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I. Introduction 
The industrial world in the decades has had very an important increasingly emergence of Fault 

Detection (FD) and fault diagnosis methods. For the improvement of safety and reliability, it is essential to 

establish efficient system monitoring techniques. Multivariate statistical process control (MSPC) is a collection 

of such techniques that are usually based on the analysis of measurements system. In the field of monitoring 

process, PCA approach is one of the important utilized data driven-based method [1], [2]. This method is 
applied generally to identify the dependency structure between the data measurement for transform the input 

space into a reduced dimensional space while selecting the maximum variance of the input data measurement. 

For linear process monitoring, PCA is an efficient MSPC technique for FD and fault isolation. In addition to, the 

Partial Least Squares (PLS) as an input output technique has illustrate a very important performance for FD [3]. 

This method can construct a linear mathematical model with linear Latent Variables (LVs) using the relations 

between inputs/outputs sets: The PLS has been extensively used in diagnosis and supervising for linear process. 

The majority of industrial processes data have nonlinear relationships. An extended version of PCA, developed 

in recent years for tackling non-linear problem, named Kernel PCA (KPCA) has been used [4]. The Kernel PLS 

(KPLS), an extended version of PLS, has been developed for tackling non-linear problem [5]. The main idea of 

KPCA approach is to first map the input space into a feature space, via nonlinear mapping, and then to compute 

Principal Components (PCs) in that feature space. The KPLS method can be used to test the data in the input 

space that are transformed using a non-linearly function into a space entitled feature space with increasing 
dimensionality, using nonlinear function. Some problems are presented using kernel methods for industrial 

process monitoring. Since the standard kernel methods perform a projection using an implicit function to an 

input space, then it has obstacles in distinguishing quality-related and quality unrelated faults. The number of 

the chosen variables determined by kernel methods can be larger than the linear versions. As a consequence, the 

computation time and the memory size for the storage may increase due to the number of selected measurement. 

For this objective, all the debated data-driven methods presents a solution to solve the FD problems and make 

easy this task. The contribution of this paper is to present an overview of an extension of kernel methods using a 

reduced observations and to provide a reference for further MSPC methods for monitoring industrial processes. 

All the debated approach will be tested to an industrial system entitled Tennessee Eastman (TEP) using the 

Squared Prediction Error (SPE) index to illustrate their efficiencies. 

This article is structured as follows: in Section 2, a related works is presented. A kernel method is 
given in section 3. The discussed methods formulation and Algorithms are given in section 4. The proposed RR-

KPLS is detailed in section 5. The fault detection method using SPE index are developed in section 6. Section 7 

presents simulation results that illustrate efficiency of all discussed methods using TEP. The conclusion 

concludes this paper. 
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II. Related works 
Diagnostic methods are hot topics especially for the modern technology. However, the FD is important 

and essential as regards finding any sensor fault that might occur in the system. In literature, several methods 

have been developed for years [6], [1]. The methods based on data driven principle are becoming more applied 
in the process industry. The recent technology delivers an important quantities of variables, which are stored and 

measured using control processes. Among the FD techniques, the historical data methods can describe the 

various modes of operation of the system. This historical data can be divided into two significant methods: the 

neural networks [7] and the pattern recognition method [8]. These methods present many advantages. Firstly, a 

low sensitivity to observations  

noise is presented. Then their ability to store information in a compact manner is given [9], [10]. Yet, 

these methods require in this case a heavy learning. Nonetheless, the Multivariable Statistical Process Control 

(MSPC) is a set of many techniques, which are based on the analysis of measurements system. This method is 

based on statistical projection methods like essentially: PCA, PLS and Independent Component Analysis (ICA). 

The ICA method has been suggested in [11], which the goal of this method is to break the data into linear 

combinations of statistically independent components. The PCA method developed in [12], consists to project 

the correlated variables across the new variables that are not correlated. However, the PLS method focus to 
extract data from system to model the relationship between them [13]. On the one hand, the PCA method 

consists to capture variations affecting the input data with a variance descending order, on the other hand the 

PLS method finds an optimum pair of latent variables in the input data space related to the output ones. In 

literature, the PCA and PLS methods are among the most widely used MSPC techniques in modeling, 

monitoring and diagnosis. These two methods have shown a good performance as a data driven method. 

However, complex industrial processes are in nature nonlinear. In this context, several extended techniques of 

the nonlinear PCA and PLS have been proposed in the literature. The kernel methods such as KPCA, in [14], 

and KPLS, in [15]- [16], have been developed and have emerged to mitigate the traditional disadvantages of 

PCA, and PLS respectively methods in process monitoring. In [17], the kernel methods can also be used to 

handle the original input data that are non-linearly transformed into a feature space. The authors in [18] 

presented the fault detection phase based on the KPCA which can compute principal components (PCs) in space 
of high dimension by using of nonlinear kernel functions and integral operator. In [19], the authors presented the 

fault detection phase based on the KPLS which can find the Latent Variables (LVs) that present a nonlinear 

correlation with the response variables and improve model performance. The principal advantages of KPLS 

method is that it used in the same time the input and the output set Some problems can be present for industrial 

process monitoring based on the kernel techniques. As a consequence, the computation time may increase due to 

the availability of samples, for the storage of kernel matrix during the identification step. Several extended 

kernel methods, for process monitoring, have been also proposed in the literature. In this paper, a general review 

of statistical learning techniques in Statistical Process Control, mentioning only a few kernel methods took 

place. To improve the detection phase, the authors in [20] proposed an optimized parameters of kernel function 

for process monitoring. Indeed, the kernel parameters depend on the kind of kernel function. Then the different 

kinds of kernel function have different numbers, characteristics and scope of kernel parameters. Different 

approaches using kernel methods for monitoring have been developed. Among the developed methods, Taouali 
et al. [21] were interested in approaches based on Reduced KPCA (RKPCA). This proposed approach deals the 

problem of need storage and computation time. The suggested RKPCA technique [21] aims to approximate the 

selected principal components given by the classical KPCA technique using an observation set which have the 

largest variances with the selected principal components. In fact, the RKPCA is to determine only the 

observations data that approximate correctly the selected principal components. In [22], Lahdhiri et al. proposed 

a new methodology based on reduced Rank-KPCA (RRKPCA) method for monitoring nonlinear system. The 

main principle of the RRKPCA method is to retain the observations that generate independent linear 

combinations in the feature space and reveal the useful information. On the other side, the authors in [23] 

suggested a Reduced KPLS (RKPLS) method. The proposed RKPLS method consists to select only the data set 

of observations that approximate the choosing very important components to construct a kernel matrix with 

reduced size. The RKPLS method is mainly based on a reduced Gram matrix, in this case the training time 
decreases rapidly with a reduced number of observations. In this paper, we present the review of Statistical 

method that contain a kernel method model for monitoring system. 

 

III. Kernel Methods 
Systems have really a nonlinear structure. Because of the limitation of the standard statistics methods 

for the nonlinear system, several methods have been developed. According to the trend and popular methods, 

the kernel technique has received a lot of attention. The kernel methods are characterized by the Gram matrix 



Process monitoring based a Novel Reduced Rank KPLS approach 

DOI: 10.9790/0661-2306011326                           www.iosrjournals.org                                                   15 | Page 

[24]. Furthermore, the main idea of the kernel technical is to transform 
i

x  i=1,...,N the input process variable 

data into a special feature space H using a nonlinear function , as 

indicated in Eq. (1):  
 

(1) 

Let us consider X the training observations matrix equal to zero mean and variance is equal to unit. The X is an 

observation vector, N is observation number of measurement and M is systems variables. Then the kernel model 

is determined by the eigenvalue decomposition of the covariance matrix of data  C


 in the feature space H. 

 

 

                                                              

(2) 

In this case, the  1
( ) ... ( )... ( )

T N h

i N
x x x  


   can be used as  matrix  contains data  in the feature 

space H. The C o


matrix can be written as: 

 

 

    (3)                                                                   

The PCs of the mapped  observation data are determined by solving the eigenvalue problem  decomposition of 

C


, as indicated by Eq.(4). 

 

(4) 

 

where 
j

 is the  associated
th

j eigenvalue and 
j

  is the eigenvector of C o


  that corresponding then  to non-

zero eigenvalue 
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j
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j
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T

i N
x x x   can be determined an 

existing set 
,

; 1 .. . N
i j

i  There exist  parameters can be expressed by: 

   
,

1

N

j i j i

i

  



                                                                                 (5) 

The mapping function   in practice is not known. However, the covariance matrix of transformed data isn’t 

defined and determined implicitly. As a consequence, the inner product presented by Eq. (2) can be used the 

Mercer's theorem [25] to determine a kernel function  ., .k as follows: 

 

 

(6) 

 

However, The Kernel matrix  
N N

g
K


 linked to a kernel equation k is presented by the Eq.(7). 

 

 

 

(7) 

 

The  eigenvalue problem decomposition C o


can be reduced using a kernel matrix Kg principle. Hence, 

eigenvalue decomposition of the kernel matrix Kg can be presented as following: 
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                                 (8) 

 

where 
1 2 3

( , , . . . . . . )
j N

d iag       is eigenvalues 
j

  diagonal matrix  arranged in descending order. The 

1 2 3
, , ... ...

j N
      
 

is the matrix of their corresponding eigenvectors. 

Many kernel functions are usually used. The following different kernel functions are: 

 

Polynomial kernel : ( , ) ,
p

k f e f e    

Sigmoid kernel : 
0

( , ) tanh( , )k f e f e    

Radial basis kernel : 

2

2
( , ) ex p ( )

2

f e
k f e




   

where 
0

,p   and  are choosing using an optimization technique. 

Generally, the normalization and the centralization of the kernel measurement matrix Kr is determined using Eq. 

(9), where we are substituting Kr by the Gram matrix (Gg). 

 

                                                                     

(9)  

where1
N

denotes a unit vector with the length is equal to N. 

 

IV. Related works of static methods 
In this part, we present the theory of each studied methods. The KPCA, RKPCA, RRKPCA, KPLS and RKPLS 

methods have been applied for sensor fault detection and more generally for systems monitoring. 

 

4.1 KPCA method 

Since 1980s, PCA method has been successfully used in numerous field such as image processing, data 

information compression, features extraction and processes monitoring. Due to its efficiency and simplicity in 

processing huge amount of systems data, the PCA is widely used in practice [26], [27], [28]. The KPCA 

approach is the nonlinear extension of PCA. 

Considering a transformed data matrix X presented by m variables and N measurement of observations taken 

under normal operating condition as 

 1 2
, , , . . . ,

T N m

n
X X X X


                                              (10) 

 

 
 

Using nonlinear mapping  , a measured input observation is projected into feature space H with an hyper-

dimensional order as developed in the previous section.  

For the KPCA, Determining the number of retained PCs is an important step for monitoring system. The 

Cumulative Percent Variance (CPV) is utilize to determine the retain PCs [29]. The CPV is a measure that 

represent a  percent variance explained by the    first PCs. The number    satisfies the criterion PCV and it is 

given by Eq.11. 

 

 

                                                                
(11)  

where 

1

1
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                                                                 (12) 

 

Based on the concept of kernel, the KPCA approach can adequately map the input observations with a linearly 

relationship onto feature space H characterized by a higher dimensional, afterwards perform the linear PCA in 

the feature Hilbert space. An algorithm for applying classical KPCA is given in the following steps. 

N K  

1 1 1 1
g N g g N N g N

G g K K K K   

a rg ( 9 5 )PC V 
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1- Considering an initial standardized block of learning measurement data, determine optimized kernel 

parameter; 

2- Calculate the mean, the standard deviation of different variables system and standardize the matrix 

of measurement data; 

3- build the Gram matrix and calculate it; 

4- KPCA model is obtained; 
5- Determine control threshold of the monitoring statistic; 

6- Collect a new observation 
m

t
x    and compute it with the mean and variance in the offline phase; 

7- Calculate the kernel vector ; 1 .. .
t

x
k t N and scale it; 

8- Perform monitoring statistic. If the control threshold is overtake, a sensor fault will be declared; 

9- feedback to step 5; 

 

 

4.2 RKPCA method 

      The monitoring techniques based on reduced model suggested by Taouali et al. [21] consists on 

approximating the retained a pertinent information about the system given by the KPCA method. We select, for 

the reduced model, a reduced number of measurements  


( )

1 ,...,

k i

b
i N

x x


 between the N available 

measurement variables of the data information matrix. Indeed, the selected data observations can be considered 

as a new data measurement matrix. The RKPCA technique approaches each vector  
 1 ,...,j

j




by a transformed 

input measurement  
( )

1,...,

( ) ( )
k i

b
i N

x x 


  which have a high projection value in the direction of
j

  . Then, the 

RKPCA selects among the set of   
( )

1,...,

( )
i

i N

x


the closest vectors the closest vectors, ( )
( )

j

b
x to 

j
 for each 

principal component. We project all the  transformed 
( )

1,...,

( )
i

i N

x


on the principal component 
j

 and we 

choose the measurements  
( )

1,...,

( )
i

i N

x


that satisfied Eq.13. 
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where   is a given threshold and 
( )

( )
i

k
x is the th

k  component projection of ( )
( )

i
x on 

j
 . Furthermore, the 

downsized Gram matrix 
r

K   joined to a kernel function k can be present as show in Equation. (14): 

 

 

1 1 1
( , ) ( , )

( , ) ( , )
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K

k x x k x x
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                                                   (14) 

 

4.3 RRKPCA method 

            For the KPCA model, the important amount of training data can lead a computational complexity. 

Therefore, the key principle of the RRKPCA approach is to eliminate the dependencies between variables in the 

feature Hilbert space and to select a reduced measurement from the original one [22]. 

The monitoring RRKPCA with fixed model can be defined as following. The first step is to recognize and 

determine the downsized reference model that presents the normal operating behavior. In order to recognize the 

reference RR-KPCA model, we memorize the important useful new observations in terms of process 
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information in a downsized training observations matrix. After that, the built model is performed on-line in 

order to detect faults. The initial reduced data matrix is expressed as: 

 

 
1

1

x m

r
X x                                                                       (15) 

 

A new measurement  
t

x  is available at each instant t. Then its transformed kernel vector 
t

x
k  is computed and 

also the kernel  transformed matrix is changed by adding a column  vector and a row data vector to the last one 

(Eq.16). 

 

            

1

( , )

t

x t
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rd x
t rd x rd
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t t

K k

K
k k x x


 

  

 
 

                                                      (16) 

In this case, the rank of the new kernel matrix 
t

rd
K is determined, its value leading to either case: 

 ( )
t

rd
ran k K r  

In this case the kernel matrix 
t

rd
K has a full rank then the new measurements is added to the reduced 

data matrix. This matrix presents the independences between the projection observations in the feature 

Hilbert space. 

 ( )
t

rd
ran k K r  

In this case the kernel matrix 
t

rd
K has not a full rank then the reduced measurements matrix stay 

unchanged and afterwards we come back the kernel matrix 
t

rd
K to its last state. This matrix describes 

the dependencies between the projection data in the feature Hilbert space. Finally, when all the 

measurements were evaluated, we obtain respectively the downsized data matrix and the reduced 

kernel matrix, 
r

X  and 
r

K , such that 
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                                                     (17) 

4.4 KPLS method 

          The PLS method builds linear multivariable regression model. This method extracts often a set a 

measurement vectors named LVs from the initial input/output measurements space. according to the related 
work, the system monitoring based on the PLS approach have been most discussed [13], [30], [31]. The KPLS is 

the nonlinear extension of PLS. 
 

Considering the matrix   of  measurement 
N m

in
X


 of input data containing N observations with m system 

variables and the matrix  of the output 
N J

o u t
Y


 of outputs comprising N measurements with J quality 

variables, we have: 
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 

 
 

 

The PLS approach projects the input and output matrices to space with low-dimensional with an L number of 
LVs. Then the PLS method decomposes the matrices Xin and Yout as: 
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                                                                                                (18) 

 
Where                                                                 
The corresponding prediction outputs on the learning observations can be determine using: 

                                                                                                              (19) 
The corresponding prediction outputs on the validation observations can be determined using: 

                                                                                                                                                                         
(20) 

where 
te s t

K  the validation observations Gram matrix. 

4.5 RKPLS method 
       The learning data for kernel technique used for monitoring must be stored in a memory. The number of LVs 

for the industrial systems used for the KPLS approach may be greater than that for the linear case. For this 

reason, the time cost may increase due to the number of observations for the storage of the symmetric Gram 

matrix K during the learning step using the KPLS model. The RKPLS method is consider only the observation 

set that approximates correctly the selected crucial components to obtain a downsized Gram matrix [32]. 
The main objective of the RKPLS technique is to reduce the cost time and to select a reduced number of 

observations reduced number of observations about system. The RKPLS approach aims to replace each latent 

component  
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j
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 that satisfies Eq.(21): 
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                                                        (21) 

where   is a chosen threshold. 

After determining the reduced data set  
 

1,...,
L aten t

j i

i L

x x


 , a downsized matrix of data can be written as: 

     1 2

, , , . . . ,
T

L

r late n t late n t late n t
X x x x 

 
                                              (22) 

The downsized Kernel Matrix Kr associated to a kernel function k, as presented in Eq. (23): 

1 1 1

2 1 2
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 
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                                           (23) 

 

V. The proposed Reduced Rank-KPLS method 

For the KPLS model, the important amount of training data can lead a computational complexity. 

Therefore, the key principle of the Reduced Rank KPLS approach is to eliminate the dependencies between 

variables in the feature Hilbert space and to select a reduced measurement from the original one. 

The monitoring RR-KPLS with fixed model can be defined as following. The first step is to recognize 

and determine the downsized reference model that presents the normal operating behavior. In order to recognize 

the reference RR-KPLS model, we memorize the important useful new observations in terms of process 

information in a downsized training observations matrix. After that, the built model is performed on-line in 

order to detect faults. The initial reduced data matrix is expressed as: 

 

 

 

 
1

1

x m

D
X x                                                                       (24) 
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A new measurement  
q

x  is available at each instant t. Then its transformed kernel vector 
q

x
k  is computed 

and also the kernel  transformed matrix is changed by adding a column  vector and a row data vector to the last 

one (Eq.25). 
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x q

q

r x
q D x D
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q q
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K
k k x x


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                                                      (25) 

In this case, the rank of the new kernel matrix 
q

D
K is determined, its value leading to either case: 

 ( )
q

D
ran k K D  

In this case the kernel matrix 
q

D
K has a full rank then the new measurements is added to the reduced 

data matrix. This matrix presents the independences between the projection observations in the feature 

Hilbert space. 

 ( )
q

D
ran k K r  

In this case the kernel matrix 
q

D
K has not a full rank then the reduced measurements matrix stay 

unchanged and afterwards we come back the kernel matrix 
t

rd
K to its last state. This matrix describes 

the dependencies between the projection data in the feature Hilbert space. Finally, when all the 

measurements were evaluated, we obtain respectively the downsized data matrix and the reduced 

kernel matrix, 
D

X  and 
D

K , such that 
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D

D D D

k x x k x x

K

k x x k x x

 

 
 
 

 
 

                                                     (26) 

 

VI. Fault detection 
       The kernel methods for monitoring procedure can usually use the SPE statistic in the feature space. The 

SPE index is calculate as the norm of the residual vector belongs to the feature Hilbert space, which is shown as 

follows (Eq. (27)) 
 

 (27) 

 

Where:  1
k ( , ), ..., ( , ) 1 ...

t

T

x t N t
k x x k x x i N  , P̂ is the matrix of the principal eigenvectors of 

kernel matrix K and finally ̂ is the diagonal matrix of kernel matrix K 

The confidence threshold  for SPE index can be computed according to  the 
2

 -distribution and is written by 

Eq.28. 
2

S P E


                                                                                      (28) 

Where 
2


  represents the upper control threshold for the SPE with a significance level   

The confidence threshold 
2


  for the SPE with a significance level can be computed as: 

 
2 2

,h
g

 
                                                                                    (29) 

where the confidence level is  1 1 0 0 %  100%, and g and h are determined using: 
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VII. Application 

   The fault detection performances of the kernel methods: KPCA, KPLS, RKPCA, RKPLS, RRKPCA 

and the proposed RR-KPLS with fixed model are presented in this section. Two fault detection criteria are 

determined in order to show the performance of the studied methods: The Good Detection Rate (GDR) percent  

and the False Alarm Rate (FAR) value. 

The FAR is considered as 

V o la ted  sam p le s
%

F au ltle s s  d a ta
FA R                                                            (30) 

The GDR is calculated as: 

 

V o la ted  sam p les N o t v io la ted  sam p les
%

F au lty d a ta F au ltle ss  d a ta
G D R

 
  
 

                                (31) 

 

6.1 Tennessee Eastman process description 

The performances of the statistics methods for systems monitoring is studied by applying the TEP 

system. in Fig.1. The TEP contains two outputs of variables G and H from four reactants: A, C, D and 

E. The reaction scheme is as follows: 

 

  

  

 

3 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

A g C g D g G liq

A g C g E g H liq

A g E g F liq

D g F liq











 

 
                                                        (29) 

 

The Xtrain matrix presents 22 variables continuously measured from 41 process variables. The 19 variables are 

considered for the quality matrix Xtrain. The variables used to build the data matrix are determined in Table 1. 

The fault is introduced at 224 observations for the testing data set. Identification, monitoring and modeling 

represent the subject of several studies and also represent a challenge for the control community for the TEP. 

Then 21 faults types could be injected as indicated in Table 2. 

 

 
 Figure 1: Flow diagram of TEP. 
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Table 1: Measurement  system variables 

 
 

6.2 Simulation results 

Fig.2 shows the FD performance of the studied methods for IDV1(12), fault test data. For fault 

IDV1(12), the figures of presented system monitoring are given in Fig.2 in which the reduced methods offer 

better results than the conventional KPCA and KPLS methods. Moreover, RKPLS, RKPCA and RRKPCA offer 

not only lower FAR but also correct fault diagnosis information about the properties of the faults. From Fig.2, it 

can be clearly show that the KPLS and KPCA are higher sensitive in FAR than the reduced approaches. In 

addition, the results using the SPE index are shown by Fig.2, from which the RR-KPLS provide much better 

fault detection performance than the standard one. 
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Table 2: List of monitoring variables in TEP.

 
 

Table 3 provides the FAR and GDR for the validation data sets of faults to test the studied methods. Table 3 

summarize the detailed GDR and FAR. 
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Figure 2: Process monitoring using KPCA, KPLA, RKPCA, RKPLS, RRKPCA and RR-KPLS in 

case of IDV1(12). 
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According to Table 3, the fault detection results based on kernel methods in term of FAR and GDR are 

presented. In this table, each method shows his performance in detection according to conditions. 

The reduced methods (RKPCA, RKPLS) give a best performances compared to the classical methods 

based on SPE index. The results of the proposed method RR-KPLS based on SPE present a better results 

compared to the classical methods. On the other hand, the reduced rank method (RRKPCA) presents a good 

performance compared to the classical methods in terms of GDR. In addition, some faults listed are properly 

undetectable by the given conventional methods. The RKPLS approach gives the best FAR listed in Table 3 
over all the other methods. The RKPCA and RRKPCA approach give the best GDR listed in Table 3 over all the 

other methods. Furthermore, Table 3 shows that the RKPLS based SPE provide good results compared to the 

other discussed methods.  

Furthermore, the next table present the CT for TEP data. 

 

Table 4: Summary of computation time for different studied methods 

 
Methods KPCA  RKPCA  RRKPCA  KPLS S RKPLS RR-RKPLS 

CT(s) 12.58  0.79 0.99 0.89 0.23 0.11 

 

The reduced techniques based on SPE shows better fault detection performances with CT as illustrated in Table 

4. The RKPCA gives the small value of CT compared to the conventional KPCA and RRKPCA. However, the 
RR-KPLS method present the small value of CT compared to the all discussed methods. 

Despite the simplicity of the KPCA method compared to KPLS, the proposed RR-KPLS method presents a 

more effective fault detection performance. 

 

VIII. Conclusions 
In this article, the basic data-driven approaches and their recent developments of fault detection were 

firstly reviewed. Then the RR-KPLS method is proposed. Two variants of KPCA technique, i.e. RKPCA and 

RRKPCA, offer much better FAR and more accurate fault diagnosis information compared to the standard 

approach. The downsized methods consist essentially to improve the computational time, focused on the 
important elements and observations. 

However, one variants of KPLS, i.e. RKPLS, offer much better FDR, GDR and more accurate fault 

diagnosis information compared with the standard approach. Indeed, the RR-KPLS solves the problem of 

Computing Time and the storage of variables. All the discussed and studied techniques were applied on an 

industrial systemof TEP to complete a comparison study. 
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