
IOSR Journal of Computer Engineering (IOSR-JCE) 

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 3, Ser. 2 (May. – June. 2025), PP 46-55 

www.iosrjournals.org 

 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               46 | Page 

Analysis Of INGRES Algorithm For Efficient Distributed 

Query Processing And Optimization For Performance 

Improvement 
 

Mohammad Kamal Hossain Foraji, Md. Humayun Kabir, Md. Golam Moazzam 
1,2,3Department Of Computer Science And Engineering, Jahangirnagar University, Bangladesh 

 

Abstract:  
This paper investigates distributed query optimization techniques and presents the features of centralized and 

distributed INGRES algorithms for efficient query processing and performance improvement of the algorithms. 

The original input query is analyzed and decomposed into a series of sub-queries. It uses detachment and 

substitution techniques to optimize the subqueries. In each step a monorelation query and a multirelation query 

are generated. The monorelation query can be evaluated using one variable query processor (OVQP). When the 

multirelation query cannot be further decomposed, the substitution method uses tuple substitution, and the 

INGRES algorithm terminates after evaluation of the resultant query. The goal of the distributed INGRES 

algorithm is to reduce communication time and response time. In a distributed INGRES system, the master site-

the site where the user submits or initiates the query-is responsible for coordinating the execution of the 

distributed query. All monorelation queries that are detachable are initially handled locally. The original query 

is then processed using the reduction technique. In this research work, an input multirelation query is simplified 

using the detachment and substitution technique which can be automated to incorporate in the query compiler 

for optimization in future.  

Keywords: One Variable Query Processor, Query Execution Plan, Dynamic Query Optimization, Distributed 

Database, Search Strategy, Multirelation Query, Detachment, Substitution, Transmission Cost, Irreducible 

Query, Optimizer, Indexing, Replication, Rewriting. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 11-05-2025                                                                           Date of Acceptance: 21-05-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Query optimization is a process of creating a query execution plan (QEP) that represents the query 

execution strategy. A query optimizer, or software module that optimizes query, consists of three parts: a search 

space, a search strategy, and a cost model [1, 2]. In query optimization, the search space refers to all the possible 

execution plans that a query optimizer might consider when trying to find the most efficient way to execute a 

query. 

In this research, the performance of the centralized and the distributed INGRES algorithm is studied in 

distributed database environment. Distributed INGRES takes into consideration both communication costs and 

local processing costs, allowing relations to be fragmented among  multiple sites [2]. Consider an input query Q 

of the following form, where p2 is a multirelation predicate. 

select r2.a2, … rm.am  

from r1, r2, … rm ………………………… (1) 

where p1(r1.a'1) and p2(r1.a1, … rm.am) 

The input query is processed using the reduction technique which uses detachment to seperate all 

irreducible and monorelation subqueries [3]. The reduction procedure generates a list of irreducible subqueries at 

most one relation in common. The INGRES algorithm divides a query into subqueries [2]. Distributed INGRES 

is the extension of centralized INGRES algorithm. It minimizes the size of intermediate results to create a 

monorelation and a multirelation query [3]. 

The query optimizer dynamically constructs query execution plan [4]. It also communicates the database 

management system (DBMS) execution engine to perform query operations. The dynamic query optimization in 

INGRES is designed to process queries efficiently, even in distributed environments where factors like network 

traffic, distributed data locations, and varying system resources affect performance. The system continuously 

evaluates the current environment and adjusts the query plan to ensure optimal execution [3].  

The database consists of some tables, fragments and few replicas. An example distributed query is 

simplified by detachment and substitution technique. The replication of the table in distributed environment will 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               47 | Page 

ensure data availability to promote efficient management of university administration activities smartly and 

reliably which will contribute to society for better quality assurance of educational institution [5]. 

 

II. Background Study 
There are so many techniques involved in query optimization in distributed databases. Some techniques 

are discussed below. 

 

i. Data Replication 

Data replication is normally desired since it allows to copy data across a network of various machines 

for the performance, dependability, and availability of data segment. Such replication improves performance by 

allowing for easier accommodation of various user requirements [6]. For example, data that can be stored on local 

systems as well as remote systems via a communication network so that remote users can access and update when 

necessary. This enhances the locality of references and even if one of the workstations fails, data is backed up on 

the other system on communication network. The example query is as shown below [7]. 

create snapshot replica as 

select sname, cname  

from student@dblink, courses@dblink; 

 

This SQL query creates a replica of the Campus1 database on Campus2 for extraction of the required 

data efficiently. For emergency purposes, this data will be available on remote sites and increase the query 

processing efficiency. It will also reduce the query processing time of the distributed system. Replication data is 

as shown in Figure 2 below. 

select * from replica                                        (Q71) 

 

ii. Indexing 

By indexing the query of distributed database, it also can minimize the query processing time. Figure 3 

shows the CPU processing time. The following query Q81 is implemented for counting the number of attributes 

of the replica table. The queries Q91 and Q101 find the CPU cost for processing the query and compares the 

performance of CPU cost. 

select count (*)  from replica ……………… Q81 

explain plan for select *  from replica ………………... Q91 

select *  from table(dbms_xplan.display) ……….….. Q101 

 

 
Figure 1: Creation of 

Replication 

 
 

 
Figure 2: Output of 

Replication of Q71. 

 
Figure 3: 

Record 

Count 

 
Figure 4: Output of Indexing 

 

iii. Rewriting Technique in Optimization 

Query rewriting is a process that transforms a query into an optimized version that produces the same 

results. The goal of query rewriting is to improve the query's performance by making it easier to optimize. It can 

be especially useful for complex queries with many joins or subqueries.  It rewrites the query in relational algebra. 

This is divided into two steps: 1) easy transfer of the query from relational calculus to relational algebra and 2) 

restructuring the relational algebra query for better performance [3].  

  



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               48 | Page 

III. Related Work 
Distributed INGRES is the first dynamic approach of distributed query optimization. It makes a better 

solution to accurately capture the data distributions effectively based on the heuristic technique [8]. 

When joining operations do not use a foreign key, it is extremely difficult to assess their selectivity. Join 

selectivity factors can be used to solve the problem [9]. The prior commercial DBMSs introduced the transmission 

costs only for query processing. If faster communication networks are available on the distributed databases 

(DDBS), local query processing costs are more important factors for performance improvement. Semi-joins are 

generally used as they increase the local processing time of the query operation, and it is better than joining 

approaches for query optimization [10]. 

When a relation contains most of the tuples in a distributed database system, using a semi-join is often 

the most appropriate technique for reducing the amount of data that must be transferred across the communication 

network. The semi-join works by first transferring only the necessary data to filter out irrelevant tuples, thereby 

minimizing the size of the data involved in the actual join operation. So, the solution is to use the semi-joins [11], 

and it would be a very efficient technique to transfer multimedia data in a communication network [9]. In the 

INGRES algorithm, it gets some advantages of the communication networks. In [12], different optimal solutions 

have been provided, and analysis have been done based on the distributed INGRES algorithm. This method also 

improves communication time using the proposed optimization technique. Among the optimization techniques, 

enhanced semi-connection query optimization keeps more optimization efficiency than general semi-connected 

algorithms [13]. It drastically reduces the intermediate local cost as well as the total cost of communication 

networks. 

An easy operational prototype is proposed for effective query improvement. It combines portability and 

workability to execute an operative query optimizer for the new creation of distributed databases [14]. Using the 

heuristic algorithm, the cost of query optimization can be reduced for distributed queries. Their queries are 

distributed into tree queries and cyclic queries. The best approach for turning cyclic queries into tree queries is 

horizontal and vertical decomposition of relations [13]. Communication cost is one of the main parameters to 

reduce query relevant data and processing cost in distributed query optimization [15]. The query optimization 

approach decreases the communication cost and hence reduces the distributed query response time. Finally, the 

distributed database confirms the faster local query processing time for its smooth operation. 

 

IV. Query Optimization Using Ingres Algorithm  
There are two techniques of query optimization based on the database management environment which 

are centralized and distributed query optimizations. Centralized query optimization minimizes the query response 

time and maximizes the system throughput. The query execution plan minimizes an objective cost function [1-3]. 

Distributed query optimization is an extension of centralized query optimization. Query optimization emphasizes 

the following features: Search Space, Search Strategy and Cost Model 

As an example, we clarify the features using an example query in distributed environment. 

select student. sname 

from student, assignedcourses, courses 

where student.rno=assignedcourses.rno (Q1) 

and assignedcourses.cno=courses.cno 

and courses.cname=’Machine Learning’ 

 

Search Space 

The search space represents the set of possible execution plans for the original query. For any given SQL 

query, the search space is the set of all equivalent operator trees that can be derived from the original query using 

a series of transformation rules [3]. There are three join trees such as linear trees, bushy trees and Cartesian 

products are involved in this regard. Join trees which start with Cartesian products may be substantially more 

expensive than alternative join trees. Two types of change using transformation rules in a tree are possible: i) 

operand position change and ii) operator change. The combination of associativity and permutation of join orders 

dramatically increases the number of possible operator trees, and this is what makes query optimization such a 

complex problem-especially as the number of joins grows. Restructuring operator trees using transformation rules 

may result in equivalent operator trees as given in Figure 5 below. Permutation of join order also affects the 

performance of the relational queries.  

 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               49 | Page 

 
Figure 5: Different Types of Linear Trees 

 

In this scenario, the operands are changed according to the cyclic order. It is proved that for the operands 

number 1, 2, 3, 4 and 5, the number of trees is 1, 2, 6, 12 and 20 respectively. In a distributed database, when a 

query is executed, it may need to search multiple nodes or data partitions. It refers to all the possible locations of 

data that the query could access. Optimizing query execution often involves minimizing the search space by 

determining which nodes or partitions to access based on the query, data location, and indexing mechanisms. 

 

Search Strategy 

Search Strategy in the context of distributed databases refers to the methods or approaches used to locate 

and retrieve data efficiently across multiple distributed nodes. Since data is spread across different machines or 

locations in a distributed system, the strategy must account for factors like data partitioning, query routing, 

replication, fault tolerance, and load balancing. A deterministic search approach widely used by query optimizers 

- especially in traditional relational database systems - is indeed dynamic programming. This method is especially 

effective for join order optimization, where the goal is to find the most cost-efficient plan among many 

possibilities [3]. Deterministic strategies follow a systematic and layered approach to plan generation starting 

with base relations and adding one additional table in every stage till the plans are completed, shown in Figure 6. 

It is a powerful technique for solving optimization problems where the outcome is fully predictable based on 

previous actions. By breaking a complex problem into simpler sub problems, it can efficiently find the optimal 

solution. However, it requires careful consideration of the state space and memory requirements, especially for 

large or complex problems. We can see that only one tree is found in the following step as given in Figure 6.  

 

Cost Model 

The cost model of an optimizer relies on cost functions for predicting operator costs, statistics and base 

data, and algorithms for determining the sizes of intermediate outcomes. The cost function represents the 

execution time of a query. The cost of a distributed execution approach can be represented in terms of either total 

time or response time. The total time is the sum of all time units, where the response time is the absorbed time 

from the initiation to the completion of the query. A general formula for determining the total time can be specified 

as follows [18]: 

Ttotal = TCPU * #insts + TIO * #IOs + TMSG * #msgs + TTR * #bytes 

Here, TCPU and TIO measure the local processing time and TMSG and TTR measure the 

communication time to transfer a data unit from one location to another. Let’s see the Figure 7.  

 

 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               50 | Page 

 
Figure 6: Equivalent Join Trees 

 

 
Figure 7: Cost Model 

 

Assume TMSG and TTR are measured as time costs. Total time required to move p data units to site 3 

from site 1 and q data units from site 2 that would be Ttotal = 2xTMSG + TTR (p+q). So, response time for 

identical query is estimated by Tresponse=max {TMSG+TTR*p, TMSG+TTR*q} as parallel data transfers are a 

key optimization in distributed databases. 

If the TMSG and TTR are 2 seconds and 3 seconds respectively and the value of x and y are 1 and 2, the 

total time is Ttotal = 2x2 + 3(1+2) = 13 seconds and the response time T response = max{2+3x1, 2+3x2} = 

max{5, 8} = 8 seconds. The system may then choose to perform a distributed join, where part of the join is 

performed locally at each node, or may choose a different execution plan based on the cost model. Finally, a cost 

model in distributed databases is a critical part of the system's optimization strategy. It helps balance factors such 

as latency, bandwidth, disk access, replication overhead, and computational resources to achieve high 

performance and efficient resource usage. 

There are two algorithm techniques used here to solve the query optimization in distributed databases. 

They are Centralized and Distributed INGRES Algorithms. Now, we can see the Centralized INGRES Algorithm 

first. 

 

A) Centralized INGRES Algorithm 

INGRES applies the query optimization techniques dynamically for recurrently splitting the query into 

shorter segments [2]. Consider that an m-relation query Q is divided into m subqueries Q1→Q2→…→Qm. Every 

query relation ri is a monorelation, and hence ri+1 contains the output of ri relation. Two basic approaches, 

detachment and substitution, are used for decomposing the main query ri. A query is initially divided into a set of 

subqueries that have a common relation. The monorelation queries are then processed by a one-variable query 

processor [1, 2, 3]. 

The detachment splits a query Q into Q'→ Q''. The above SQL query Q even in (1) is split by the 

detachment technique into two subqueries. In the first subquery Q', attribute a1 of the relation r1 builds a new 

intermediate relation ir'1 based on the predicate p1. The other subquery Q'' may contain this temporary relation 

in special faster memory to increase its efficiency [2, 3]. 

  

i. Database and Network Configuration 

The distributed database configured among four campuses of ABC University located in four different 

cities, and the databases are distributed among Campus1, Campus2, Campus3 and Campus4 in a communication 

network as shown in Figure 8. 

 

 
Figure 8: DDBS Environment of ABC University. 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               51 | Page 

Campus 1, 2, 3 and 4 all are server PCs, containing distributed databases. In Figure 8, all campuses are 

located in different places or cities in a country. According to the above configuration, the distributed databases 

contain the tables or relations student, teacher, dept, hall, courses, assignedcourses, fees, semester, exam, result, 

payment and accounts in different campuses of the ABC University as depicted in Figure 8. Some data are stored 

in the tables of ABC University databases where every campus has its own students. From any campus, students 

information can be inserted, deleted, modified and updated from other remote sites. Here, Campus1 is the master 

site. To maintain the consistency of the database, triggers or procedures are written executing at the master site 

which automatically maintains the safe state of the database stored in all the sites. The attributes of the relations 

are given below. 

student (rno, sname, dept, nid, dob, brn, origin) 

teacher (tid, tname, origin) 

dept (did, dept, origin) 

hall (hid, hall, origin) 

courses (cno, cname, cfees, origin) 

assignedcourses (rno, cno, title, field, dur, origin) 

fees (cno, tfees, origin) 

semester (sid, sem, origin) 

exam (edate, cno, cname, origin) 

result (rno, dept, sid, gpa, cgpa, grade, origin) 

payment (rno, sid, year, cno, origin) 

accounts (rno, account_id, balance, origin) 

 

ii. Application of Detachment Technique 

Different distributed databases have their own data in different campuses. The detachment technique is 

explained with an example below.  

 

Example 1 

Find the students’ names who take “Machine Learning” courses.  

This query is defined in SQL language using the query Q1 as follows. 

select student.sname 

from student, assignedcourses, courses 

where student.rno=assignedcourses.rno (Q1) 

and assignedcourses.cno=courses.cno 

and courses.cname=’Machine Learning’ 

 

The output of query Q1 is given below in Figure 9. 

 
Figure 9: Output of query Q1. 

 

The QEPs differ in the sequence in which operations are executed and implemented and hence improve 

the performance of the query operations. A cost model is a framework used by a query optimizer to estimate the 

cost of different execution strategies for a query. The goal is to choose the strategy with the lowest estimated cost, 

ideally leading to the best performance. It must include a thorough understanding of the distributed domains. 

Search strategy uses cost models to navigate the search space and select the optimal plan [3]. 

 

Figures 10 (a) and (b) show the query graph and join graph for query Q1. 

. 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               52 | Page 

 
Figure 10 (a): Query Graph. 

 
Figure 10 (b): Join Graph 

 

The search trees generated for query Q1 are shown in Figure 11 (a), (b) and (c).  

 
 

 

 

  
Figure 11 (a): Linear Trees. 

Figure 11 (b): A tree 

generated with Cartesian 

operator. 

 
Figure 11 (c): Bushy 

Trees. 

 

From the Figures 11 (a), (b) and (c), linear trees can be thought of as a special case of a tree or a sequence 

of decisions. This structure can arise when there’s only one feasible action or choice at each decision point in a 

search problem. It is with one path; data conflicts and version inconsistencies are minimized. The bushy tree is a 

general and may include operators with two intermediary operands. In a distributed context, bushy trees help to 

show parallelism. A Cartesian tree in a search space is a specialized binary tree often used for efficient searching, 

sorting, and range queries. This is beneficial in tasks requiring frequent segment-based queries, such as finding 

minimums in a sliding window or interval-specific calculations making them efficient for interval problems, like 

finding minimum or maximum values in subarrays. In this case, it produces the cross products between courses 

and student data based on the assignedcourses where rno is equal to cno [3]. 

Query optimizers usually limit the extent of the search space they evaluate. Common heuristics are 

selection, projection and avoidance of Cartesian products. An essential restriction is the geometry of the join tree 

[4, 5, 16]. Join trees are often divided into two types: linear trees and bushy trees. By focusing on linear trees, the 

search space decreased to O(2N). Bushy trees, on the other hand, can be beneficial in demonstrating parallelism 

in a distributed context. 

The detachment technique decomposes a query Q1 into Q11 and Q' with the intermediate relation ir1. Q11 

is defined as follows. 

select courses.cno 

from courses                             (Q11) 

where courses.cname='Machine Learning'; 

Query Q1 is decomposed into Q11 and Q12 subqueries. It splits the single table into multiple tables 

ensuring consistency in the data. By the query Q11, only the course number “C3” processed from the given dataset. 

Figure 12 shows the output of query Q11 by using the following select query. 

select *  from ir1; 

 

The other subquery Q' is defined as follows.  

select student.sname                             (Q') 

from student, assignedcourses, ir1 

where student.rno = assignedcourses.rno 

and assignedcourses.cno = ir1.cno; 

 

 

 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               53 | Page 

The output is of Q' as follows. 

 
Figure 12: Output of query Q11. 

 
Figure 13: Output of query Q'. 

 

The detachment of Q' generates the subqueries Q12 and Q13.  

select assignedcourses.rno into ir2 

from assignedcourses, ir1                             (Q12) 

where assignedcourses.cno = ir1.cno 

Note that the intermediate relations ir1 and ir2 must be created before executing the subqueries Q11 and 

Q12. These intermediate relations are created using the following SQL expressions. 

create table ir1 as 

(select courses.cno 

from courses     

where courses.cname = ’Machine Learning’) 

 

create table ir2 as 

(select  assignedthesis.sno 

from  assignedthesis, ir1 

where  assignedthesis.cno=ir1.cno); 

select *  from ir2                                                          (Q12) 

 

The other subquery Q13 is defined as follows and its output as shown in Figure 15.  

select student.sname 

from student, ir2                                                 (Q13) 

where  student.sno=ir2.sno;        
 

Here, Q11 is a single-relation query and can be performed by OVQP where Q12 and Q13 are multirelation 

queries. These queries cannot further be reduced by detachment [3] technique as they are not monorelation 

queries. 

 

iii. Application of Substitution Technique 

Multirelation queries, which cannot be further detached, are irreducible. Tuple substitution converts 

irreducible queries to monorelation queries. Given an m-relations’ query Q, the substitution technique produces 

a set of (m-1) variable queries. In query processing using views, especially in query rewriting, the tuple 

substitution technique generates new queries by substituting tuples from a known result or intermediate relation 

[3].  

 Assume that ir2 relation has the tuples {S1, S2}. Now, rewrite Q13 with tuple substitution into Q131 and Q132.  

select student.sname  

from student   (Q131) 

where student.rno=’S1’; 

 

select student.sname  

from student   (Q132) 

where student.rno=’S2’; 

As Q12 is a multirelational query, it is also decomposed into Q13, and it finds the student’s name from 

the relation student and ir2. The query Q13 is decomposed into Q131 and Q132 until the mono-relation queries are 

produced. After the query execution of Q131 and Q132, different student’s names are selected using the select, from 

and where conditions. The output of the query Q131 and Q132 are shown in Figures 16 and 17. 

 

 
Figure 14: Output of query Q12. 

 

 
Figure 15: Output of query Q13. 

 
Figure 16: Output of query 

Q131. 

 
Figure 17: Output of query 

(Q132). 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               54 | Page 

Now, the above queries Q131 and Q132  both are monorelation queries, and hence they can be evaluated by OVQP. 

 

B) Distributed INGRES Algorithm 

The distributed INGRES divides every query Qi into more subqueries that use fragmentations. All 

fragments are to be mapped into separate database locations. 

To run the following PLSQL query, a ‘dblink’ is created among the four campuses Campus1, Campus2, 

Campus3 and Campus4. The following SQL statement is used for creation of database link on Campus1so that 

the user of Campus2, Campus3 and Campus4 can access and update the master site Campus1 data. 

create database link dblink connect to student1 identified by abcd using ‘campus2’;  

After creating this database link, logout from the Campus1 database site and login into 

student1@Campus2 for the following query processing. The following result is as shown on PLSQL result grid. 

select *   from fees@dblink                        (Q21) 

 

iii) Fragmentation 

Fragmentation is a typical practice that divides each database relation into smaller fragments that are 

treated as individual database objects or relations. This is often done for reasons of performance, availability, and 

dependability. 

For applying horizontal fragmentation, a partition is created as table ‘hf1’ on Campus2 database as given 

below. 

create table hf1 as 

select *   from fees@dblink  

where tfees>=500000; 

 

The output of this fragment (hf1) is shown by the following query Q22. 

select *  from hf1                                       (Q22) 

 

 
Figure 18: Output of the query Q21. 

 

 
Figure 19: Output of the query Q22. 

 

For horizontal fragmentation, another partition is created as table ‘hf2’ on Campus2 database as given below. 

create table hf2 as 

select *  from fees@dblink  

where tfees<500000; 

 

The value of this fragment (hf2) is shown by the following query Q31. 

select * from hf2 ………………... (Q31) 

 

Using union operator, Q21 and Q31 are merged and created a table ‘hf’ on Campus2 database as shown below. 

create table hf as 

select * from hf1  

union 

select *  from hf2; 

select * from hf ………..……………… (Q41) 

 

 

 
Figure 20: Output of the query Q31. 

 

 
Figure 21: Output of the query Q41. 

 



Analysis Of INGRES Algorithm For Efficient Distributed Query Processing And Optimization…….. 

DOI: 10.9790/0661-2703024655                              www.iosrjournals.org                                               55 | Page 

V. Result Analysis 
All the monorelation queries and subqueries which are detached from the multirelations are processed 

by the PLSQL query engine. The queries and subqueries are run on Oracle SQL engine and get the required result 

by decomposition of queries [17]. The detachment technique reduces the relation size and query Q1 result is found 

by query processing on SQL. Only three names are shown for the Q1 query. The simple query finds student names 

from student, assignedthesis and courses tables.  

Data replication increases the performance of local and distributed data processing costs. There are some 

techniques which are involved in query processing that improve query processing performance in distributed 

databases [18]. The techniques of data localization, inherent parallelism, query optimization, memory cost-

reduction, fragmentation, replication of data, indexing, networking, and network transparency etc. are involved to 

improve the performance of distributed INGRES algorithm [19]. 

 

VI. Conclusion And Future Work 
This paper investigates distributed query optimization using optimization algorithms, e.g., INGRES and 

R*. We simplified a distributed query using detachment and substitution technique of INGRES algorithm. It shows 

that the simplification reduces to an expected result, but it needs automation in a generalized approach. In the 

distributed INGRES algorithm, a query is splitted on relation into different subqueries. The subqueries are 

decomposed into different smaller subqueries. The queries are splitted until they reach into monorelation query. 

These new subqueries are operated on horizontal fragmentation consisting of a sub-set of the tuples (row) of a 

relation that is also shown in this research work. In this research work, only horizontal fragmentation is 

implemented. But future research will work on vertical fragmentation using distributed INGRES algorithm and 

effect of network topologies, media and protocols on cost model in distributed query optimization.  

 

References 
[1] C. T. Yu And C. C. Chang. Distributed Query Processing. Computing Surveys. Vol. 16, No. 4, December 1984. 

[2] E. Wong And K. Youssefi. Decomposition: A Strategy For Query Processing. Acm Trans. Database Syst., 1976. 1(3): 223–241. 

[3] M. Tamer Ozsu And Patrick Valduriez. Principles Of Distributed Database Systems, Springer, 4th Edition, 2019. 
[4] Luc Bouganim, Francoise Fabret And Patrick Valduriez. Dynamic Query Processing Architecture For Data Integration Systems. 

Bulletin Of The Ieee Computer Society Technical Committee On Data Engineering, April 2001. 

[5] Kishor Yadav Kommanaboina. Creating Smart City Infrastructure Using Integrated Data Pipelines. Iosr-Jce, Vol. 26, Issue 4, Series 
3, 2024. 

[6] Dr. Sunita M. Mahajan And Ms. Vaishali P. Jadhav. General Framework For Optimization Of Distributed Queries. International 

Journal Of Database    Systems (Ijdms) Vol. 4, No. 3, June 2012. 
[7] Vamsi Krishna Myalapalli And Bhupati Lohith Ravi Teja. High Performance Pl/Sql Programming. International Conference On 

Pervasive Computing (Icpc), Ieee. 8-10 Jan. 2015. 

[8] Epstein, R., Stonebraker, M. And Wong, E. Query Processing In A Distributed Relational Database System. Proc. Acm Sigmod Int. 
Conf. Management Of Data, 1978. Pages 169–180. 

[9] Mackert, L. F. And Lohman, G. R* Optimized Validation And Performance Evaluation For Local Queries. In Proc. Acm Sigmod Int. 

Conf. On Management Of Data, 1986. Pages 84–95. 
[10] Valduriez, P. And Gardarin, G. Join And Semi-Join Algorithms For A Multiprocessor Database Machine. Acm Trans. Database Syst., 

1984. 9(1):133–161. 

[11] Valduriez, P. Semi-Join Algorithms For Distributed Database Machines. In Schneider, J.-J., Editor, Distributed Data Bases. North-
Holland, 1982. Pages 23–37. 

[12] Epstein, R. And Stonebraker, M. Analysis Of Distributed Database Processing Strategies. In Proc. 5th Int. Conf. On Very Data Bases, 
1980. Pages 92–101. 

[13] Fan Yuanyuan And Mi Xifeng. Distributed Database System Query Optimization Algorithm Research, Ieee, 2010. 978-1-4244-5540-

9/10. 
[14] Tejy Johnson And Dr. S. K. Srivatsa. Study On Optimization Techniques And Query Execution Operators That Enhances Query 

Performance. International Journal Of Advanced Research In Computer Science, Vol. 3, No. 3, May-June 2012. 

[15] Abhijeet Raipurkar And Dr. G. R. Bamnote. Query Optimization In Distributed Database System. International Journal Of Computer 

Science And Applications, Vol. 6, No. 2, April 2013. 

[16] Shyam Padia, Sushant Khulge, Akhilesh Gupta, Parth Khadilikar. Query Optimization Strategies In Distributed Databases. 

International Journal Of Computer Science And Information Technologies (Ijcsit), Vol. 6 (5), 2015, 4228-4234. 
[17] Abhayanand And Dr. M. M. Rahman. An Overview Of Query Optimization In Distributed Relational Databases.  International 

Journal Of Creative Research Thoughts (Ijcrt), Vol. 12, Issue 2, Feb 2024. 

[18] Lohman, G., Mohan, C., Haas, L., Daniels, D., Lindsay, B., Selinger, P., And Wilms, P. (1985). Query Processing In R*. In Kim Et 
Al. [1985], Pages 31–47. 250, 277. 

[19] Mohammad Kamal Hossain Foraji And Md. Humayun Kabir. Study On Performance Improvement Of Distributed Query 

Optimization   Algorithms. Iosr Journal Of Computer Engineering, Vol. 24, Issue No. 4, 2024. 

 

https://ieeexplore.ieee.org/author/37087395713
https://ieeexplore.ieee.org/author/37088156410

