
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 3, Ver. II (May – Jun. 2015), PP 34-39
www.iosrjournals.org

DOI: 10.9790/0661-17323439 www.iosrjournals.org 34 | Page

“Software Theft Detection for JavaScript programs based on

dynamic birthmark extracted from runtime heap graph”

Mr.Somanath Janardan Salunkhe, Prof. Umesh Laxman Kulkarni
PG Student, Dept. of CSE, DYPCET, Shivaji University, Kolhapur, India

Department of Computer Engineering, Mumbai University, Mumbai, India

Abstract: Software’s, programs are valuable assets to developer companies. However, the source code of

programs can be theft and JavaScript programs whose code is easily available which is a serious threat to the

industry. There are techniques like watermarking which prove the ownership of the program but it can be

defaced and encryption which changes source code but it may decrypted and also it cannot avoid the source

code being copied. In this paper, we use a new technique, software birthmark, to help detect code theft of

software or program. A birthmark is a unique characteristic of a program which is used to identify the program.

We extract the birthmark of software from the run-time heap by using frequent sub graph mining and search the

same in suspected program.

Keywords: Heap graph, software birthmark, frequent sub graph mining.

I. Introduction
Software theft is a serious issue in the industry. Software theft detection is very important for software

industry. The watermarking is a solution used to prove ownership. Another approach is encryption in which a

source code is transformed in such way that it becomes more difficult to understand. A new technique for

software theft detection is software birthmark which does not insert any code to the software and it depends on

the characteristics of the programs. There are two types of software birthmarks, static birthmarks and dynamic

birthmarks. Static birthmarks are extracted from the syntactic structure of a program. Dynamic birthmarks are

extracted from the dynamic behavior of a program at run-time. We use dynamic birthmark approach for

software theft detection.

A birthmark is used to identify software theft, to detect software theft; the dynamic birthmark of the

original program is first extracted by using frequent sub graph mining. The same software birthmark will be
search in suspected program. If the birthmark is found, the suspected program is a copy of the original program.

II. Related work
[1] A. Monden, H. Iida, K. I.Matsumoto, K. Inoue, and K. Torii have proposed Watermarking based

software theft detection method for java programs.

[2] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, and M. Step have proposed

Dynamic path-based software watermarking for software theft detection.

[3] X. Wang,Y.-C. Jhi, S. Zhu, and P. Liu have proposed dynamic behavior based software theft detection

[4] G.Myles and C. Collberg have detected software theft via whole program path birthmarks.
[5] D. Schuler, V. Dallmeier, and C. Lindig have shown robust dynamic birthmark for java program software

theft detection.

[6] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. I. Matsumoto have designed and evaluated

dynamic software birthmarks based on API Calls.

[7] P. Chan, L. Hui, and S. Yiu have proposed dynamic JavaScript birthmark based on the run-time

heap(JsBirth).

[8] P. P. F. Chan, L. C. K. Hui, and S.M. Yiu have used heap memory analysis for dynamic software

birthmark formation and comparison for java programs.

III. Proposed algorithm
Based on above discussion proposed work is to implement and analyze birthmark based software theft detecting

system for JavaScript programs. Specifically the proposed work is stated below.

1. Design and implementation of the graph generator and filter-The JavaScript heap profiler will run a

JavaScript program and takes multiple heap snapshots in the course of its execution. The graph generator

and filter will traverse the objects in the heap snapshots and builds heap graphs out of them. Heap Graph

generates for each heap snapshot. Heap snapshot consist arrangement of objects which are created runtime.

Heap graph contains various types of objects and edges. Graph filter is used to filter unwanted objects and

“Software Theft Detection for JavaScript programs based on dynamic birthmark extracted

DOI: 10.9790/0661-17323439 www.iosrjournals.org 35 | Page

edges. Object of type OBJECT and CLOSURE are considered and remaining types of objects are discarded.

References of type ELEMENT and PROPERTY are only included other are discarded.

2. Design and implementation of the graph merger –The graph merger will merge the filtered heap graphs
together to form one single graph. According to object id all heap graphs are combined together. We merge

all the graphs one by one by taking the union set of the nodes and edges of the two graphs being merged. In

order to make the resulting superimposition graph also connected, it need to ensure that there is at least one

object in common (with the same object ID) in two graphs before superimposing them.

3. Design and implementation of modified Graph Selector- The sub graph selector will select a sub graph

from the heap graph to form the birthmark of the original program. The modified Graph Selector will use

frequent sub graph mining to get the frequent sub graph that appears in all the heap graphs that are extracted

from the program by graph generator and filter. The proposed modified Graph Selector will be tested for its

suitableness in using it as the more representative birthmark of the program.

4. Design and implementation of the detector –The detector will search for the birthmark of the original

program in the heap graph of the suspected program.
5. Application and analysis of above mentioned scheme for its usefulness, robustness and accuracy in

protecting the intellectual property rights of JavaScript developers.

IV. Simulation Results
Module 1:

1) Graph generator and filter:

Algorithm:

Input: JavaScript heap profile from JavaScript heap profiler

Output: A set of filtered heap graphs captured at different points of time with the annotates nodes in the heap
by its object ID.

I. Graph generator:

For each snapshot taken using the Chromium browser, perform a depth first search traversal of it and print out

the heap graph with annotated nodes by its object ID (objects) and edges (reference) and then pass it to a filter.

II. Graph filter:
Graph Filter working is as follows.

 For each JavaScript Objects we do following:

I. If Object is of type INTERNAL or ARRAY or STRING or CODE discard the object.

II. If Object is of type OBJECT or CLOSURE include only ELEMENT and PROPERTY references and

III. Filter out every other reference.

Module 2:

1) Graph merger:

Algorithm:

Input: Multiple labelled connected heap graphs G from Graph generator and filter

Output: A superimposition of multiple labelled connected heap graphs G into a one single graph M that

includes all the nodes and edges appearing in the input heap graphs.

The above algorithm superimposes all the graphs one by one by taking the union set of the nodes and

edges of the two graphs being merged. In order to make the resulting superimposition graph also connected, it

need to ensure that there is at least one object in common (with the same object ID) in two graphs before

superimposing them.

2) Sub graph selector:

Algorithm:

Input: A set of filtered heap graphs captured at different points of time with the annotated nodes in the heap by

its object ID (obtained from module 2- graph generator and filter).

Output: the frequent sub graphs to be used as the birthmark

The modified Graph Selector uses frequent sub graph mining to get the frequent sub graph that appears

in all the heap graphs that are extracted from the program by graph generator and filter. For frequent sub graph

mining gSpan algorithm is used which is complete frequent sub graph mining algorithm on labeled graphs.

gSpan builds a new lexicographic order among graphs, and maps each graph to a unique minimum DFS code as

its canonical label. Based on this lexicographic order, gSpan adopts the depth first search strategy to mine

frequent connected sub graphs efficiently.

This module uses java library ParSeMiS (Parallel and Sequential Graph Mining Suite). The library

searches for frequent, interesting substructures in graph databases. It has implementation of gSpan algorithm for
frequent sub graph mining.

“Software Theft Detection for JavaScript programs based on dynamic birthmark extracted

DOI: 10.9790/0661-17323439 www.iosrjournals.org 36 | Page

3) Sub graph detector:

1. Take birthmarks obtained from plaintiff program. Take single large merged graph obtained from suspected

program.
2. For each birthmark

a. Check if birthmark is present in single large merged graph.

b. If birthmark is found report “yes”.

3. If no birthmark is found report “not found”.

Algorithm:

Input: sub graphs from the original program and the entire heap graph of the suspected program

Output: Determines whether the selected sub graphs of the plaintiff program can be found in the heap graph of

the suspected program.

I. Takes sub graphs of the objects under the Window objects from the suspected program

II. Use sub graph monomorphism to check whether the subgraphs of the plaintiff program can be found in
them.

III. If a match is found, raise an alert and reports where the match is found.

Experimental Result

We proposed five modules in this paper, three modules are implemented and result is described in

following section. Sub graph detector and analysis are not implemented. The results of first three modules are

mentioned

We took first heap snapshot of www.google.com and passed it to the Graph Generator. It creates Heap

graph by considering all types of object and all types of edges the result of first heap snapshot is as follows

Figure 1: Results of Graph Generated by first module from sample firstheapdump

 We took second heap snapshot of www.google.com and passed it to the Graph Generator. It creates Heap

graph by considering all types of object and all types of edges the result of second heap snapshot is as follows

“Software Theft Detection for JavaScript programs based on dynamic birthmark extracted

DOI: 10.9790/0661-17323439 www.iosrjournals.org 37 | Page

Figure 2:Results of Graph Generated by first module from sample secondheapdump

First heap snapshot of www.google.com passed to the Graph Generator which generates heap graph as

shown in figure 1.Then resulting graph passed as input to the Graph Filter which only consider Object of type

OBJECT and CLOSURE and remaining types of objects are discarded. References of type ELEMENT and

PROPERTY are only included other are discarded. The resultant filtered graph is as follows

Figure 3: Results of Graph filtered of graph from fig.1 by second module

Second heap snapshot of www.google.com passed to the Graph Generator which generates heap graph

as shown in figure 2.Then resulting graph passed as input to the Graph Filter which only consider Object of type

OBJECT and CLOSURE and remaining types of objects are discarded. References of type ELEMENT and

PROPERTY are only included other are discarded. The resultant filtered graph is as follows

http://www.google.com/
http://www.google.com/

“Software Theft Detection for JavaScript programs based on dynamic birthmark extracted

DOI: 10.9790/0661-17323439 www.iosrjournals.org 38 | Page

Figure 4: Results of Graph filtered of graph from fig.2 by second module.

In the heap graph all objects are assigned a unique id. Two snapshots which are shown in figure 3 and

figure 4 are passed to the Graph Merger which produces single graph and merging done on the basis of object

id. The resultant single graph is s follows

Figure 5: Results of merging of two Graphs from fig.3 and fig 4

Frequent sub graph Mining is applied on single graph generated by Graph Merger as shown in figure 5

which searches subgraph with maximum occurrence in the largest graph. The resultant subgraph of graph

displayed in figure 5 is as follows

“Software Theft Detection for JavaScript programs based on dynamic birthmark extracted

DOI: 10.9790/0661-17323439 www.iosrjournals.org 39 | Page

Figure 6: Sub graph selected by sub graph selector module as a software birthmark

The resultant sub graph of graph displayed in figure 6 will be search in suspected program. If birthmark

will found it will display message as birthmark found otherwise it will display as follows in fig.7

Fig 7: Result display after birthmark searching

V. Conclusion
We proposed a robust heap graph based software birthmark system for JavaScript programs. We

evaluated our birthmark system using 50 large-scale websites and the experiment results are promising with

100% accuracy

References
[1]. A. Monden, H. Iida, K. I.Matsumoto, K. Inoue, and K. Torii, “Watermarking java programs,” in Proc. Int. Symp. Future Software

Technol., Nanjing, China, 1999.

[2]. C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, and M. Stepp, “Dynamic path-based software

watermarking,” in Proc. ACM SIGPLAN 2004 Conf. Programming Language Design and Implementation (PLDI ’04), New York,

2004, pp. 107–118, ACM.

[3]. X. Wang,Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based software theft detection,” in Proc. 16th ACM Conf. Comput.andCommun.

Security (CCS ’09), New York, 2009, pp. 280–290, ACM.

[4]. G.Myles and C. Collberg, “Detecting software theft via whole program path birthmarks,” in Proc. Inf. Security 7th Int. Conf. (ISC

2004), Palo Alto, CA, Sep. 27–29, 2004, pp. 404–415.

[5]. D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for java,” in Proc. 22nd IEEE/ACM Int. Conf. Automated Software

Eng. (ASE ’07), New York, 2007, pp. 274–283, ACM.

[6]. H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. I. Matsumoto, Design and Evaluation of Dynamic Software Birthmarks

based on API Calls, Nara Institute of Science and Technology, Tech. Rep., 2007. [7] P. Chan, L. Hui, and S. Yiu, “Jsbirth: Dynamic

JavaScript birthmark based on the run-time heap,” in Proc. 2011 IEEE 35th Annu. Comput.Software and Applicat. Conf.

(COMPSAC), Jul. 2011, pp. 407–412.

[7]. P. P. F. Chan, L. C. K. Hui, and S.M. Yiu, “Dynamic software birthmark for java based on heap memory analysis,” in Proc. 12th

IFIP TC 6/TC 11 Int. Conf. Commun. and Multimedia Security (CMS’11), Berlin, Heidelberg, 2011, pp. 94–106, Springer-Verlag.

[8]. Yan, X.,Jiawei Han, “gSpan: graph-based substructure pattern mining,” in 2002 IEEE International Conference on Data Mining,

2002. ICDM 2003.

