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Abstract:   
In this article the problem of solving the nonlinear heat equation is raised, this is one of many of which a solution 

can be found by making a change of variable, or by making a Taylor development around a point to work on, in 

our In the case it is a transport phenomenon whose equation is non-linear, the reason for being non-linear 

corresponds to the thermal conductivity of the material, which is a function of the temperature, which is what is 

generally found in all real cases, since few materials are one hundred percent pure. For this type of case in 

particular, a method is used which consists of modifying the thermal conductivity function using the Gustav Robert 

Kirchhoff transform, which has the purpose of reducing the nonlinear equation to a linear one. 
Background: In 1859, Gustav Robert Kirchhoff (1824-1887) obtained, from the second law of Thermodynamics, 

that objects cannot be differentiated by their thermal radiation at a given temperature. In 1860 Kirchhoff 

established the definition of the black body as capable of absorbing all the incident radiation, he even modeled it 

as a chamber with a small hole for the radiation to enter. 

Materials and Methods: The Gustav Robert Kirchhoff transformation is used to linearize the nonlinear equation, 

this nonlinearity occurs when the thermal conductivity depends on the temperature, an analytical solution of the 

linear equation is obtained, to make a graphic comparison with the nonlinear one. This will be applied to a bar 

of length 0 ≤ 𝑥 ≤ 𝐿 = 10 𝑐𝑚, which is initially at a uniform temperature 𝑇(0, 𝑡) = 0 oC  and for x=L; 𝑇(𝐿, 0) =
100 oC, where it is assumed that the thermal conductivity depends on the temperature linearly: 𝐾(𝑇) = 𝐾0(1 +
𝛽𝑇). 

Results: It is observed that the difference between the linear equation with the non-line where there are changes 

between them in temperature, another approximation could be made when the degree of non-linearity is increased. 

Conclusion: It is perceived that there is a significant increase in temperature in the nodes. Considering the 

temperature values, an indication is noted that the system is going to stabilize. For the case in which the 

conductivity is highly nonlinear, but K(T) admits a Taylor series expansion, the Kirchhoff transform is more 

complicated and the substitution in the nonlinear equation leads again to a nonlinear equation. 

Key Word: Heat Equation, Kirchhoff, Poisson Equation, Nonlinear Heat Equation, Temperature, Thermal 

Conductivity 
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I. Introduction 
There are an infinity of nonlinear partial and ordinary differential equations in which it is difficult to find 

a transformation or perform a Taylor expansion around a point in question to take it to a linear form and thus be 

able to solve it. 

 

II. Methodology 
The Gustav Robert Kirchhoff transformation is used to linearize the nonlinear equation, this nonlinearity 

is presented when the thermal conductivity depends on the temperature, you get analytic solution of the linear 

equation, to perform a graphical comparison with the nonlinear. 
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We want to find numerically the integral in an interval given by Equation (1) 

 

The equation that models the phenomenon of heat transfer with variable thermal conductivity is found in [1-5] 

and is given by: 

 

                                                                   𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝛻(𝐾(𝑇)𝛻𝑇) + 𝑔                                                                  (1) 

 

where 𝜌, 𝐶𝑝,  K  density, specific heat and thermal conductivity, which are functions of temperature, and the term 

source of heat generation is independent of temperature g = g(𝑟, 𝑡). 

 

In order to solve this problem, we proceed as follows. The transformation K(T) is defined using the property given 

in [5]: 

 

                                                                𝑈 = 𝑈(𝑇) = ∫
𝐾(𝑇′)

𝐾0

𝑇

0
𝑑𝑇′                                                                      (2) 

T = T(𝑟, 𝑡), where 

Ko is the value of thermal conductivity for t=0. 

 

Equation (2) is called the Gustav Robert Kirchhoff transformation. Where K(T) is a function of temperature then 

Equation (1), can be written as: 

 

                                                      𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝐾(𝑇)𝛻2𝑇 + 𝛻𝐾(𝑇)𝛻𝑇 + 𝑔                                                                 (3) 

 

where it is obtained from 

                                                                         𝛻𝐾(𝑇) =
𝑑𝐾(𝑇)

𝑑𝑇
𝛻𝑇                                                                        (4) 

 

Substituting Equation (4) in Equation (1), is obtained: 

 

                                                                 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= 𝐾(𝑇)𝛻2𝑇 +

𝑑𝐾(𝑇)

𝑑𝑇
(𝛻𝑇)2 + 𝑔                                               (5) 

 

In order to simplify Equation (5) using Equation (2) and Equation (4), for the function U(T) from K(T) we proceed 

as follows, from the Leibnitz rule we have 

 

                         
𝑑

𝑑𝑡
(∫ 𝐹(𝜉, 𝑡)𝑑𝜉

𝑔(𝑡)

𝑓(𝑡)
) = ∫

𝜕𝐹(𝜉,𝑡)

𝜕𝑡

𝑔(𝑡)

𝑓(𝑡)
𝑑𝜉 + 𝑔′(𝑡)𝐹(𝑔(𝑡), 𝑡)) − 𝑓′(𝑡)𝐹(𝑓(𝑡), 𝑡)                             (6) 

 

applying it Equation (6) to Equation (2) we have 

 

                                
𝑑

𝑑𝑡
𝑈(𝑇) =

𝑑

𝑑𝑡
(∫

𝐾(𝑇′)

𝐾𝑜
𝑑𝑇′𝑇

0
) =

1

𝐾𝑜
∫

𝜕𝐾(𝑇′)

𝜕𝑡

𝑇

0
𝑑𝑇′ +

𝐾(𝑇)

𝐾𝑜

𝑑𝑇

𝑑𝑡
− (0)

𝐾(0)

𝐾0
                                     (7) 

 

where  
𝑑𝐾(𝑇)

𝑑𝑡
= 0 then 

                                                                                
𝜕𝑈(𝑇)

𝜕𝑡
=

𝐾(𝑇)

𝐾𝑜

𝑑𝑇

𝑑𝑡
                                                                        (8) 

 

and from the fundamental theorem of integral calculus we obtain: 

 

                                                                              
𝑑

𝑑𝑡
(∫

𝐾(𝑇′)

𝐾𝑜
𝑑𝑇′𝑇

0
) =

𝐾(𝑇)

𝐾𝑜
                                                           (9) 

resulting 

                                                                            𝛻𝑈(𝑇) =
𝑑𝑈(𝑇)

𝑑𝑇
𝛻𝑇 =

𝐾(𝑇)

𝐾𝑜
𝛻𝑇                                                   (10) 

 

                                                          𝛻2𝑈(𝑇) = 𝛻 [
𝐾(𝑇)

𝐾𝑜
𝛻𝑇] =

1

𝐾𝑜
[𝛻𝐾(𝑇)𝛻𝑇 + 𝐾(𝑇)𝛻2𝑇]                               (11) 

 

after Equation (4) we have 

                                                                  𝛻2𝑈(𝑇) =
1

𝐾𝑜
[
𝑑𝐾(𝑇)

𝑑𝑡
𝛻𝑇 𝛻𝑇 + 𝐾(𝑇)𝛻2𝑇]                                          (12) 
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                                                                  𝛻2𝑈(𝑇) =
1

𝐾𝑜
[
𝑑𝐾(𝑇)

𝑑𝑡
(𝛻𝑇)2  + 𝐾(𝑇)𝛻2𝑇]                                          (13) 

 

and substituting Equation (8) and Equation (7) in Equation (5), we obtain 

 

                                                                   𝜌𝐶𝑝
𝐾𝑜

𝐾(𝑇)

𝜕𝑈(𝑇)

𝜕𝑡
= 𝐾𝑜𝛻

2𝑈(𝑇) + 𝑔                                                       (14) 

 

                                                                     
𝜌𝐶𝑝

𝐾(𝑇)

𝜕𝑈(𝑇)

𝜕𝑡
= 𝛻2𝑈(𝑇) +

𝑔

𝐾𝑜
                                                               (15) 

 

                                                                        
1

𝛼

𝜕𝑈(𝑇)

𝜕𝑡
= 𝛻2𝑈(𝑇) +

𝑔

𝐾𝑜
                                                                (16) 

 

𝛼 =
𝐾(𝑇)

𝜌𝐶𝑝
  finally remaining 

 

                                                                      
1

𝛼

𝜕𝑈(𝑇)

𝜕𝑡
= 𝛼𝛻2𝑈(𝑇) +

𝛼

𝐾𝑜
𝑔                                                             (17) 

 

where the thermal diffusivity α is a function of temperature [5]. Equation (11) is a simpler equation in its 

structure, since it is assumed that the variation of thermal diffusivity, with respect to temperature, is negligible, 

therefore it is an almost linear equation that can be solved without major problems. 

 

For example, taking the values of  𝛼 = 𝑐𝑡𝑒; 𝛼 = 10 cm2/seg, with g = 0  we have the problem in normal form, 

and using the given Gustav Robert Kirchhoff transform we have: 

 

                                                                    
1

𝛼

𝜕𝑇(𝑥,𝑡)

𝜕𝑡
=

𝜕2𝑇(𝑥,𝑡)

𝜕𝑥2     0 ≤ 𝑥 ≤ 10                                                     (18) 

 

under frontier conditions 

 

                                                                          𝑇(0, 𝑡) = 𝑇𝑜 = 0𝑜𝐶  t>0                                                            (19) 

 

                                                                        𝑇(10, 𝑡) = 𝑇1 = 100𝑜𝐶   t>0                                                      (20) 

 

and initial condition 

 

                                                                             𝑇(𝑥, 0) = 0𝑜𝐶 for t = 0                                                         (21) 

 

On the other hand, solving Equation (12) by the method of separation of separable variables we have [6-10]: 

 

                                                      𝑇(𝑥, 𝑡) = 100 [

𝑥

10
+

2∑
(−1)𝑛

𝑛𝜋
𝑠𝑒𝑛 (

𝑛𝜋𝑥

10
) 𝑒−

𝑛2𝜋2𝑡

10∞
𝑛=1

]                                           (22) 

 

For the second case when g=0 and α the thermal diffusivity varies linearly with respect to the temperature 

Equation (11), we have: 

 

                                                                               
1

𝛼

𝜕𝑈

𝜕𝑡
=

𝜕2𝑈

𝜕𝑥2     0 ≤ 𝑥 ≤ 10                                                     (23) 

 

under frontier conditions 

 

                                                                                    𝑈(0, 𝑡) = 𝑈𝑜 = 00𝐶                                                         (24) 

 

                                                          𝑈(𝐿, 𝑡) = 𝑈1 = 100 +
𝛽

2
(100)2 = 100(1 + 50𝛽)                                  (25) 

and initial condition 

 

                                                                                      𝑈(𝑥, 0) = 0𝑜𝐶                                                               (26) 
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whose solution is: 

                                                      𝑈(𝑥, 𝑡) = 100 [

𝑥

10
(1 + 50𝛽) + 2(1 + 50𝛽)

∑
(−1)𝑛

𝑛𝜋
𝑠𝑒𝑛 (

𝑛𝜋𝑥

10
) 𝑒−

𝑛2𝜋2𝑡

10∞
𝑛=1

]                                              (27) 

 

then the transformation from 𝑈(𝑥, 𝑡) to 𝑇(𝑥, 𝑡) will be given as follows [5]: 

 

                                                                𝑇(𝑥, 𝑡) =
1

𝛽
[√1 + 2𝛽𝑈(𝑥, 𝑡) − 1]                                         

 

                                                    𝑇(𝑥, 𝑡) =
1

𝛽

[
 
 
 
 

√

1 + 200𝛽

[
𝑥

10
(1 + 50𝛽) + 2(1 + 50𝛽)]

∑
(−1)𝑛

𝑛𝜋
𝑠𝑒𝑛 (

𝑛𝜋𝑥

10
) 𝑒

−𝑛2𝜋2𝑡

10∞
𝑛=1

− 1

]
 
 
 
 

                                          (28) 

 

For a particular case, the values of =10, =0.1 are taken, these are substituted in Equation (21), we have the 

expression of the temperature as 

 

                                                     𝑇(𝑥, 𝑡) = 100 [
𝑥

10
+ 2∑

(−1)𝑛

𝑛𝜋
𝑠𝑒𝑛 (

𝑛𝜋𝑥

10
) 𝑒−

𝑛2𝜋2𝑡

10∞
𝑛=1 ]                                                (29) 

 

III. Evaluations 
The following tables are shown evaluating Equation (21), for times t=2,2.4,6. 

 

Table no 1: Temperature distribution for t=2 seconds.  
Distance in cm Temperature in degrees 

0 0 

1 7.2742 

2 14.8133 

3 22.569 

4 31.5995 

5 41.1567 

6 51.5826 

7 62.8344 

8 74.7908 

9 87.2604 

10 100 

 

 
                                        Fig. 1. Shows the solution of the linear equation for t=2 seconds 
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Table no 2: Temperature distribution for t=2.4.  
Distance in cm Temperature in degrees 

0 0 

1 8.1601 

2 16.4998 

3 25.1815 

4 34.3343 

5 44.0412 

6 54.3314 

7 65.1769 

8 76.4952 

9 88.1572 

10 100 

 

 
                                        Fig. 2. Shows the solution of the linear equation for t=2.4 seconds 

 

Table no 3: Temperature distribution for t=6 seconds.  
Distance in cm Temperature in degrees 

0 0 

1 7.2742 

2 14.8133 

3 228569 

4 31.5995 

5 41.1567 

6 51.5826 

7 62.8344 

8 74.7908 

9 87.2604 

10 100 

 

 
                                        Fig. 3. Shows the solution of the linear equation for t=6 seconds 

 

For the case when the thermal conductivity is variable, we have the series (13) up to the first three terms: 
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                                               𝑇(𝑥, 𝑡) =
1

𝛽

[
 
 
 
 

√

1 + 200𝛽

[
𝑥

10
(1 + 50𝛽) + 2(1 + 50𝛽)]

∑
(−1)𝑛

𝑛𝜋
𝑠𝑒𝑛 (

𝑛𝜋𝑥

10
) 𝑒

−𝑛2𝜋2𝑡

10∞
𝑛=1

− 1

]
 
 
 
 

                                                  (28) 

 

The tables are shown below using Equation (15), for times t=2, 2.4,6. 

 

Table no 4: Temperature distribution for t=2 seconds.  
Distance in cm Temperature in degrees 

0 0 

1 21.1915 

2 33.3313 

3 43.3182 

4 52.3826 

5 60.9846 

6 69.309 

7 77.4078 

8 85.2633 

9 92.8166 

10 100 

 

 
                                       Fig. 4. Shows the solution of the linear equation for t=2 seconds 

 

Table no 5: Temperature distribution for t=2.4.  
Distance in cm Temperature in degrees 

0 0 

1 22.8513 

2 35.6068 

3 45.8729 

4 54.9624 

5 63.3822 

6 71.362 

7 79.0013 

8 86.3298 

9 93.3386 

10 100 
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Fig. 5. Shows the solution of the linear equation for t=2.4 seconds 

 

Table no 6: Temperature distribution for t=6.  
Distance in cm Temperature in degrees 

0 0 

1 25.9677 

2 39.8795 

3 59.6913 

4 59.8608 

5 67.9713 

6 75.326 

7 82.1056 

8 88.4275 

9 94.3728 

10 100 

 

 
Fig. 6. Shows the solution of the linear equation for t=6 seconds 

 

Comparison between linear and nonlinear equation 

A comparison of the linear and non-linear equation will be made. 

 

Table no 7: Shows the results of Equations 14-15 for t=2 seconds.  
Distance in cm Equation 27 Equation 28 

0 0 0 

1 7.2742 21.1915 

2 14.8133 33.3313 

3 22.569 43.3182 

4 31.5995 52.3826 

5 41.1567 60.9846 

6 51.5826 69.309 

7 62.8344 77.4078 

8 74.7908 85.2633 

9 87.2604 92.8166 
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10 100 100 

 

The graphs of the linear and non-linear equation are shown to observe their behavior. 

 

 
Fig. 7. Temperature distribution from Equation 14-15 for t=2 seconds 

 

Table no 8: Shows the results of Equations 14-15 for t=2.4 seconds.  
Distance in cm Equation 27 Equation 28 

0 0 0 

1 8.1601 22.8513 

2 16.4998 35.6068 

3 25.1815 45.8729 

4 34.3343 54.9624 

5 44.0412 63.3822 

6 54.3314 71.362 

7 65.1769 79.0013 

8 76.4952 86.3298 

9 88.1572 93.3386 

10 100 100 
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Fig. 7. Temperature distribution from Equation 14-15 for t=2.4 seconds 

 

Table no 9: Shows the results of Equations 14-15 for t=6 seconds.  
Distance in cm Equation 27 Equation 28 

0 0 0 

1 9.9473 25.9677 

2 19.8997 39.8795 

3 29.8619 59.6913 

4 39.8377 59.8608 
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7 69.862 82.1056 

8 79.8997 88.4275 

9 89.9473 94.3728 

10 100 100 
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Fig. 9. Temperature distribution from Equations 14-15 for t=6 seconds 

 

IV. Results and Discussion 
In Fig. 7, 8 and 9 it is clearly shown how the difference that exists in the linear equation with the non-

line where there are changes in temperature between them, another approximation could be made when the degree 

of non-linearity is increased. 

 

V. Conclusion 
From the graphs it can be seen that there is a significant increase in temperature in the nodes. Observing 

the temperature values shows an indication that the system is going to stabilize. For the case in which the 

conductivity is highly nonlinear, but K(T) admits a Taylor series expansion, the Kirchhoff transform is more 

complicated and the substitution in the nonlinear equation leads again to a nonlinear equation. 

 

𝐾(𝑇) = 𝐾0 ∑ 𝛽𝑛(𝑇 − 𝑇0)

𝑛

𝑛=0

𝑛

 

It remains as a case study when K(T) is of higher order than the first. 
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