforço; e (iv) prevenção de lesões. Além dessas categorias, discutemse aspectos transversais como periodização, interferência concorrente e papel da fisioterapia esportiva na integração de protocolos resistidos e aeróbicos.

Efeitos do exercício resistido na força e potência muscular

Os achados confirmam que o exercício resistido é fundamental para ganhos de força e potência em atletas de diferentes modalidades. Ensaios clínicos conduzidos com jogadores de futebol profissional mostraram aumentos médios de **20 a 30% no teste de 1RM (uma repetição máxima)** após 12 semanas de treino resistido supervisionado, além de melhorias significativas em testes de salto vertical e sprint de 20 metros (Kraemer & Ratamess, 2004).

Em esportes de explosão, como atletismo (100 m rasos e salto em distância), a literatura indica que o treino resistido promove adaptações neuromusculares que otimizam a taxa de desenvolvimento de força (RFD), variável crucial para gestos rápidos e potentes. Estudos também relatam que o fortalecimento de grandes grupos musculares reduz sobrecarga em articulações vulneráveis, como joelhos e tornozelos, contribuindo indiretamente para prevenção de lesões.

Além do ganho de força absoluta, outro resultado relevante é a **melhora da estabilidade articular**. Pesquisas em basquetebolistas e lutadores demonstraram que exercícios resistidos focados em quadríceps e isquiotibiais aumentaram a coativação muscular, reduzindo o risco de rupturas do ligamento cruzado anterior (LCA), lesão comum em esportes de alto impacto.

Do ponto de vista fisioterapêutico, esses dados reforçam a importância de inserir o treino resistido como ferramenta preventiva. Não se trata apenas de ganho estético ou hipertrofia, mas de suporte estrutural e funcional que sustenta o gesto esportivo.

Efeitos do exercício aeróbico na resistência cardiorrespiratória

O exercício aeróbico foi associado a melhorias consistentes no VO₂máx, indicador central de capacidade cardiorrespiratória. Meta-análises recentes apontam ganhos médios de 10 a 20% no VO₂máx após programas de 8 a 16 semanas de treinamento aeróbico supervisionado em atletas de esportes coletivos.

Em modalidades de endurance, como ciclismo e corrida de longa distância, os ganhos são ainda mais expressivos, com relatos de VO₂máx acima de 70 ml/kg/min em atletas de elite. Essa adaptação aumenta a

eficiência no transporte e utilização de oxigênio, prolongando o tempo até a fadiga e melhorando a manutenção da intensidade ao longo de provas prolongadas (Joyner & Coyle, 2008).

Outro achado relevante refere-se à **economia de movimento**. Nadadores submetidos a treinos aeróbicos supervisionados apresentaram menor consumo de oxigênio para realizar o mesmo gesto técnico, indicando maior eficiência biomecânica. Esse aspecto é essencial em esportes em que milissegundos definem resultados.

O exercício aeróbico também foi associado à **melhora da recuperação** entre esforços de alta intensidade. Em jogadores de tênis e futsal, por exemplo, observou-se que maior capacidade aeróbica reduziu a queda de performance em repetições de sprint intermitente. Essa evidência mostra que o aeróbico não é relevante apenas para esportes de endurance, mas também para modalidades intermitentes que combinam esforços máximos e pausas curtas.

Integração resistido + aeróbico: benefícios e desafios

Um dos principais achados da revisão foi a confirmação de que a integração equilibrada entre exercícios resistidos e aeróbicos gera benefícios superiores à adoção isolada de cada um. Atletas submetidos a programas combinados apresentaram melhora simultânea de força, VO₂máx e indicadores de recuperação, confirmando a complementaridade entre os dois métodos.

Por exemplo, corredores de meia maratona que associaram treinos resistidos (2 vezes/semana) ao aeróbico tradicional apresentaram não apenas maior resistência periférica, mas também redução em indicadores de fadiga muscular, em comparação a grupos que realizaram apenas treinos aeróbicos. Essa combinação reforça a importância de protocolos integrados para maximizar adaptações fisiológicas.

No entanto, a literatura também alerta para o fenômeno da **interferência concorrente**. Quando o volume ou a intensidade do treinamento aeróbico é excessivo, pode haver prejuízo nas adaptações hipertróficas e de força. Esse efeito foi observado em esportes de endurance quando o aeróbico foi realizado imediatamente antes de sessões resistidas de alta intensidade. A fisioterapia esportiva, nesse contexto, desempenha papel fundamental na periodização, garantindo que os métodos sejam aplicados de forma a potencializar benefícios e reduzir interferências.

Recuperação pós-esforço

A recuperação é um dos pontos centrais da fisioterapia esportiva, e a revisão confirmou o papel estratégico tanto do treino resistido quanto do aeróbico nesse processo.

O exercício aeróbico de baixa intensidade (conhecido como *recovery run* ou corrida regenerativa) foi associado à aceleração na remoção de metabólitos como lactato e à melhora da circulação sanguínea, reduzindo sintomas de dor muscular tardia (DOMS). Em estudos com atletas de rugby, protocolos regenerativos reduziram em até 30% o tempo de retorno à prontidão física após jogos de alta intensidade.

Já o exercício resistido, quando realizado em cargas moderadas e com foco em estabilidade, contribui para o fortalecimento de áreas vulneráveis e para a reeducação neuromuscular no pós-lesão. Atletas de voleibol submetidos a programas resistidos de reabilitação apresentaram retorno ao jogo em prazos 25% menores em comparação a controles submetidos apenas a fisioterapia convencional.

A combinação dos dois tipos de exercício mostrou-se particularmente eficaz em processos de reabilitação de lesões musculares. O aeróbico favorece a circulação e o metabolismo energético, enquanto o resistido restaura força e estabilidade, promovendo recuperação integral.

Prevenção de lesões e longevidade esportiva

A prevenção de lesões foi um dos eixos mais destacados na literatura. Protocolos resistidos reduziram significativamente a incidência de entorses e rupturas ligamentares, enquanto os aeróbicos contribuíram para menor fadiga sistêmica e menor risco de lesões por sobrecarga.

Um estudo longitudinal com jogadores de futebol europeu mostrou que equipes que integraram fisioterapia preventiva baseada em resistido + aeróbico tiveram 30% menos lesões musculares ao longo de uma temporada (Ekstrand et al., 2011). Além disso, atletas submetidos a tais programas apresentaram menor tempo médio de afastamento quando lesionados, indicando que o corpo se recupera mais rapidamente quando está condicionado de forma equilibrada.

Outro aspecto relevante é a **longevidade esportiva**. Em esportes de alto impacto físico, como MMA e basquete, a integração de protocolos preventivos permitiu que atletas prolongassem suas carreiras, mantendo níveis competitivos por mais tempo. Essa evidência reforça o papel estratégico da fisioterapia esportiva não apenas na performance imediata, mas também no planejamento de carreiras atléticas.

Aspectos transversais: periodização, individualização e interdisciplinaridade

A análise revelou que o sucesso de programas combinados depende fortemente da **periodização**. Treinos resistidos e aeróbicos realizados de forma aleatória tendem a gerar sobrecarga ou interferência concorrente. Já a

distribuição estratégica de cargas (ex.: separar dias de força e dias de aeróbico, ou alternar períodos de base aeróbica com ciclos de força) maximiza adaptações e minimiza riscos.

Outro ponto crítico é a **individualização**. Atletas diferem quanto a idade, sexo, posição em campo, histórico de lesões e estilo de jogo. Protocolos padronizados podem não atender a essas especificidades, sendo necessário o ajuste fino conduzido por fisioterapeutas e preparadores físicos.

A revisão também destacou a importância da **interdisciplinaridade**. A integração entre fisioterapeutas, médicos, nutricionistas e treinadores é condição para o sucesso de programas preventivos. Em clubes que adotaram equipes multidisciplinares, os resultados em termos de performance e redução de lesões foram superiores aos observados em contextos fragmentados.

IV. Discussão

A análise dos 42 estudos incluídos nesta revisão integrativa confirma que a **fisioterapia esportiva desempenha papel central na maximização da performance atlética**, integrando protocolos de exercício resistido e aeróbico de forma preventiva e adaptativa. Os resultados mostram beneficios consistentes em quatro dimensões principais — força, resistência, recuperação e prevenção de lesões —, mas também revelam lacunas que precisam ser enfrentadas por meio de pesquisas futuras e práticas mais personalizadas.

A importância estratégica do exercício resistido

A melhora da força e da potência muscular, constatada em diferentes modalidades, corrobora evidências clássicas sobre o papel do exercício resistido no desempenho atlético (Kraemer & Ratamess, 2004). Contudo, a fisioterapia esportiva ressignifica esse componente ao destacar que força não é apenas um requisito de performance, mas também de saúde musculoesquelética.

A estabilidade articular adquirida por meio de exercícios resistidos, sobretudo em cadeias musculares de suporte, reduz a vulnerabilidade a lesões traumáticas e por sobrecarga. Essa perspectiva reforça a noção de que o treinamento resistido deve ser incorporado não como "complemento", mas como **base preventiva** para atletas de todas as modalidades, incluindo aquelas tradicionalmente associadas à resistência aeróbica, como corrida e natação.

Ao mesmo tempo, os achados sugerem a necessidade de **individualização na escolha de métodos resistidos**. Programas baseados exclusivamente em hipertrofia podem não atender às demandas específicas de esportes de velocidade, em que a taxa de desenvolvimento de força (RFD) é mais determinante que o volume muscular. Essa nuance precisa ser considerada pelos fisioterapeutas na prescrição.

O papel multifuncional do exercício aeróbico

Os resultados também reforçam a ideia de que o exercício aeróbico transcende sua função clássica de desenvolvimento cardiorrespiratório. Em modalidades intermitentes, como futsal e tênis, a literatura demonstra que maior VO₂máx está associado não apenas à resistência, mas também à **capacidade de manter explosões sucessivas de esforço intenso** com menor queda de performance (Joyner & Coyle, 2008).

Além disso, a contribuição do aeróbico para a **recuperação pós-esforço** amplia sua relevância. O aumento da oxigenação e a aceleração na remoção de metabólitos reduzem sintomas de dor muscular tardia (DOMS), permitindo que atletas retomem a intensidade de treino em prazos mais curtos. Esse aspecto é crítico em calendários esportivos sobrecarregados, nos quais a recuperação eficiente pode ser o diferencial entre rendimento e queda de performance.

No entanto, a literatura aponta controvérsias sobre o impacto do aeróbico em modalidades predominantemente anaeróbias. Há evidências de que volumes excessivos de treinamento aeróbico possam limitar adaptações de força e hipertrofia, configurando o fenômeno da **interferência concorrente** (Maughan et al., 2013). A discussão, portanto, desloca-se da validade do aeróbico para a **dosagem ideal**, que deve ser calibrada conforme a modalidade e a fase da periodização.

Integração resistido + aeróbico: sinergia e interferência

A integração dos dois métodos emerge como ponto de maior relevância para a fisioterapia esportiva. Os estudos revisados confirmam que, quando aplicados de forma estratégica, resistido e aeróbico produzem **efeitos sinérgicos**, promovendo ganhos simultâneos em força, resistência e prevenção de lesões.

Porém, a ocorrência da interferência concorrente alerta para o fato de que **a ordem, a intensidade e a frequência de aplicação** são determinantes para o sucesso do programa. Protocolos em que o aeróbico é realizado logo antes do resistido, por exemplo, tendem a reduzir a capacidade de gerar força máxima, prejudicando adaptações hipertróficas. Em contrapartida, quando as sessões são separadas por algumas horas ou organizadas em dias distintos, os efeitos negativos são minimizados.

A fisioterapia esportiva, nesse sentido, assume papel estratégico ao atuar como mediadora entre diferentes áreas técnicas. Cabe ao fisioterapeuta orientar treinadores e preparadores físicos quanto às melhores combinações, garantindo que a integração resulte em benefício e não em sobrecarga.

Prevenção de lesões como eixo central

Talvez a contribuição mais significativa da fisioterapia esportiva resida na prevenção de lesões. Os resultados desta revisão confirmam que programas preventivos baseados em resistido + aeróbico reduzem em até **30% a incidência de lesões musculares** em atletas de alto rendimento (Ekstrand et al., 2011). Essa evidência é especialmente relevante no cenário atual, em que lesões não apenas comprometem o desempenho individual, mas também impactam resultados de equipes e investimentos financeiros.

A fisioterapia esportiva, ao adotar protocolos integrados, atua de forma proativa, deslocando o foco do "tratamento pós-trauma" para a "preservação da integridade física". Esse movimento é coerente com tendências globais em saúde, que priorizam a prevenção como estratégia mais eficaz e sustentável.

Recuperação e longevidade esportiva

Outro ponto que merece discussão aprofundada é a contribuição da fisioterapia esportiva para a **recuperação funcional** e a **longevidade da carreira atlética**. Ao favorecer regeneração tecidual e reduzir sobrecargas, os protocolos analisados permitem que atletas mantenham alto desempenho por mais tempo, retardando a aposentadoria precoce.

Essa perspectiva dialoga com a crescente demanda por carreiras mais longas em esportes profissionais. Em modalidades como futebol e basquete, a manutenção de atletas experientes é estratégica para equipes, que passam a investir em fisioterapia como diferencial competitivo.

Contudo, a revisão também mostrou que poucos estudos analisam de forma longitudinal os efeitos da fisioterapia esportiva sobre a longevidade. A maioria foca em resultados de curto prazo, como VO₂máx ou força máxima, mas não acompanha atletas ao longo de vários anos. Essa lacuna representa oportunidade para futuras investigações.

Desafios metodológicos identificados

Apesar dos resultados consistentes, os estudos revisados apresentam limitações que merecem destaque. Em primeiro lugar, a **heterogeneidade dos protocolos de treino** dificulta comparações diretas. Frequência, intensidade e duração variam significativamente, o que impede a formulação de diretrizes universais.

Outro desafio é a **predominância de amostras pequenas** e concentradas em atletas de elite. Embora relevantes, esses dados podem não refletir a realidade de atletas amadores ou em formação, que representam a maior parte da prática esportiva global.

Além disso, há escassez de estudos que integrem indicadores fisiológicos com métricas psicossociais, como motivação, percepção de esforço e qualidade de vida. Considerando que a performance é multifatorial, investigações futuras precisam ampliar essa abordagem.

Interdisciplinaridade como chave de sucesso

Um ponto recorrente nos artigos revisados foi a ênfase na **interdisciplinaridade**. Fisioterapeutas, preparadores físicos, médicos, nutricionistas e psicólogos precisam atuar de forma integrada para que protocolos sejam eficazes.

Em clubes e seleções onde essa integração é consolidada, os índices de lesões e de desempenho atlético mostraram-se superiores. Em contrapartida, em contextos fragmentados, a ausência de diálogo entre áreas compromete a eficácia das intervenções. A discussão, portanto, ultrapassa a dimensão técnica e alcança o campo da **gestão esportiva**.

Perspectivas futuras

Com base nos resultados e nas lacunas identificadas, algumas perspectivas se destacam:

- 1. **Uso de tecnologias digitais** sensores vestíveis, GPS e plataformas de monitoramento permitem quantificar cargas e respostas individuais em tempo real, favorecendo ajustes personalizados.
- 2. **Integração da inteligência artificial** algoritmos de machine learning podem prever riscos de lesão e sugerir combinações ideais de treino resistido + aeróbico.
- 3. **Abordagem biopsicossocial** incluir aspectos psicológicos e sociais na análise de performance amplia a compreensão do impacto da fisioterapia esportiva.
- 4. Estudos longitudinais avaliar efeitos de longo prazo sobre longevidade esportiva e carreira atlética.
- 5. **Inclusão de atletas amadores e de base** ampliar investigações para populações menos estudadas, mas igualmente beneficiadas por protocolos integrados.

Síntese crítica

A discussão evidencia que a fisioterapia esportiva, ao integrar exercícios resistidos e aeróbicos, vai além da reabilitação: constitui uma estratégia de **otimização da performance e de preservação da saúde atlética**. No entanto, seu sucesso depende da individualização da prescrição, da periodização adequada e da atuação interdisciplinar.

Embora haja consenso sobre benefícios gerais, persistem lacunas metodológicas e desafios de implementação, especialmente em contextos de recursos limitados. Superar essas barreiras exige investimentos em pesquisa, capacitação de profissionais e incorporação de tecnologias inovadoras.

Assim, a fisioterapia esportiva consolida-se como campo em expansão, capaz de redefinir paradigmas no treinamento de atletas e de contribuir para um esporte mais eficiente, seguro e sustentável.

V. Conclusão

A presente revisão integrativa analisou, de forma abrangente, as evidências sobre os efeitos do exercício resistido e do exercício aeróbico na performance de atletas sob a perspectiva da fisioterapia esportiva. Ao sintetizar 42 estudos publicados entre 2000 e 2024, foi possível delinear um quadro consistente: a integração criteriosa dos dois eixos de treinamento — força e resistência cardiorrespiratória — promove ganhos superiores aos obtidos de modo isolado, desde que a prescrição respeite princípios de periodização, individualização, especificidade e monitoramento contínuo de cargas. Tal constatação não é meramente quantitativa; ela se traduz em impactos concretos na prática esportiva: aumento de força e potência, elevação do VO2máx e da economia de movimento, aceleração da recuperação pós-esforço, redução da incidência e gravidade de lesões, além de indícios de ampliação da longevidade esportiva.

Do ponto de vista conceitual, os achados reforçam três ideias-força. Primeiro, o exercício resistido é mais do que um componente auxiliar: ele constitui base estrutural para a integridade musculoesquelética, a estabilidade articular e a eficiência neuromuscular. Segundo, o exercício aeróbico não é exclusivo das modalidades de endurance; ele participa da manutenção da intensidade em esportes intermitentes, sustenta a capacidade de repetição de esforços de alta potência e favorece a recuperação. Terceiro, a integração resistido + aeróbico é uma "tecnologia de processo" da fisioterapia esportiva: quando bem planejada, transforma dados fisiológicos em decisões clínicas e de treino, otimizando performance e prevenindo lesões.

Síntese dos principais achados

A análise por dimensões mostrou que o **exercício resistido** está associado a melhorias robustas de força máxima (1RM), potência (salto vertical, sprints) e controle motor, com efeitos preventivos sobre lesões ligamentares e musculares. Esses benefícios derivam de adaptações neurais (melhor recrutamento e sincronização de unidades motoras, maior taxa de desenvolvimento de força) e estruturais (hipertrofia seletiva, reforço de tendões e tecido conjuntivo). Em paralelo, o **exercício aeróbico** apresentou ganhos consistentes de VO2máx, limiar ventilatório e economia de movimento, com destaque para sua contribuição na recuperação metabólica entre sessões e jogos. Em modalidades intermitentes, maior capacidade aeróbica correlacionou-se com menor queda de desempenho ao longo de sprints repetidos e com redução da percepção subjetiva de esforço em tarefas submáximas.

A **combinação** dos dois métodos demonstrou efeitos sinérgicos quando a organização das sessões evitou o fenômeno da interferência concorrente. Protocolos que alternaram dias (ou separaram em blocos distintos do dia) e manipularam inteligentemente volume e intensidade obtiveram simultâneos avanços em força/potência e resistência cardiorrespiratória sem comprometer adaptações hipertróficas. Além disso, a integração foi superior para **prevenção de lesões**, ao mesmo tempo em que melhorou indicadores de **recuperação funcional** (redução de DOMS, melhora de prontidão neuromuscular) e **retorno seguro ao jogo**.

Implicações práticas para a fisioterapia esportiva

Os resultados sustentam recomendações práticas que podem orientar fisioterapeutas e comissões técnicas na elaboração de programas:

- 1. **Integração como regra, não exceção**: atletas de alto rendimento e também de base devem receber uma prescrição que contemple, o ano inteiro, componentes de força e componentes aeróbicos. A proporção varia conforme a fase da temporada e a modalidade, mas excluir um dos eixos empobrece a adaptação.
- 2. Periodização para mitigar interferência:
- o Em fases de **base**, elevar o volume aeróbico (preferencialmente em zonas 1–2) e consolidar padrões técnicos do resistido;
- o Em fases **pré-competitivas**, reduzir volume e aumentar intensidade específica (força máxima/potência e intervalos aeróbico-anaeróbios);
- o Em períodos **competitivos**, priorizar manutenção da força/potência, microdoses de estímulos resistidos, sessões aeróbicas curtas para recuperação e economia de movimento, e manejo fino do *taper*.

- 3. Ordem e separação das sessões: quando possível, realizar o resistido antes do aeróbico em dias combinados para preservar a qualidade de força/potência; ou, preferivelmente, separar por ≥6 horas (manhã/tarde) ou dias alternados. Em modalidades de endurance, blocos de força em dias aeróbicos leves minimizam interferências.
- 4. Individualização da carga: usar métricas objetivas (1RM, testes isocinéticos, CMJ, sprints, limiar ventilatório, VO₂máx, FC, HRV) e subjetivas (RPE, prontidão) para ajustar volume e intensidade semanal. O mesmo protocolo não serve igualmente bem a atletas com idades, sexos, posições em campo, históricos de lesões e perfis fisiológicos diferentes.
- 5. Prevenção como eixo transversal: incluir rotineiramente exercícios de estabilidade lombo-pélvica, controle neuromuscular de joelho e tornozelo, fortalecimento excêntrico (isquiotibiais, adutores), trabalho de panturrilha e *foot core*, além de mobilidade específica por modalidade. A prevenção é mais eficiente e barata do que a reabilitação pós-trauma.
- 6. **Recuperação orientada por evidências**: sessões aeróbicas regenerativas (10–25 min, Z1–Z2) no dia seguinte a jogos/treinos intensos, associadas a estratégias de sono, nutrição e gerenciamento de carga (monitorar monotonia e *strain* semanais), reduzem DOMS e melhoram prontidão.
- 7. **Integração interdisciplinar**: fisioterapeutas devem liderar a conexão com preparação física, medicina do esporte, nutrição e psicologia, garantindo coerência entre prescrição, cargas externas (GPS, potência, distância) e respostas internas (FC, lactato, HRV, RPE, marcadores de dano muscular quando disponíveis).

Recomendações de prescrição (guias operacionais)

Para tornar as implicações aplicáveis, seguem guias operacionais adaptáveis (exemplos indicativos, não prescritivos universais):

- Esportes de endurance (corrida, ciclismo, natação)
- o **Resistido** (2×/semana): 3–5 exercícios multiarticulares (agachamento, levantamento terra, *split squat*, remada, empurrar), 3–5 séries de 3–6 repetições, 80–90% 1RM (fase de força); blocos de potência com cargas moderadas e intenção de máxima velocidade concêntrica.
- o **Aeróbico**: 70–80% do volume em Z1–Z2 (base), 20–30% HIIT específico (Z4–Z5) conforme a fase; *long runs* controladas e *tempo runs* no período específico.
- o Prevenção: excêntrico de isquiotibiais (Nordic), panturrilha, foot core, controle lombo-pélvico.
- Esportes intermitentes (futebol, basquete, futsal, handebol)
- o **Resistido (2–3×/semana fora da competição; 1–2× durante a temporada)**: 3–4 séries de 4–6 repetições em 85–90% 1RM (força), blocos de potência (30–60% 1RM) com saltos, *hip thrust* e arremessos medicinais.
- o **Aeróbico**: intervalos específicos (ex.: 4–6 × 2–4 min em Z4, pausas ativas), *repeated sprint training*, sessões regenerativas em Z1 no pós-jogo.
- o **Prevenção**: excêntrico de isquiotibiais e adutores, controle de valgo dinâmico de joelho, propriocepção de tornozelo, *landing mechanics*.
- Esportes de força/combate (halterofilismo, judô, MMA)
- o **Resistido** (3–4×/semana): foco em força máxima e potência, periodização ondulatória, controle de volume para evitar overreaching.
- o **Aeróbico**: baixo volume, foco em *cardiac output* (Z1–Z2) para recuperação e algumas sessões HIIT específicas para tolerância ao esforço.
- o Prevenção: cervical, ombro (manguito e escápula), core anti-rotação, quadril.

Esses exemplos devem ser ajustados ao calendário competitivo, ao histórico clínico e às respostas individuais monitoradas semanalmente.

Gestão de riscos e governança de dados

A eficácia de programas integrados depende de **governança de dados**: definir quem coleta, quem analisa e como se toma decisão. A fisioterapia esportiva precisa de painéis simples e funcionais que cruzem **cargas externas** (ex.: GPS, potência, distância a alta velocidade, número de saltos) com **respostas internas** (FC, HRV, RPE, qualidade do sono, questionários de prontidão). O objetivo não é acumular dados, mas **informar decisões**: subir, manter ou reduzir cargas; ajustar a ordem das sessões; modular a relação trabalho/recuperação.

A gestão de riscos implica ainda protocolos claros de **retorno ao jogo** após lesão: critérios clínicos (dor, edema, amplitude), funcionais (força isocinética, assimetria <10–15%), neuromotores (técnica de salto/aterrissagem), condicionais (capacidade de repetir esforços) e psicológicos (confiança). A conclusão central é que **"tempo" não é critério suficiente**; é preciso uma bateria multidimensional de *readiness*.

Limitações e escopo de generalização

Esta revisão integrativa reconhece limites. A heterogeneidade dos protocolos (frequência, intensidade, exercícios, tempo sob tensão, métodos aeróbicos) dificulta metanálises e a emissão de diretrizes universais. Amostras frequentemente pequenas e concentradas em atletas de elite limitam a extrapolação para amadores e

categorias de base. Há escassez de estudos que combinem **biomarcadores** (ex.: CK, citocinas), **métricas psicossociais** (estresse, motivação) e **desfechos de longo prazo** (longevidade esportiva, recorrência de lesões ao longo de anos). Além disso, variáveis contextuais — calendário, viagens, clima, altitude, logística — raramente são controladas, mas impactam respostas de treino e risco de lesão.

Tais limitações, contudo, não invalidam os achados; indicam que **a melhor prática** depende de princípios sólidos (periodização, individualização, prevenção, monitoramento) aplicados com **julgamento clínico** e sensibilidade ao contexto.

Agenda de pesquisa: do laboratório ao campo

Com base nas lacunas identificadas, propõem-se frentes prioritárias de investigação:

- 1. Ensaios controlados com periodização integrada: comparar ordens (resistido→aeróbico vs. aeróbico→resistido), janelas de separação (2 h, 6 h, 24 h) e manipulação de cargas em diferentes modalidades e fases da temporada.
- 2. **Modelos de predição de lesão**: integrar cargas externas, HRV, RPE, qualidade do sono e histórico de lesões em algoritmos que indiquem *red flags* operacionais para a comissão técnica.
- 3. **Métricas de longevidade esportiva**: estudos longitudinais (≥3 temporadas) que relacionem a adoção de programas integrados com anos de carreira, número de jogos por temporada e desempenho sustentado.
- 4. **Populações subrepresentadas**: atletas femininas, categorias de base e amadores; investigar particularidades hormonais, biomecânicas e de calendário que exijam ajustes específicos.
- 5. **Custo-efetividade**: análises econômicas que quantifiquem quanto a redução de lesões e o ganho de performance compensam o investimento em fisioterapia preventiva, tecnologia e pessoal.

Considerações éticas e educação do atleta

A prática baseada em evidências deve caminhar junto da ética do cuidado. O atleta não é apenas "um gerador de performance", mas uma pessoa cuja saúde presente e futura depende das decisões de hoje. Por isso, a prescrição integrada precisa respeitar princípios de não maleficência (evitar sobrecarga crônica), beneficência (maximizar saúde e desempenho), autonomia (educar o atleta para coparticipar das decisões) e justiça (acesso equitativo a recursos preventivos, inclusive nas categorias de base).

A educação do atleta — sobre recuperação, sono, nutrição, higiene de carga, sinais de alerta — é ferramenta de alto impacto e baixo custo. Programas que incorporam oficinas educativas reduzem o hiato entre prescrição e adesão, transformando protocolos em hábitos sustentáveis.

Conclusão final

Em conclusão, o corpo de evidências reunido demonstra que a **fisioterapia esportiva** deve ser entendida como uma plataforma integradora que orquestra o **exercício resistido** e o **exercício aeróbico** para produzir adaptações superiores, seguras e sustentáveis. O resistido fornece o arcabouço de **força**, **potência e estabilidade** que protege e potencializa o gesto esportivo; o aeróbico confere **capacidade cardiorrespiratória**, **economia de movimento e recuperação**. A soma, quando conduzida por periodização inteligente e monitoramento de cargas, **reduz lesões**, **acelera o retorno ao jogo e prolonga carreiras**.

Não existe receita única: existe **princípio**. Integrar, periodizar, individualizar, prevenir e monitorar. Quando esses pilares guiam a prática clínica e o planejamento do treino, a fisioterapia esportiva deixa de ser apenas reativa e assume sua vocação **estratégica**: transformar ciência em desempenho e cuidado em longevidade — hoje, na próxima competição e ao longo de toda a trajetória do atleta.

Em termos práticos, recomenda-se que equipes e clubes: (i) instituam rotinas de avaliação e reavaliação trimestral com métricas objetivas e subjetivas; (ii) adotem um calendário de periodização integrada com microciclos claramente definidos; (iii) mantenham reuniões semanais interdisciplinares para tomada de decisão baseada em dados; (iv) invistam em educação continuada de atletas e staff; e (v) formalizem protocolos de retorno ao jogo com critérios multiparamétricos. Essas medidas, ancoradas nos achados desta revisão, aumentam a probabilidade de traduzir potencial em performance e performance em histórias atléticas mais longas, saudáveis e vitoriosas.

Por fim, esta revisão reafirma que a **integração resistido** + **aeróbico** mediada pela fisioterapia esportiva não é apenas um caminho possível; é o **estado da arte** para quem busca excelência competitiva com responsabilidade clínica e humana. O próximo passo — na ciência e no campo — é refinar a personalização com apoio de tecnologias acessíveis, fortalecer a cultura de prevenção e consolidar métricas que capturem, de modo holístico, aquilo que sempre nos moveu no esporte: **rendimento com saúde, hoje e no futuro**.

Referências

- [1]. Joyner MJ, Coyle EF. Endurance Exercise Performance: The Physiology Of Champions. Journal Of Physiology. 2008;586(1):35–44.
- [2]. Kraemer WJ, Ratamess NA. Fundamentals Of Resistance Training: Progression And Exercise Prescription. Medicine & Science In Sports & Exercise. 2004;36(4):674–688.
- [3]. Ekstrand J, Hägglund M, Waldén M. Epidemiology Of Muscle Injuries In Professional Football (Soccer). American Journal Of Sports Medicine. 2011;39(6):1226–1232.
- [4]. Maughan RJ, Gleeson M, Greenhaff PL. Biochemistry Of Exercise And Training. Oxford: Oxford University Press; 2013.
- [5]. American College Of Sports Medicine; Ratamess NA, Et Al. Progression Models In Resistance Training For Healthy Adults. Medicine & Science In Sports & Exercise. 2009;41(3):687–708.
- [6]. Garber CE, Blissmer B, Deschenes MR, Et Al. Quantity And Quality Of Exercise For Developing And Maintaining Fitness In Healthy Adults. Medicine & Science In Sports & Exercise. 2011;43(7):1334–1359.
- [7]. Laursen PB, Jenkins DG. The Scientific Basis For High-Intensity Interval Training. Sports Medicine. 2002;32(1):53–73.
- [8]. Hickson RC. Interference Of Strength Development By Simultaneously Training For Strength And Endurance. European Journal Of Applied Physiology. 1980;45:255–263.
- [9]. Wilson JM, Marin PJ, Rhea MR, Et Al. Concurrent Training: A Meta-Analysis Examining Interference Of Aerobic And Resistance Training. Journal Of Strength And Conditioning Research. 2012;26(8):2293–2307.
- [10]. Rhea MR, Alvar BA, Burkett LN, Ball SD. A Meta-Analysis To Determine The Dose Response For Strength Development. Research Quarterly For Exercise And Sport. 2003;74(3):329–335.
- [11]. Peterson MD, Rhea MR, Alvar BA. Applications Of The Dose–Response For Muscular Strength Development. Journal Of Strength And Conditioning Research. 2004;18(2):377–382.
- [12]. Suchomel TJ, Nimphius S, Stone MH. The Importance Of Muscular Strength In Athletic Performance. Sports Medicine. 2016;46(10):1419–1449.
- [13]. Bompa TO, Buzzichelli C. Periodization: Theory And Methodology Of Training. 6th Ed. Champaign, IL: Human Kinetics; 2018.
- [14]. Mujika I, Padilla S. Scientific Bases For Precompetition Tapering Strategies. Medicine & Science In Sports & Exercise. 2003;35(7):1182–1187.
- [15]. Bishop D. Warm Up II: Performance Changes Following Active Warm Up And How To Structure The Warm Up. Sports Medicine. 2003;33(7):483–498.
- [16]. Halson SL. Monitoring Training Load To Understand Fatigue In Athletes. Sports Medicine. 2014;44(Suppl 2):S139-S147.
- [17]. Buchheit M, Laursen PB. High-Intensity Interval Training, Solutions To The Programming Puzzle. Sports Medicine. 2013;43(5):313–338.
- [18]. Schoenfeld BJ. The Mechanisms Of Muscle Hypertrophy And Their Application To Resistance Training. Journal Of Strength And Conditioning Research. 2010;24(10):2857–2872.
- [19]. Schoenfeld BJ, Ogborn D, Krieger JW. Dose–Response Relationship Between Weekly Resistance Training Volume And Increases In Muscle Mass: A Systematic Review And Meta-Analysis. Journal Of Sports Sciences. 2017;35(11):1073–1082.
- [20]. Van Hooren B, Peake JM. Do We Need A Cool-Down After Exercise? A Narrative Review. Sports Medicine. 2018;48(7):1575–1595.
- [21]. Meeusen R, Duclos M, Foster C, Et Al. Prevention, Diagnosis And Treatment Of The Overtraining Syndrome: Joint Consensus Statement. Medicine & Science In Sports & Exercise. 2013;45(1):186–205.
- [22]. Hewett TE, Myer GD, Ford KR, Et Al. Biomechanical Measures Of Neuromuscular Control And Valgus Loading Predict ACL Injury Risk In Female Athletes. American Journal Of Sports Medicine. 2005;33(4):492–501.
- [23]. Myer GD, Ford KR, Hewett TE. Rationale And Clinical Techniques For Anterior Cruciate Ligament Injury Prevention Among Female Athletes. Strength And Conditioning Journal. 2004;26(3):24–35.
- [24]. Barnett A. Using Recovery Modalities Between Training Sessions In Elite Athletes: Does It Help? Sports Medicine. 2006;36(9):781–796
- [25]. Peake JM, Neubauer O, Walsh NP. Recovery After Exercise: What Is The Evidence For Nutritional Strategies? Journal Of Applied Physiology. 2017;122(3):612–620.