
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 14, Issue 3 (Sep. - Oct. 2013), PP 89-98
www.iosrjournals.org

www.iosrjournals.org 89 | Page

Performance Comparison of K-means Codebook Optimization

using different Clustering Techniques

Dr. Tanuja K. Sarode
 1
, Nabanita Mandal

 2

1(Associate Professor, Computer Engineering Department, Thadomal Shahani Engineering College, India)
2(Lecturer, Computer Engineering Department, Thadomal Shahani Engineering College, India)

 Abstract : Vector quantization is a compression technique which is used to compress the image data in the

spatial domain. Since it is a lossy technique, so maintaining the image quality and the compression ratio is a

difficult task. For this, the codebook which stores the image data should be optimally designed. In this paper,

the K-means algorithm is used to optimize the codebook. We have generated the codebooks from LBG, KPE,

KFCG and Random Selection Methods. It is found that the Mean Square Error reduces for every iteration and

after a certain number of iterations it stops reducing because the optimal value is reached. We can say that the

codebook is optimized at that point. The results show that the codebook obtained from KFCG Algorithm has a

least Mean Square Error. This shows that KFCG codebook is more nearer to the optimal point and when

applied with K-means algorithm gives the best optimization in comparison with other algorithms.

Keywords: Codebook Optimization, Euclidian Distance, K-means Algorithm, Mean Square Error, Vector

Quantization

I. INTRODUCTION
 With the growing popularity of the internet, the need for transmission of images has increased. But for

transmitting the image quickly, high bandwidth is required. Compression of the image is one way of fast

transmission. The aim behind image compression is the reduction of irrelevant and redundant data of the image

in order to store or transmit the image in an efficient way. Various lossy and lossless techniques are available for

compression [1]. Lossless compression techniques are suitable where each and every minute technical detail of

the image is significant. Loss of a single detail would lead to transmission of an improper image. Lossy

compression methods are suitable for natural images where minor loss of fidelity is allowed. One such lossy

compression technique is Vector Quantization (VQ) [2]. In this technique, the image is represented in the form
of vectors. VQ is a mapping function, Q that maps a vector in K-dimensional vector space, Rk into a finite

subset of the vector space W containing N distinct vectors [3]. Hence, Q: Rk
 W.

 In this technique, the amount of data contained in an image is reduced so that images can be

economically transmitted. The image data is stored in a codebook. Each vector present in the codebook is called

a codevector. A good codebook is very much essential for VQ. The codebook size is decided and then after

applying the different techniques for codebook generation, the Mean Square Error (MSE) is obtained. The

distortion obtained from the different codebook generation algorithm varies even if size of the codebook

remains same. But the minimum error is not obtained. The reason is that the codevectors in the codebook may

not have reached their optimal position. When the codebook is optimized, the MSE reaches a value after which

it cannot be reduced further.

 In literature, vector quantization has been successfully used for image compression. In Pamela C.
Cosman et al’s paper [4], they have given the fundamental idea of vector quantization and how it can be used for

image compression. The process of VQ involves codebook design. A survey of codebook generation techniques

has been done by Tzu-Chuen Lu and Ching-Yun Chang. In their paper, LBG, Enhanced LBG, Neural Network

based techniques, Genetic Algorithm based techniques etc has been discussed [5]. After the codebook is

generated, optimization of the codebook is done using various algorithms. H.B. Kekre and Tanuja K. Sarode has

proposed K-means algorithm for optimization of codebook [6]. LBG and KFCG algorithm has been applied by

them for generating the codebook and to optimize it they have used K-means algorithm. S. Vimala has done the

convergence analysis of various codebook generation techniques when K-means algorithm is applied to them

for optimization [7].

 In this paper, our main concentration will be on optimization of the codebook. The K-means Algorithm

[8] which is a clustering technique, will be used on the codebook for optimization. In this technique, initially,

the codevectors are selected randomly. But the initial selection doesn’t lead to optimization. So, this process is
repeated for many iterations and the MSE value is calculated for each iteration. The MSE reduces in each

iteration. After some iterations, the MSE value converges. This point is the optimal point and the optimized

codebook is obtained. The K-means Algorithm is applied to the codebook generated by LBG Algorithm [9],

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 90 | Page

KPE Algorithm [10], KFCG Algorithm [11] and Random Selection method. Further, the image is reconstructed

back using the optimized codebook.

 This paper consists of five sections. In Section II the proposed system has been discussed. Section III

contains the description of the algorithms used. Section IV provides the results obtained after application of

various techniques. The conclusion is given in Section V.

II. VQ IMAGE COMPRESSION SYSTEM
 The VQ image compression system is shown in Fig. 1. The process of vector quantization consists of
encoding and decoding phases.

Fig. 1 VQ Image Compression System

A. Encoding Phase

 The input image is converted into vectors by dividing the image matrix into 2×2 non overlapping blocks. The

RGB components of each pixel are separated and values of each block are written together. This forms the

codevector. The collection of all codevectors gives the training vector space of the image. From the training

vector space, codebook is generated using different algorithms. The generated codebook is then optimized using
the K-means algorithm. An index is created which keeps track of each codevector. The optimized codebook and

the index are used to reconstruct the image.

B. Decoding Phase

 In the decoding phase, the image is reconstructed back using the optimized codebook and the index. A new

training vector space is created in the receiver’s side which consists of the codebook values. The correct position

is obtained using the index. The image is reconstructed back using this training vector space.

III. CODEBOOK GENERATION AND OPTIMIZATION ALGORITHMS
 The various algorithms applied for the generation of codebook are LBG, KPE and KFCG. Apart from

these, a new method of Random Selection has also been introduced.

A. LBG Algorithm

The LBG algorithm has been introduced by Linde-Buzo-Gray [9]. First the training vector space is created

and the centroid is obtained. The centroid is considered as the first codevector. Now, constant error is added to

the codevector and two new vectors are obtained. Fig.2 shows the LBG clustering. v1 and v2 are the new

generated codevectors. The Euclidean distance between the training vector space and the vectors v1 and v2 is

computed. After computing the Euclidean distance , the training vector which is nearer to v1 is put in one

cluster and the training vector which is nearer to v2 is put in another cluster. Two clusters are obtained in the

first iteration. In the next iteration, this procedure is repeated for both the clusters.

Fig. 2 LBG Clustering

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 91 | Page

The steps of LBG algorithm are as follows:

1. Generate the training vector space, T of the image which contains M training vectors.

T= {X1, X2, X3… XM}

Xi is the training vector which is represented as Xi= {xi1, xi2, xi3,… xik}

where,

k denotes the dimension.

2. Find Centroid, C of the training vector space by taking the average of each column. This centroid is the

first codevector.

C= {C1, C2, C3… CM}

3. Two new vectors are obtained after adding constant error, E to the codevector.
C1=C+E and C2=C-E

4. Find the Euclidian distance of the training vector space with these two vectors.

D (Xi-Cj) == xip-cjp)
2

where,

Xi is the training vector,

Cj is the codevector

5. Put the training vector in first cluster if the Euclidian distance between the training vector and the

codevector C1 is less else put the training vector in the second cluster.

6. Repeat the steps 2 to 5 for every cluster.
7. Stop when desired codebook size is obtained.

B. KPE Algorithm

Kekre’s Proportionate Error (KPE) algorithm [10] uses proportionate error instead of constant error. The

training vector space is created and the centroid is obtained. The centroid is the first codevector. This

proportionate error is added to the codevector and two new vectors are obtained. The proportionate error is

obtained as follows:

 Consider the codevector C and Error Vector E, which is represented as C = {c1, c2,c3,….ck} and

 E = {e1, e2, e3,…… ek} respectively.

 Find cj where cj = min{ci / i} and value of i varies from 1 to k.

j is the index of the vector member whose value is minimum among the other vector members.

 Assign ej = 1

 If ci / cj ≤ 10 then assign ei = ci / cj

 Else assign ei = 10 where, i ≠ j and value of i varies from 1 to k.

The Euclidean distance between the training vector space and the new vectors is computed. The

training vector which is nearer to first vector is put in one cluster and the training vector which is nearer to

second vector is put in another cluster. Two clusters are obtained in the first iteration. Thus, the size of the

codebook is increased by two. In the next iteration, this procedure is repeated for both the clusters. The

codebook size becomes four. This procedure is repeated till the codebook size becomes equal to the size

specified by the user.

C. KFCG Algorithm

 Kekre’s Fast Codebook Generation (KFCG) algorithm [11] does not use Euclidean distance for comparison

and also no error is added to get the new vectors. So, the codebook generation is faster as compared to other

algorithms . The training vector space is considered as a single cluster initially. The centroid obtained is the

codevctor. Fig.3 shows the 1st iteration of KFCG Clustering. C1 is the codevector obtained after centroid

calculation. The first member of training vector is compared to the first member of codevector in the first

iteration. The training vector is put in first cluster if its first member is less than the first member of codevector.

Otherwise the training vector is put in the second cluster. In the second iteration, division of the first cluster is

done by comparing second member of the training vector with the second member of codevector. Fig.4 shows

2nd iteration of KFCG Clustering. Again second cluster is divided into two clusters by comparing the second

member of the training vector with that of the codevector. This process is repeated till desired codebook size is
reached.

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 92 | Page

Fig. 3 1

st
 iteration of KFCG Clustering

A new method of Random Selection has been introduced in this paper for generating the codebook.

D. RANDOM SELECTION METHOD

 In this method, codebook of desired size is obtained by random selection of vectors from the training vector

space. In other words it can be said that the size of the codebook is dependent on the number of random vectors
initially chosen.

The steps are as follows:-

1. Generate the training vector space, T of the image which contains M training vectors.

T= {X1, X2, X3… XM}

Xi is the training vector and it is represented as Xi= {xi1, xi2, xi3,… xik}

where,

k denotes the dimension.

2. Select K random vectors from the training vector space where K denotes the desired codebook size.

These initial random vectors serve the purpose of the initial codebook.

The codebook obtained by LBG algorithm, KPE algorithm, KFCG algorithm and Random Selection Method are

fed as input to the K-means algorithm for optimization.

E. K-means Algorithm

The K-means algorithm [9] is a clustering algorithm where K denotes the size of the cluster. The basic idea

behind this algorithm is to form K clusters and assign each object to one of the K clusters in such a way that the

measure of dispersion within the cluster is minimized. The dispersion can be measured using the squared

Euclidean distance. This algorithm aims at minimizing the objective function. Here, the mean square error is the

objective function. So, the MSE reduces at each iteration and after the codebook is optimized, the MSE reaches

a value after which it stops reducing. It converges at the optimal point.

 In this algorithm, K-random vectors are selected from the training vector space and call it as

codevectors. The squared Euclidean distance of all the training vectors with the selected K vectors are obtained

and K clusters are formed.
 If the squared Euclidean distance of training vector Xj with i

th
 codevector is minimum then Xj is put in

ith cluster. Centroid of each cluster is obtained. The centroids of all clusters obtained in the previous iteration

form the set of new codevectors which is the input to K-Means algorithm for the next iteration. The MSE for

each of the K clusters is computed and net MSE is obtained. This process is repeated till the net MSE converges.

The MSE is calculated using the following formula:-

Fig. 4 2
nd

 iteration of KFCG Clustering

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 93 | Page

 MSE(m)= Xr-Cm)2 (1)

where,

 m is the cluster number,

Z is the number of vectors in that cluster,

k is the dimension,

Xr is rth training vector,

Cm is the codevector of mth cluster

Instead of selecting K random vectors, the codebooks of size K obtained by LBG, KPE and KFCG, Random

Selection Method [12] are used for optimization using the K-means algorithm.

The steps are as follows:-

1. Generate the training vector space, T of the image which contains M training vectors.
T= {X1, X2, X3… XM}

Xi is the training vector and it is represented as Xi= {xi1, xi2, xi3,… xik}

where,

k denotes the dimension.

2. Generate codebook containing K codevectors using LBG, KPE, KFCG or Random Selection Method

where K is the desired codebook size.

3. Find the squared Euclidean distance of all the training vectors with the K codevectors and K clusters are

formed.

D(Xi-Cj)= xip-cjp)
2

where,

Xi is the training vector,

Cj is the codevector.

4. If the squared Euclidean distance of the Xj with ith codevector is minimum then put Xj in ith cluster.

If the squared Euclidean distance of Xj with codevectors happens to be minimum for more than one

codevector then put Xj in any one of them.

5. Compute the centroid for each cluster.

6. Find MSE for all the K clusters.

7. Calculate net MSE.
8. Replace the initial codevectors by the centroids of each cluster.

9. Repeat steps 3 to 5 till the two successive net MSE values are same.

IV. RESULTS
 The techniques are implemented on Intel Core i5-3210M, 2.50 GHz, 4GB RAM machine and Matlab

R2011b is used. The algorithms are applied on ten color images each having size of 256×256×3.

 Training Images of size 256×256×3 are shown in Fig. 5.

 The mean square error and the number of iterations required for optimization of codebook obtained

from LBG, KPE, KFCG algorithms and Random Selection Method on codebook size 128, 256, 512 and 1024

are shown in Table I, II, III and IV respectively.
 The sample initial and final images of Peacock for LBG, KPE, KFCG and Random Selection Methods

with codebook size 256 are shown in Fig. 6.

 The Variation of MSE with Number of Iterations for Peacock image for codebook size 256 is shown in

Fig. 7.

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 94 | Page

Fig. 5 Training Images (a) Horse (b) Macaw (c) Dolphins (d) Tiger (e) House (f) Roses

 (g) Peacock (h) Vegetables (i) Puppies (j) Sunflower

Table I. Result of K-means Algorithm on codebook size 128
S. no. Image Algorithm Initial MSE Final MSE No. of iterations

1.

Horse

LBG 143.74 64.25 104

KPE 144.64 63.84 87

KFCG 194.61 53.03 179

RANDOM 188.59 69.51 204

2.

Macaw

LBG 259.41 90.19 237

KPE 225.04 89.35 176

KFCG 398.26 94.83 409

RANDOM 273.82 94.06 122

3.

Dolphins

LBG 178.24 86.38 97

KPE 163.07 87.49 63

KFCG 244.63 59.69 122

RANDOM 282.48 112.23 121

4.

Tiger

LBG 247.27 125.18 87

KPE 252.22 124.29 109

KFCG 206.11 67.43 90

RANDOM 256.18 138.38 203

5.

House

LBG 274.22 102.11 112

KPE 219.31 97.11 76

KFCG 246.41 74.04 256

RANDOM 275.16 129.93 192

6.

Roses

LBG 356.11 171.11 116

KPE 319.22 168.15 118

KFCG 533.34 127.15 148

RANDOM 334.85 180.45 158

7.

Sunflower

LBG 115.94 55.13 92

KPE 119.22 54.57 71

KFCG 167.79 45.79 278

RANDOM 168.18 65.98 141

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 95 | Page

Table II. Result of K-means Algorithm on codebook size 256

S. no. Image Algorithm Initial MSE Final MSE No. of Iterations

1.

Horse

LBG 166.41 56.44 132

KPE 170.75 56.04 188

KFCG 179.16 45.99 133

RANDOM 138.14 56.97 234

2.

Macaw

LBG 285.53 85.45 130

KPE 232.59 82.46 139

KFCG 384.51 82.32 412

RANDOM 494.82 72.31 276

3.

Dolphins

LBG 166.15 74.21 51

KPE 155.57 76.22 66

KFCG 220.66 62.81 113

RANDOM 979.32 118.64 350

4.

Tiger

LBG 245.07 109.83 141

KPE 235.12 109.55 149

KFCG 244.54 78.08 156

RANDOM 264.77 114.96 317

5.

House

LBG 313.73 105.95 174

KPE 297.59 105.29 187

KFCG 259.81 85.99 149

RANDOM 645.79 141.06 330

6.

Roses

LBG 392.79 162.63 135

KPE 334.15 163.49 143

KFCG 439.23 131.69 149

RANDOM 621.99 167.02 136

7.

Sunflower

LBG 119.78 44.72 214

KPE 100.83 46.99 137

KFCG 192.81 45.97 283

RANDOM 536.71 55.04 237

8.

Vegetables

LBG 569.96 212.51 549

KPE 537.41 215.89 340

KFCG 520.89 159.79 306

RANDOM 344.99 189.27 168

9.

Puppies

LBG 148.35 76.56 111

KPE 152.19 74.56 99

KFCG 185.71 58.07 175

RANDOM 659.72 76.53 207

10.

Peacock

LBG 483.52 212.18 97

KPE 390.01 205.14 161

KFCG 535.95 165.71 293

RANDOM 504.49 204.71 180

Table III. Result of K-means Algorithm on codebook size 512

S. no. Image Algorithm Initial MSE Final MSE No. of Iterations

1.

Horse

LBG 151.58 49.26 146

KPE 146.04 49.59 114

KFCG 176.32 42.54 275

RANDOM 114.39 44.42 143

2.

Macaw

LBG 223.45 74.14 164

KPE 211.31 74.63 101

KFCG 358.09 73.24 252

RANDOM 370.39 159.51 88

8.

Vegetables

LBG 529.29 224.67 157

KPE 561.27 228.97 170

KFCG 704.93 152.15 253

RANDOM 575.58 233.85 239

9.

Puppies

LBG 141.64 78.73 73

KPE 140.29 78.45 102

KFCG 179.49 56.03 141

RANDOM 186.01 87.12 232

10.

Peacock

LBG 386.11 207.71 98

KPE 370.94 205.91 112

KFCG 447.14 156.77 270

RANDOM 432.55 223.96 275

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 96 | Page

3.

Dolphins

LBG 166.17 64.39 64

KPE 146.63 67.61 57

KFCG 244.63 59.69 122

RANDOM 285.76 106.32 170

4.

Tiger

LBG 227.58 95.91 168

KPE 220.83 95.61 95

KFCG 206.11 67.43 90

RANDOM 287.95 101.91 245

5.

House

LBG 285.06 94.17 161

KPE 233.02 99.95 128

KFCG 246.41 74.04 256

RANDOM 282.61 118.17 191

6.

Roses

LBG 338.45 154.88 196

KPE 300.37 148.93 148

KFCG 533.34 127.15 148

RANDOM 350.39 144.72 116

7.

Sunflower

LBG 120.66 42.31 247

KPE 89.34 40.43 117

KFCG 167.79 45.79 278

RANDOM 364.33 46.89 199

8.

Vegetables

LBG 514.36 205.35 277

KPE 466.29 201.33 211

KFCG 704.93 152.15 253

RANDOM 271.29 158.78 138

9.

Puppies

LBG 137.28 67.92 102

KPE 139.32 68.12 114

KFCG 179.49 56.03 141

RANDOM 642.68 69.26 336

10.

Peacock

LBG 397.88 187.98 117

KPE 346.79 184.44 120

KFCG 447.14 156.77 270

RANDOM 454.69 187.27 151

Table IV. Result of K-means Algorithm on codebook size 1024

S. no. Image Algorithm Initial MSE Final MSE No. of Iterations

1.

Horse

LBG 138.01 45.27 82

KPE 136.51 46.36 92

KFCG 169.39 39.01 152

RANDOM 247.12 103.64 54

2.

Macaw

LBG 231.65 66.81 152

KPE 182.75 68.07 118

KFCG 374.99

RANDOM 862.83 152.07 216

3.

Dolphins

LBG 156.72 57.06 70

KPE 136.51 60.27 51

KFCG 325.59 57.04 111

RANDOM 950.55 124.34 286

4.

Tiger

LBG 212.61 88.11 104

KPE 212.31 87.18 109

KFCG 172.34 54.95 66

RANDOM 232.43 94.57 176

5.

House

LBG 245.54 83.44 172

KPE 209.25 89.02 222

KFCG 231.46 81.22 227

RANDOM 257.95 98.54 250

6.

Roses

LBG 318.04 142.85 167

KPE 272.03 144.56 153

KFCG 571.35 122.12 127

RANDOM 519.31 153.84 173

7.

Sunflower

LBG 111.32 40.67 137

KPE 78.29 34.87 91

KFCG 205.23 46.21 132

RANDOM 581.69 43.76 193

8.

Vegetables

LBG 470.38 195.76 197

KPE 431.91 194.56 275

KFCG 507.17 153.23 311

RANDOM 564.21 363.09 117

9.

Puppies

LBG 136.37 62.91 104

KPE 137.48 63.81 128

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 97 | Page

KFCG 168.21 51.54 205

RANDOM 607.13 62.62 244

10.

Peacock

LBG 368.88 172.84 148

KPE 318.03 170.15 123

KFCG 586.07 153.54 205

RANDOM 364.42 168.45 128

Fig. 6 Initial and Final Images (a) Original Image (b) Initial image for LBG with MSE=483.52 (c) Final

image with MSE=212.18 (d) Initial image for KPE with MSE=390.01 (e) Final image with MSE=205.14

(f) Initial image for KFCG with MSE=535.95 (g) Final image with MSE=165.71 (h) Initial image for

Random Selection with MSE=504.49 (i) Final image with MSE=204.71

Fig. 7 Variation of MSE with Number of Iterations for Peacock image for codebook size 256

Performance Comparison of K-means Codebook Optimization using different Clustering

www.iosrjournals.org 98 | Page

V. CONCLUSION
 Codebook generation and optimization can be done using various algorithms. An optimized codebook

gives the proper reconstructed image which has less mean square error when compared with the original image.

In this paper, codebook is generated using LBG, KPE, KFCG and Random Selection Method. The K-means

algorithm is used on the generated codebook for optimization. We have used different images to show the
optimization. The codebook size is varied to show the change in mean square error. It is observed that, in most

of the cases, the codebook obtained from KFCG algorithm gives less mean square error in comparison to other

algorithms. So, when the K-means algorithm is applied to the codebook obtained from KFCG algorithm, the

best optimized codebook is obtained .

REFERENCES
[1] R. Navaneethakrishnan, “Study of Image Compression Techniques,” International Journal of Scientific & Engineering Research, Vol.

3, No. 7, pp. 1-5, July 2012.

[2] G. Boopathy and S. Arockiasam, “Implementation of Vector Quantization for Image Compression - A Survey,” Global Journal of

Computer Science and Technology, Vol. 10, No. 3, pp. 22-28, April 2010.

[3] Carlos R.B. Azevedo, Esdras L. Bispo Junior, Tiago A. E. Ferreira, Francisco Madeiro, and Marcelo S. Alencar, “An Evolutionary

Approach for Vector Quantization Codebook Optimization,” Springer-Verlag Heidelberg, pp. 452-461, 2008.

[4] Pamela C. Cosman, Karen L. Oehler, Eve A. Riskin, and Robert M. Gray, “Using Vector Quantization for Image Processing,” In Proc.

Of The IEEE, Vol. 81, No. 9, pp. 1326-1341, September 1993.

[5] Tzu-Chuen Lu and Ching-Yun Chang, “A Survey of VQ Codebook Generation,” Journal of Information Hiding and Multimedia

Signal Processing, Vol. 1, No. 3, pp. 190-203, July 2010.

[6] H.B. Kekre and Tanuja K. Sarode, “Vector Quantized Codebook Optimization using K-Means,” International Journal on Computer

Science and Engineering, Vol. 1, No.3, pp. 283-290, 2009.

[7] S. Vimala, “Convergence Analysis of Codebook Generation Techniques for Vector Quantization using K-Means Clustering

Technique,” International Journal of Computer Applications, Vol. 21, No. 8, pp. 16-23, May 2011.

[8] J. B. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations”, Proceedings of 5-th Berkeley

symposium on Mathematical Statistics and Probability”, Berkely, University of California Press, vol 1, pp. 281-297, 1967.

[9] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun.’, Vol. COM-28, No. 1, pp.

84-95, January 1980.

[10] H.B.Kekre and Tanuja K. Sarode, “Two-level Vector Quantization Method for Codebook Generation using Kekre’s Proportionate

Error Algorithm,” International Journal of Image Processing, Vol. 4, No. 1, pp. 1-11, 2010.

[11] H.B.Kekre and Tanuja K. Sarode, “Fast Codebook Search Algorithm for Vector Quantization using Sorting Technique,” International

Conference on Advances in Computing, Communication and Control, pp. 317-325, 2009.

[12] Tanuja K. Sarode and Nabanita Mandal, “K-Means Codebook Optimization using KFCG Clustering Technique,” International Journal

of Computer Applications, Vol. 78, No. 6, pp. 38-43, September 2013.

