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Abstract: The progress of communication systems has allowed us to think beyond traditional communication 

systems, and the scene has been set for thought-oriented communication systems. Thousands of thoughts are 

formed and then evaporate in a short period of time, yet certain notable concepts remain and we carry on with 

our daily routines. EEG has advanced to the point that it is now possible to see the activity in the human brain 

in a non-invasive manner. The approach for emotion identification utilizing EEG data recorded and processed 

on smart devices is presented in this study. The results demonstrate the use of a computational neural network 

to recognize emotions from EEG data. It was discovered that the correct categorization rate was 90.17 percent. 
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I. Introduction 
We are approaching the next communication assessment, which will see a significant change in 

communication channels and mechanisms. When it comes to human-machine communication, we've come a 

long way from punch cards to keyboards and mice to touch screens and gesture recognition to BCI devices. We 
can now analyze enormous real-time data in various complicated algorithms to derive essential information 

thanks to developments in computer and network capability. A brain-computer interface (BCI) is a type of 

neuro-technology that decodes a user's central nervous system signals [1]. The BCI enables direct thought–based 

communication with other users or operation of different appliances (e.g., a direct brain–robot interface) without 

efferent peripheral nervous system fibers or muscles being involved [2]. In the case of locked-in-syndrome 

(LIS) users who cannot focus or regulate their eye movements, BCIs offer feasible alternatives, and in certain 

circumstances they are the more appropriate communication augmentation solutions [3]. EEG has a lot of 

untapped potential since it has a lot of untapped information that is directly related to real-time brain activity. 

This data is being processed using advanced approaches, resulting in novel applications for EEG interpreted 

data. Controlling smart devices with brain signals, performance assessment of persons using EEG analysis on 

generated cognitive work load, control of prostate organs using EEG, and so on are only a few instances [4, 5]. 

BCIs (Brain Computer Interfaces) are an emerging prospective study field. Researchers in this field are 
attempting to make the system more resilient and scalable. The researchers encounter considerable hurdles such 

as computational errors, delays, false positive detections, inter-person variations, high prices, and restrictions on 

intrusive technologies, all of which necessitate more study in this field. The fundamental study that makes use of 

EEG technology is based on the concept that this rhythmic activity is impacted by mental state and can be 

altered by alertness or other mental illnesses. Eye movement and blinking are one of the most prominent sources 

of artefacts, but additional causes include the usage of scalp, neck, or other muscles, or even insufficient contact 

between the scalp and the electrodes [6]. In a Human-in-the-Loop Cyber-Real-Systems scenario, users' 

intentions are inferred from brain and body sensor networks linked to them and sent directly into sensors and 

actuators in the physical environment, allowing for autonomous system adaption to their demands. Humans 

must be instrumented and integrated into the system in this scenario. This is a future that is still a long way off 

and far from ideal, because the desire of people and the general public to engage is still a huge issue, and it is 
not addressed by [7]. Similarly, several automated EEG signal categorization and seizure detection systems 

existed and were built using various methods. Gotman et al. [8] presented a computerized system for detecting a 

variety of seizures, while Qu and Gotman [9] proposed using the nearest-neighbor classifier on EEG features 

extracted in both the time and frequency domains to detect the onset of epileptic seizures, which is in line with 

previous research. While Adeli et al. [11], Guler et al. [12], and Ubeyli et al. [13] discussed the potential of 

nonlinear time series analysis in seizure detection, Gigola et al. [10] used a method based on the evolution of 

accumulated energy using wavelet analysis for the prediction of epileptic seizure onset from intracranial 
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epileptic EEG recordings. Several studies have suggested artificial neural network-based detection methods for 

epilepsy diagnosis [14-15]. Weng and Khorasani [16] present an adaptable structured neural network that 

incorporates the characteristics suggested by Gotman and Wang [17], namely average EEG amplitude, average 

EEG length, variation coefficient, dominant frequency, and average power spectrum, as inputs. Pradhan et al. 

[18] offer a technique that uses raw EEG data input to a learning vector quantization network. Nigam and 

Graupe [19] introduced a novel neural network model called LAMSTAR (Large Memory Storage and 

Retrieval), which uses two time-domain EEG properties, namely relative spike amplitude and spike rhythmicity, 

as inputs to identify seizures. In line with the methodologies described in the literature, the study of EEG 

Signals in the framework of cognitive science. Based on data extraction, preprocessing, feature extraction 

algorithms, and classifiers, this literature proposes a completely new approach of processing EEG signals 
utilizing Smart Computing/Communication Devices such as smart phones, tablets, and notebooks. Using the 

aforementioned approaches, the team conducted research to recognize emotions from real-time EEG data, which 

may then be utilized to operate smart devices or to offer as input to external systems, which can then use it to 

carry out user activities in the context of the apps. The following sections organize the material of this work. 

The backdrop is presented in Section I, followed by database specifications in Section II, the methodology 

employed and performance analysis of the technique in Section III, and the work's conclusion in Section IV, 

which is followed by acknowledgements and references. 

 

II. Database: 
In order to create a reliable EEG recognition system, the researchers created a database that fits the 

requirements of their study topic in general. EmoEngine collected the EEG signals for each mode, as seen in 

figure 1. 

 

    
(a)                   (b) 

Figure 1. (a) Brain lobes and (b) Emotive EPOC device for brain wave data acquisition 

 
The data from the headset is read and saved to an output file for further processing. The subject is 

required to wear an Emotive head set, which transmits data about the subject's activities to a distant smart device 

via the available communication method. The data is saved on mobile phones and may then be utilized for 

sample training and testing through mobile phones. The data acquired from the subject is traditionally analyzed 

for five wide spectral sub-bands of the EEG signal that are often of therapeutic interest: delta (0 - 4 Hz), theta (4 

- 8 Hz), alpha (8 - 16 Hz), beta (16 - 32 Hz), and gamma waves (32- 64 Hz). These five frequency sub-bands 

give more precise information about the underlying neural activity, and as a result, some changes in the EEG 

signal that aren't visible in the full-spectrum signal can be enhanced when each sub-band is analyzed separately. 

There were 125 EEG data segments since each EEG segment was treated as an unique EEG signal. The brain is 

divided into five lobes, each of which is responsible for a different set of neurological functions. For example, 

the frontal lobe is in charge of speech, thought, emotions, problem solving, and skillful movements. The parietal 
lobe is responsible for identifying and interpreting experiences such as touch, discomfort, and so on. The 

Occipital lobe receives and analyses visual images, while the Temporal lobe is in charge of hearing and memory 

storage, and the Cerebellum is in charge of the coordinates' familiar motions. Similarly, the association between 

the output (energy) frequency of signal and the brain lobes is as follows: 

 

 Table 1. Signal Type, Frequency and its origin 

Type Frequency Range Origin  

Delta 0Hz – 4Hz Cortex  

Theta  4Hz – 8Hz Parietal and Temporal 

Alpha 8Hz – 13Hz Occipital 

Beta 13Hz – 20Hz Parietal and Frontal 

Gamma 20Hz – 40Hz Parietal and Frontal  
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The data set used in this study is essentially Emotions that have been analyzed. For all of the studies, 

the Emotions dataset was used. This collection comprises seven emotions: 'Happy’, ‘Excited', ‘Content’, ‘Calm', 

‘Angry’, 'Afraid', ‘Sad' and EEG Signal recordings of ten participants (seven males and three females) in the age 

range of 20-25. The database has a total size of 12x10x10 = 1200 samples. All of the participants in the data 

collection/acquisition procedure were healthy and free of any physical or mental disorders. In an 

electromagnetically insulated room, all patients were told to sit comfortably in an arm chair facing the screen. 

Before taking part in the study, the participants had provided their written agreement to have their EEG signals 

recorded. Every subject has an excellent understanding of emotions. All of the participants were told that this 

experiment was created for use in Brain Computer Interface applications. For the data gathering under the 

proposed research project, a basic power point display system has been built. This device provides a 2-second 
interval emotion signal. A new emotion was flashed on the screen every 2 seconds. Before the experiment 

began, each participant was provided a demonstration of the display system so that they would be more 

comfortable with the job and we would receive correct signals. This procedure was carried out five times. As a 

result, the total number of samples in the emotion dataset is 1000. The EEG signals from all individuals will be 

extracted and analyzed according to the technique. 

 

III. Methodology / ANTARANG framework 
We created the ANTARANG framework, which is utilized to design a mobile emotion identification 

system. This framework or approach of obtaining, preprocessing, feature extraction, normalization, and 

classification model from raw EEG data is presented in this research. We give an overview of the suggested 
technique and the ANTARANG framework for EEG data interpretation. 

 

 
Figure 2 (a) 

 
Figure 2 (b) 

Figure 2: (a) and (b) Block Diagram of thought processing system ‘ANTARANG’ 
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a. Overview 

Figures 2(a) and 2(b) above demonstrate how the several phases involved in emotion recognition are ordered. 

The systems' functions are described in the following sections, 

1. Data acquisition: The data collection approach is the same as that described in section II. In order to get 

EEG signals relating to the activity, the individual must wear EMOTIVE EPOC head gear. The data 

collected by the EMOTIVE head set is easily sent to the wireless dongle attached to the smartphone via 

Bluetooth. The smart device's dongle control mechanism serves as a receiver. This will save the test 

sample primarily in the Smart device's storage and pass it on to the ANTARANG framework. 

2. Preprocessing: FAST Independent component analysis (ICA) of EEG sample data was done to remove 

artefact, and the resultant ICs were passed for feature extraction. 
3. Feature Extraction: The goal of this step is to develop a unique collection of characteristics that will 

increase classification performance overall. In this study, a stack of feature extraction methods was 

employed to compute features, including Short Time Fourier Transform (STFT), Discrete Cosine 

Transform (DCT), and discrete wavelet transform (DWT). 

4. Feature Normalization: The characteristics that have been calculated were normalized. This is necessary to 

decrease the dimensionality of the feature space and speed up the system's categorization. The feature 

space was reduced by the use of Linear Discriminant Analysis. This feature normalization is done on all 

training vectors, as well as the test sample, before to classification. 

5. Classification: In the design of any automated system, the categorization step has enormous potential. 

Support vector machine, k-Nearest Neighbor, Random forest, Nave Bias classifier, Multi-Layer 

perceptron, and Convolution neural network are among the classifiers used in the suggested system. The 

classifier's output will be sent on to the native command translation mechanism, which will start the smart 
processing elements working (Smart Devices). 

6. Command Map Table and Task observer thread: The mapped callback corresponding to the idea is stored 

in the command map table. The task watcher thread watches for activity and then invokes/dispatches the 

task for smart device execution. 

7. Tools and Software: Preprocessing and feature extraction were implemented in Python's SciPy and Numpy 

libraries as part of this project. In order to categories the time-frequency representations, convolutional 

neural network models were created with the Keras toolkit and executed with Tensorflow. To plot the 

figures and visualize the data, the matplotlib software was utilized. 

 

b. Working 

The participant must wear an Emotive EEG set during data collection as well as during the testing samples. 
During data gathering, an EEG device's electrode or subset of electrodes may shift, resulting in poor contact 

with the scalp and, as a result, a low-quality signal. Electrodes can also have mechanical problems, such as 

frayed wire, which can weaken the signal received partially or totally. Artifacts in the signals can be caused 

by such electrodes. FAST Independent component analysis (ICA) was conducted on EEG sample data as a 

preprocessing step to remove artefact, and the resultant ICs were passed for feature extraction. In 

biomedicine, ICA entails the extraction and separation of statistically independent sources underlying 

various biological signal measurements. 

 

1. Feature Extraction using DCT 

The Discrete Cosine Transform is a technique for transforming a time series signal into its fundamental 

frequency components. Low frequency components are concentrated in the first coefficients, whereas high 

frequency components are concentrated in the final. Equation (1) expresses the one-dimensional DCT for a list 
of N real values as, 

      
 

 
             

       

  
 

   

   

    

Where u=0, 1, 2, 3… N-1; 

     
 

  
 

a(j) = 1, j≠0; 

 

The output of an acquired input EEG sample from the training set is a set of N-DCT transform 

coefficients Y, while the input is a set of 'N' data values (u). The first coefficient, Y(0), is known as the DC 
coefficient and is responsible for storing the average signal value. The AC coefficients stand for the rest 

coefficients [20]. For strongly correlated data, DCT shows good energy compaction. If the input data is 

correlated, the majority of the N transform coefficients produced by the DCT are zeros or tiny values, with only 
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a few exceptions. As a result, quantizing the coefficients is used to compress data with the DCT. The little ones 

are coarsely quantized, whereas the large ones can be finely quantized to the closest integer. When applied to 

EEG signals, this characteristic allows meaningful data to be compressed to the first few coefficients. As a 

result, machine learning systems can only employ these coefficients for categorization. This type of data 

compression can significantly reduce the size of the input vector and the amount of time required for training 

and classification. These characteristics were estimated for all of the 'Emotion set' samples. Table 2 shows the 

'DCT Feature Matrix' for the samples from the 'Emotion set.' 

Table 2: Emotion 

 

2. Feature Selection using LDA 

The feature vector Y = [y1, y2, y3,....., yn] is produced after signal analysis and feature extraction using 
DCT. Its size should be lowered since the dimension n is frequently too huge, and designing classifiers for such 

a large dimension is challenging. The majority of these problems are numerical in nature and require the use of 

high-order matrices. At the same time, analyzing and imagining a classifier in n-dimensional space is quite 

challenging. As a result, Linear Discernment To determine the feature and pick the most significant 

characteristics for classification, LDA was used to the feature vector. The goal of LDA is to segregate data 

representing distinct classes using hyper planes [21]. The separation hyper plane is found by looking for a 

projection that maximizes the distance between the means of the two classes while minimizing the variance 

between them [22]. Several hyper planes are employed to solve an N-class issue (N > 2). This approach has a 

low processing need, making it ideal for use in a BCI system. As a result, all of the samples in the 'Emotion 

dataset' were normalized using LDA, and 100 features from each sample were chosen for classification. 

 

IV. Results and Discussion 
DCT and LDA were used to recognize the EEG signal samples. For the purpose of recognition, these 

characteristics were computed for each sample of the training set and saved. The full preprocessed features data 

set of EEG Emotions was split into a 70-30 ratio, with 70% (Training samples) and 30% (Test samples), then 

assessed using a Convolution Neural Network (CNN). The shift and translational invariance of this artificial 

neural network have been enhanced [23]. CNN is a subset of deep learning that has gained a lot of attention in 

recent years and is used in image recognition applications such as x-ray medical image analysis [24], magnetic 

resonance image analysis [25], histopathological image analysis, fundus image analysis, and computed 

tomography image analysis. However, there has been relatively little study on the application of CNN with 
physiological inputs. Convolutional layer, pooling layer [26], and fully connected layer are the three types of 

layers that make up the CNN architecture. For image classification applications, CNNs are particularly effective 

models. 

 

Table 3: Confusion Matrix for emotion Classification using CNN 

Emotions 

Total 
Training Samples 

Correct 

Classified 

Miss-

classified 
Accuracy Test 

Sample Happy Excited Content Calm Angry Afraid Sad 

Happy 17 15 0 0 0 0 1 0 15 2 86.67 

Excited 13 0 13 0 0 0 0 0 13 0 100.00 

Content 13 0 0 13 0 0 0 0 13 0 100.00 

Happy Excited Content Calm Angry Afraid Sad 

0.366515 1.081741 1.355358 4.177025 8.047682 1.687529 2.732452 

0.639972 0.688207 1.752748 9.701809 3.125768 21.37542 31.93106 

0.061715 0.542834 0.970531 2.899618 2.956171 7.894226 6.532051 

0.031866 1.167931 0.613204 4.922474 6.982062 21.8817 1.435193 

0.567666 0.526758 0.790951 7.802225 2.726657 22.01105 51.35523 

1.073398 0.276145 0.029724 0.07606 0.027696 0.03968 0.680563 

3.476802 2.356264 0.774597 0.754562 0.40443 0.505899 35.93576 

0.194747 0.033649 0.033631 0.017214 0.009243 0.041233 0.107949 

0.056582 0.016408 0.020714 0.024856 0.006497 0.016135 0.082541 

0.402641 0.091293 0.008991 0.04552 0.04046 0.051385 13.32203 
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Calm 10 0 1 0 9 0 0 0 9 1 88.89 

Angry 12 1 0 0 0 10 0 0 10 2 80.00 

Afraid 14 0 0 0 0 0 12 0 12 2 83.34 

Sad 14 0 0 1 0 0 0 13 13 1 92.31 

  93 Classification Result   85 8 90.17 

 

Table 3 shows the confusion matrix, with a total of 93 test samples being tested on the training data set. 

It was discovered that 15 of the 17 samples of the emotion 'Happy' were correctly categorized and two were 

incorrectly categorized, whereas 13 of the 13 test samples of the emotion 'Excited' were correctly classified and 

0 were incorrectly labelled. Similarly, all 'Content', 'Calm', 'Angry', 'Afraid', and 'Sad' test samples were 

completely categorized. Only 8 test samples were misclassified out of a total of 93 test samples, resulting in a 

classification accuracy of 90.17 percent. 

 

V. Conclusion 
The method for automated categorization of EEG signal of Emotions for smart devices is presented in 

the suggested research effort. The proposed study assesses the effectiveness of a CNN classifier using 

normalized Discrete Cosine Transform information. The work also denotes a feature reduction strategy based on 

linear discriminant analysis. The total accuracy was found to be 90.17 percent, and the research will now be 

expanded to include automated categorization of 'emotions.' The suggested study is further extended to the 

construction of smart gadgets that are controlled by EEG. 
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