
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 3, Ser. 3 (May. – June. 2025), PP 55-68

www.iosrjournals.org

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 55

Code Quality Generated by AI Tools: A Review

 Ishika Sharma1, Dhavleesh Rattan2

1Department of Computer Science and Engineering, Punjabi University, India
2Department of Computer Science and Engineering, Punjabi University, India

Abstract
The research explores the transformative impact of artificial intelligence (AI) on software development,

highlighting the specific advancements in code era, evaluation, and maintenance. It discusses the abilities of

numerous AI-powered tools, which includes ChatGPT, GitHub Copilot, and Google Bard, which assist developers

with the aid of automating repetitive tasks, generating test cases, and identifying bugs and security vulnerabilities.

While these tools enhance productivity and code quality, the paper additionally addresses risks, including the

technology of erroneous or inefficient code and security vulnerabilities that can arise from reliance on AI-

generated outputs. A systematic review methodology is employed to investigate the present literature on AI-

generated code quality, emphasizing the necessity of human oversight for making the best outcomes. The research

concludes by way of evaluating the effectiveness of these AI methodologies in enhancing software improvement

approaches, outlining fine practices for integrating AI tools into coding practices, and emphasizing the stability

between automation and the want for human know-how.

Keywords: AI Generated Code , Code Quality, Leetcode, Reliability,Metrics and Errors.

--- ----------

Date of Submission: 06-06-2025 Date of Acceptance: 16-06-2025

--- ----------

I.Introduction
The world of AI is a dynamic and ever-evolving panorama, in which researchers like me are continuously

pushing the limits of what's viable. It's a discipline packed with enormous promise and complicated challenges.

Artificial intelligence (AI) has turned out to be more and more popular in software improvement to automate

obligations and improve performance[2]. AI has the capability to help while developing or retaining software, in

the experience that it could produce solutions out of a textual requirement specification, and recognize code to

offer tips on how a new requirement will be applied.The intersection of AI and coding has ushered in a new era

of software program improvement[13]. AI-powered tools are revolutionizing the way we write, test, and preserve

code, mainly to good sized upgrades in code quality and developer productivity.One of the most promising

packages of AI in coding is the automated code era. By studying tremendous datasets of code, AI fashions can

learn how to generate code snippets, complete capabilities, or maybe entire packages based totally on herbal

language descriptions or precise necessities[9]. While this generation continues to be in its early ranges, it has the

potential to seriously boost up improvement cycles and decrease human blunders.AI-powered code evaluation

tools can analyze code for capacity bugs, security vulnerabilities, and overall performance bottlenecks. These

tools can perceive styles and anomalies that might be ignored via human reviewers, mainly to better-great

code[18]. Furthermore, AI can generate check cases, automate checking out approaches, and examine test

consequences to enhance code reliability.AI can assist builders write more readable, maintainable, and efficient

code with the aid of suggesting improvements in code style, naming conventions, and modularity[16]. By

analyzing codebases, AI can perceive possibilities for refactoring and optimization, leading to cleaner and more

performant code.AI-powered tools are revolutionizing the way we write, check, and keep code, leading to full-

size upgrades in code satisfactory and developer productivity. Here are some key AI tools for code quality:

ChatGPT, Github Copilot, DevGPT, Tabnine, Google Bard, Google Plam2[5,21].

Table 1 : Comparison of Different AI Tools

AI Tool Developed By Launch Year Purpose Strengths Limitations

ChatGPT OpenAI 2022 (ChatGPT-
3)

General-purpose AI, code
generation, Q&A

Advanced language
model, versatile for

many tasks, easy to

use UI

Struggles with
highly domain-

specific code, can

produce verbose
answers

GitHub GitHub (powered by 2021 Assists in coding, IDE Excellent for code Limited outside of

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 56

Copilot OpenAI Codex) integration completion in IDEs,
context-aware

specific
programming

languages, IDE

dependent

DevGPT DevGPT Labs 2023 Code generation and

developer workflow
automation

Optimized for

development, script-
based workflows

Limited to specific

programming
languages and

tasks

Tabnine Tabnine 2019 Code completion for

developers

Strong code

completion

customizable

Not as powerful

for natural

language tasks

Google Bard Google 2023 General-purpose AI, also

code

Good for data-

related queries, solid
understanding of

Google's own APIs

Still improving on

complex
programming

tasks

Google PaLM

2

Google 2023 Advanced language and

code model

Designed to handle

complex language

tasks, large dataset

Limited

availability;

mostly
experimental as of

now

II.Background
Leetcode

Programmers frequently utilize LeetCode, an online platform that offers a variety of programming

problems and challenges, to improve their skills. LeetCode provides a trustworthy database of programming

problems arranged according to their concepts and degree of difficulty. These issue categories include "easy,"

"medium," and "hard," and the topics cover a wide spectrum, including databases, shell scripting, algorithms,

concurrency, and more. It is important to note that our contribution does not include classifying problems

according to their level of difficulty or subject. For more detail, readers who are interested in learning more about

the distinctive problem classification should contact the LeetCode platform. Every programming problem usually

has pattern inputs, outputs, and a problem statement. With the help of LeetCode's inbuilt editor and compiler,

users may compare the accuracy and efficiency of their code with a collection of predefined test references.

Furthermore, LeetCode gives error warnings, monitors the popularity of submissions, and, according to

submission scores, assigns people to fantastic performance ranks. For our test, we use LeetCode as a source of

many programming issues and challenges[3].

Working od Leetcode

● Select a Problem: Pick a problem from a list of categories or levels of complexity.

● Write Code: Write your code and check it using the online editor.

● Run test cases: To make sure your code functions as intended, test it using sample inputs.

● Submit Solution: To verify if the code passes all check cases, submit it.

● Examine and Learn Skills: Examine discussions to learn new techniques or view solutions from other

users.

Fig.1: Working of leetcode

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 57

Code Quality

Code quality is the degree to which the code is well-written, responsibly developed, and maintained.

Good code satisfaction indicates that the code is easy to analyse, dependable, and plays well. It wants to be free

of bugs and security issues, avoid needless complexity, and adhere to best practices. High-quality code is more

useful for long-term projects since it is also easier to update, test, and scale across instances. ChatGPT, GitHub

Copilot, and other AI coding tools can boost productivity by automating repetitive tasks and making code

recommendations, but they also often cause specific issues with code quality. The biggest problem is duplication;

AI-generated code may be complex and contain extra strains that make it larger than required.Another frequent

problem is inefficiency, as AI tools may generate code that functions but isn't performance-optimized, which

might slow down packages or consume more resources. Lack of context is also a problem; given that AI models

create code primarily based on statistical patterns rather than actual understanding, they will pass over the larger

image, producing code that technically works however doesn't completely match project requirements or best

practices.

AI-generated code may not always adhere to security best practices, resulting in vulnerabilities. AI can

potentially recommend insecure patterns simply because it sees comparable styles in its training data, without

filtering for security considerations. Error rates are every other problem, as AI tools may generate code that has

small, hard-to-note bugs, mainly in complex projects. These small issues can emerge as complicated if no longer

cautiously reviewed and corrected via a developer. Researchers advise for the use of AI-generated code as a

starting point, but ensure that human oversight is important to ensure code quality, security, and proper

optimization, specially in vital software program development contexts[3].

III. Review Method
Planning and Review

The framework for the study's questions, the databases that were searched, and the techniques for locating

and verifying the evidence are all included in the review methodology. Identifying original research, applying

inclusion and exclusion criteria, and synthesizing the findings are all part of the assessment process. The protocol,

which was designed in the remaining phase, was developed by one of the authors, evaluated by the other authors,

and then finalized by discussion, overview, and iteration in order to eliminate researcher bias. A thorough search

of electronic databases has been conducted, and more study is recommended. Additionally, a number of the top

conference proceedings and software program engineering publications that are not accessible through electronic

search had to be manually searched. A total of 189 articles were found using both manual and computerized search

methods.

Research Questions

Finding and categorizing the body of literature on AI tools, AI-generated code, and the quality of code produced

by AI tools was the primary objective of this systematic review. A collection of research questions was required

in order to plan the review. The precise research questions are listed in the table.

Source of Information

For a thorough and comprehensive review of the literature, a broad viewpoint is required. To improve the

likelihood of finding the right articles, the exact selection of databases must be selected before the study begins.

suggests doing a thorough search of electronic resources; the databases listed below were examined:

● ACM Digital Library (https://dl.acm.org/)

● IEEE eXplore (https://ieeexplore.ieee.org/)

● ScienceDirect (https://www.sciencedirect.com/)

● Springer (www.springerlink.com)

● Wiley Interscience (www3.interscience.wiley.com)

Table 2 : Research Questions and Motivation

RQ QUESTIONS MOTIVATION

1 What are the different AI tools used for code generation? Are these codes
reliable?

The main objective of these questions are
to know about the AI tools which are

used to generate codes for different

programming languages. 1.1 What are the popular programming languages which are used to generate
code through AI?

1.2 From where the researchers used the datasets?

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
http://www.springerlink.com/
http://www3.interscience.wiley.com/

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 58

2 What are the different parameters to check the quality of code generated by
AI?

The motive of these questions are to
know the code quality of the AI

generated codes. How we can check the

quality or what are the parameters or
metrics used to check the quality. The

motive is to find out the different errors

which occur in these codes and how we
can fix those errors using AI tools.

2.1 What are the different metrics used to check the quality of AI generated
code?

2.2 What kind of errors or the issues occur in AI generated code?

2.3 Is there any tool which can be used to fix the errors in AI generated code?

3 Is there any similarity between the AI generated code and code generated by

the developer?

Motivation of these questions are to

check the similarity between the Ai
generated code and the code generated by

the developer. The study will tell us about

which AI tool is better and how.
3.1 Is code generated by AI helpful to everyone?

3.2 Which AI tool is better for coding?

Search Criteria

The terms "AI GENERATED CODE" and "QUALITY" are included in the abstract of almost every

search. It is a lengthy and complex procedure. It identifies the specific search strategy from unique online sources.

We made an effort to retrieve as much important information as we could. To ensure that our study was complete,

we conducted a thorough database search. Still, for various reasons, some of the acknowledged research articles

were not included in the preset search approach. The search term is no longer in the abstract, the article title is

exclusive, and so on. In order to finish the evaluation process, these studies are covered in the database using

keyword search.

Table 3 : Search Strings

S.No. Resources Keyword Dates #

1 https://ieeexplore.ieee.org/ AI -Generated

Code,Quality

All Dates 53

2 https://www.sciencedirect.com/ AI -Generated

Code,Quality

All Dates 25

3 https://dl.acm.org/

AI -Generated

Code,Quality

All Dates 76

4 www.springerlink.com AI -Generated

Code,Quality

All Dates 35

5 https://onlinelibrary.wiley.com/search/ad

vanced

AI -Generated

Code,Quality

All Dates 0

Inclusion and Exclusion Criteria

Using titles, irrelevant papers were manually filtered out in the first step. There are a lot of study

publications that aren't applicable in our context.Studies that focused on AI-generated code quality concerns

generally were suitable to be included in the review. Both professional and student software development studies

were considered. To make the database search complete, the systematic review covered both qualitative and

quantitative research papers that were published up until and including 2011 beginning with the digital library's

founding date. Only English-language studies were included. Technical reports were a part of our research. The

exclusion at various phases is seen in Fig 3. Studies whose primary focus was not on the quality of codes produced

by AI tools were eliminated. To keep our research database consistent, research articles that appeared frequently

in various databases and e-resources were removed one at a time. Position papers that indicated future directions

are mentioned in the conclusion and future work section, but they were not included in the literature review. Prior

to their extended publication in journals, some of the articles were first presented at conferences. Such early

research was not included. Using the references of the discovered articles, all missing relevant papers were

manually located. As Fig. 3 illustrates, After our search yielded more than 189 papers, we selected 48 papers

based on their titles and 39 papers based on their abstracts. After reading all 39 of these papers, a final list of 24

papers was chosen based on the inclusion and exclusion criterion.

https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://dl.acm.org/
http://www.springerlink.com/
https://onlinelibrary.wiley.com/search/advanced
https://onlinelibrary.wiley.com/search/advanced

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 59

Fig 2 : Study selection procedure.

IV.Results
RQ1 What are the different AI tools used for code generation? Are these codes reliable?

Several AI technologies, like GitHub Copilot, ChatGPT, Google Palm2, and Tabnine, are used to

generate code. These AI-powered tools let programmers create code more quickly by producing whole blocks of

code, finishing code snippets, or making suggestions in response to natural language queries. They use massive

amounts of pre-written code to look up best practices, syntax, and programming patterns[6]. AI-generated code

isn't always ideal, but it may help with ongoing tasks and save time. Reliability is dependent upon both task issues

and input quality. Code produced by AI tools may appear to be accurate, but it may contain hidden errors, safety

risks, or delays. Therefore, it's critical that developers examine, test, and modify AI-generated code to meet their

unique requirements and ensure quality[14]. Nikolaos Nikolaidis et al (2024) assesses the capacity of AI-powered

coding tools, ChatGPT and Copilot, in solving coding problems. In this research the researcher has discussed the

effectiveness of ChatGPT and Copilot and how to improve the performance and quality of code[15]. Autumn

Clark et al (2024) analyzes the greatness and consistency of code generated by using ChatGPT, using the DevGPT

dataset. The code generated by ChatGPT is of good quality[4]. Md Fazle Rabbi et al.(2024) This has a look at

analyzing the quality and security of code written with ChatGPT's help (1,756 snippets). They compared code

generated from scratch (ChatGPT-generated) to code modified from user input (ChatGPT-changed)[17].Ionut

Daniel Fagadau et al. (2024) investigates the effect of prompt engineering on the quality of code generated by

Copilot, a generative AI tool[6]. Vincenzo Corso et al.(2024) study compares 4 AI-based total code assistants:

GitHub Copilot, Tabnine, ChatGPT, and Google Bard. These tools can generate code, however they rarely

produce perfect, ready-to-use code[5]. Santiago Aillon et al (2023) explores the use of ChatGPT3.5 to develop a

mobile app using Flutter. The AI tool became capable of generating useful code, but its effectiveness trusted the

complexity of the task and the quality of the prompts[1].Yunhe Feng† et al (2023) investigates the usage of

ChatGPT for the code era by way of analyzing social media posts on Twitter and Reddit. The researchers also

created a dataset of ChatGPT prompts and generated code, which became public. By comparing the code quality

#189

#48

#39

#24

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 60

and the usage of Flake8, they received insights into ChatGPT's limitations and ability[7]. Muhan Guo(2024)

explores ChatGPT's potential to generate complicated Java code for web development, especially a user login

system. The experiments showed that ChatGPT can produce high quality, readable, and functional code[8]. Zhijie

Liu et al.(2024) analyzes the exception of code generated by way of ChatGPT, a large language model. The

researchers evaluated code in 5 programming languages for correctness, complexity, and security[12]. Rabimba

Karanjai et al (2023) evaluated the overall performance of ChatGPT and Palm2 in generating smart contracts. The

researchers found that even as each model can produce compilable code, they regularly introduce security

vulnerabilities[10].Wendy Mendes et al.(2024) explores the reports of software program developers using AI code

assistants like Tabnine, GitHub Copilot, and ChatGPT. Take a look at observed that these tools can extensively

enhance development speed, code quality, and focus[14]. Haoquan Zhou et al (2023) explores the use of GitHub

Copilot in data analysis. Researchers performed a user examination with data scientists to recognize how powerful

prompts may be used to generate code[22]. Burak Yetistiren et al. (2022) investigates the quality of code generated

by means of GitHub Copilot, a brand new AI device for programmers. The researchers evaluated the code's

validity (does it compile?), correctness (does it work as supposed?), and efficiency (how nicely does it perform?).

GitHub Copilot achieved a 91.5% successful rate in generating valid code[21]. WEI WANG et al.(2024) evaluates

the effectiveness of ChatGPT in assisting software program development tasks[19]. Mohammad Amin Kuhail et

al. studies assessed ChatGPT 3.5's effectiveness in solving coding issues and surveyed programmers' perspectives

on AI tools. ChatGPT 3.5 excelled at easy problems however struggled with more difficult ones, especially people

with lower popularity[11].Alessio Bucaioni et al. This research examines how nicely ChatGPT can write computer

code. The researchers conducted experiments where they gave ChatGPT diverse programming issues . They

discovered that ChatGPT may want to solve easy and medium problems , but struggled with harder ones[3].

Fig 3 : AI Code Generation Tools

RQ1.1 What are the popular programming languages which are used to generate code through AI?

AI code generation technologies perform best when used with widely used programming languages that

have plenty of training data. The languages that are most frequently implemented include TypeScript, Python,

JavaScript, Java, and C++. Python is a popular choice for AI-driven development because of its extensive use in

data science and machine learning. Because JavaScript is widely used in both front-end and back-end web

projects, it is essential for web development and is strongly supported by many AI tools. While C++ is commonly

used for performance-critical jobs like systems programming and game development, Java is a dependable

language for large-scale applications.Other languages, such as Ruby, PHP, and Go, are also supported by AI tools,

however their accuracy and advanced capabilities may not match those of the more widely used languages. With

the use of AI, this technology facilitates code generation, suggestion generation, and the automation of hard coding

jobs for developers working in these languages. Nikolaos Nikolaidis et al (2024) ChatGPT and Copilot were tested

on 60 Python problems, with ChatGPT outperforming Copilot in terms of accurate solutions[15]. Autumn Clark

et al (2024) analyzes the greatness and consistency of Python code generated by using ChatGPT, using the

DevGPT dataset[4]. Md Fazle Rabbi et al.(2024) The researchers had analyzed the quality and security of Python

code written with ChatGPT's help (1,756 snippets)[17]. Marchel Christopher Wuisang et al. (2023) discussed the

Python issues and fixed them using a framework. Ionut Daniel Fagadau et al. (2024) They took a look at analyzed

124,800 prompts for 200 Java methods, evaluating the generated code based on correctness, complexity, length,

and similarity to the intended code[6]. Vincenzo Corso et al.(2024) discussed the comparison between 4 different

tools using the 100 Java methods from Github Projects[5]. Santiago Aillon et al (2023) explores the use of

ChatGPT3.5 to develop a mobile app using Flutter[1]. Yunhe Feng† et al (2023) They found that ChatGPT is used

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 61

for various programming languages, on the whole Python and JavaScript, and for tasks like debugging, interview

prep, and academic assignments[7]. Muhan Guo(2024) explores ChatGPT's potential to generate complicated

Java code for web development, especially a user login system[8]. Zhijie Liu et al.(2024) The researchers

evaluated code in 5 programming languages (C, C++, Java, Python, JavaScript) for correctness, complexity, and

security[12]. Haoquan Zhou et al (2023) explores the use of GitHub Copilot in data analysis. Researchers chose

three exploratory data analysis problems from the actual world that can be resolved with Python code[22]. WEI

WANG et al.(2024) The examination involved 109 contributors who used ChatGPT to solve coding puzzles and

carry out software development tasks[19]. Alessio Bucaioni et al. The researchers conducted experiments where

they gave ChatGPT diverse programming issues in C++ and Java. They discovered that ChatGPT may want to

solve easy and medium problems , but struggled with harder ones[3]. The table depicts the count of languages

which were reviewed from the 24 research papers which were selected.

Fig 4 : Frequency of Programming Languages Reviewed.

RQ1.2 From where the researchers used the datasets?

Researchers design AI models for code generation using datasets from several sources. Platforms like

LeetCode, a website where programmers tackle coding problems, have become popular sources. These challenges

and their resolutions offer useful information to inform AI about typical programming issues and solutions[12,15].

DevGPT, a dataset that compiles code examples, explanations, and programming-related content from various

coding websites, forums, and public repositories, is an additional source. Open-source code from websites like

GitHub, where programmers freely share their projects and code, is also used by researchers. AI models may learn

coding styles, trends, and best practices across many languages and contexts with the use of this data. However,

researchers concentrate on publicly available and open-source code to avoid copyright since ethical issues and

data privacy are important[4,17]. Nikolaos Nikolaidis et al (2024) uses the 60 leetcode problems of the python

programming language[15]. Autumn Clark et al (2024) analyze the python code samples with the help of DevGPT

dataset[4]. Md Fazle Rabbi et al.(2024) also used DevGPT datasets to compare the python code generated by

ChatGPT from scratch (ChatGPT-generated) to code modified from user input (ChatGPT-changed)[17].Ionut

Daniel Fagadau et al. (2024) examine the effects of the identical prompt features when they appear in various

prompt types using both GitHub and LeetCode[6]. Vincenzo Corso et al.(2024) study compares 4 AI-based total

code assistants with the help of github projects[5]. Zhijie Liu et al.(2024) analyzes the exception of code generated

by way of ChatGPT, a large language model. The researchers examined the datasets from the leetcode problems

and CWE (Common Weakness Enumeration) scenarios (CWE’s code scenarios) as provided in[12] . Burak

Yetistiren et al. (2022) investigates the quality of code generated by means of GitHub Copilot, a brand new AI

device for programmers. The researchers used the HumanEval dataset which contains 164 problems[21].Alessio

Bucaioni et al. the dataset was created by utilising the vast library of programming problems on LeetCode. The

runtime, memory consumption, and acceptance rates of human-generated programming problem solutions are all

statistically gathered using LeetCode[3].

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 62

Fig 5 : Dataset

RQ2 What are the different parameters to check the quality of code generated by AI?

A number of crucial metrics are necessary to assess the caliber of AI-generated code. Correctness

guarantees that the code performs its intended function without errors. Efficiency examines how effectively the

code executes, ensuring that it is fast and resource-efficient. For code to be readable, it must be transparent, simple

to understand and well-named and commented. Security checks make sure the code is secure and free of errors

that hackers may take advantage of. The reliability is about ensuring that the code can be easily updated or resolved

in the future, whereas scalability examines if the system can handle more information or users without

experiencing issues. These characteristics assist in determining the code's dependability and suitability for

usefulness[16].

Fig 6 : Parameters.

RQ2.1 What are the different metrics used to check the quality of AI generated code?

AI-generated code is evaluated using a number of metrics to evaluate various parts of the code. Among

these is Cyclomatic Complexity, which counts the number of possible ways through a code to determine its

complexity. A higher number suggests the code is more complicated and more difficult to read or update[15].

Time Complexity examines how the code's runtime varies with increasing input size. It assists in figuring out

whether the code is effective or whether it can become problematic while dealing with bigger datasets. In order

to make sure the code doesn't utilize excessive amounts of resources, space complexity quantifies how much

memory the code requires as the input size grows[12]. Halstead Complexity is an additional statistic that assesses

the complexity of the code by counting the number of operators and operands. This measure assists in determining

how hard it is to update or maintain the code. These metrics assist developers in evaluating the AI-generated code

to make sure it is scalable, effective, and clear[4]. Nikolaos Nikolaidis et al (2024) The metrics that researchers

used in their research to improve the code quality and the performance of the code are: The number of linearly

distinct paths in a program is measured by its cyclomatic complexity. This is closely related to how many decision

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 63

points there are in the program. It is believed that low cyclomatic complexity is a sign of high-quality code. Token

Count: A program's overall number of operators and operands. Code Lines: The function's total amount of code

lines. Time Complexity: The runtime of a program is the amount of time it takes to execute. Space Complexity:

Memory use refers to how much memory a software uses to store data while it is running[15]. Autumn Clark et

al (2024) in this research the researchers have discussed the measures to improve the code quality of python code

samples. They have used the Halstead Complexity. Eight indicators are used in the Halstead Complexity Measure

to assess the level of complexity of a particular piece of code. Volume, difficulty, length, calculated length, effort,

programming time, number of delivered errors, and vocabulary are these eight criteria[4]. Zhijie Liu et al.(2024)

analyzes the exception of code generated by way of ChatGPT, a large language model.The researchers evaluated

code in 5 programming languages (C, C++, Java, Python, JavaScript) for correctness, complexity, and security.

They have discussed the code snippets in various languages, the distribution of cyclomatic and cognitive

complexity levels differs[12]. Rabimba Karanjai et al (2023) We used the Code Validity, Correctness, and

Security metrics to evaluate the resulting code. However, we recognise that more criteria, such as Readability,

Cyclomatic Complexity, and Reusability, might be included to assess the produced code more thoroughly[10].

Burak Yetistiren et al. (2022) investigates the quality of code generated by means of GitHub Copilot, a brand new

AI device for programmers. For time complexity, Copilot's code equaled human efficiency in 87.2% of accurate

solutions and 76.2% of partially correct ones. Most of the space complexity was comparable to human

efficiency[21].

Table 4 : Different Metrics used to check Quality of AI generated code

Metric Formula Purpose Higher Values Indicate When It’s Important

Cyclomatic Complexity V(G)=E−N+2P

Where:

E = number of edges
N = number of nodes

P = number of

connected components
(usually 1 for a single

program)

Assesses code
readability,

maintainability, and

testability.

More complex code,
harder to understand and

maintain.

When you need to
evaluate how

complicated the control

flow of your code is.

Time Complexity Big-O notation, e.g

O(1), O(n), O(n2), O(log

n), etc.,
where n is the input

size.etc.

Assesses efficiency in

terms of execution

speed.

Longer runtime, less

efficient.

When you're concerned

with performance,

especially with large
datasets.

Space Complexity Big-O notation, e.g

O(1), O(n), O(n2), etc.

Assesses efficiency in

terms of memory usage.

More memory usage,

less efficiency.

When you're concerned

with resource usage,

particularly in limited
environments.

Halstead Complexity N = N1 + N2
n = n1+n2

V=N⋅log2(n)

Where:

N1 = number of

operators
N2 = number of

operands

n1 = number of distinct
operators

n2 = number of distinct
operands

Assesses the difficulty
of understanding,

modifying, or
maintaining the code.

More complex and
harder to maintain code.

When you're evaluating
how easily code can be

understood, modified, or
maintained.

RQ2.2 What kind of errors or the issues occur in AI generated code?

AI-generated code should be thoroughly examined for a variety of errors and issues. Logical errors are

frequent; the code may execute without crashing, but because of logical or run errors, it may not accomplish the

intended goal. Runtime errors occur when unusual events, such as dividing by zero or accessing incorrect data,

cause the code to break while it is being executed[23]. Inefficient code can lead to time limit problems if it takes

too long to execute, particularly when dealing with bigger data sets. This frequently indicates that the algorithm

has to be improved. Syntax errors are bugs in the code that stop it from executing at all, such as missing brackets

or misspelled keywords. Semantic errors occur when syntactically valid code is not suitable for the task at present,

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 64

producing unexpected results. These problems show how important it is to thoroughly test and debug AI-generated

code to make sure it works as expected[15].Nikolaos Nikolaidis et al (2024) looked into the kind of errors that

frequently occurred, the models' performance, and the quality of the code that was produced. The analysis showed

that while both ChatGPT and Copilot are prone to syntactic and semantic errors, they can be useful tools for

producing code solutions for simple issues[15]. Md Fazle Rabbi et al.(2024) Examine the code samples created

and modified by ChatGPT to identify important code quality problems of four different kinds: refactoring (R),

conventions (C), errors (E), and warnings (W). In both ChatGPT-generated and ChatGPT-modified code, errors

occur most frequently, whereas refactoring recommendations occur least frequently[17].Marshall Christhoper

Wuisang et al. (2023) Automated program repair seeks to identify or locate issues, identify or cure errors, and

automatically apply fixes to software flaws in order to improve software reliability. One factor that makes

ChatGPT so good at spotting and fixing complex programming problems is its capacity to comprehend and

produce code explanations that are human-like. Santiago Aillon et al (2023) Human involvement may be

necessary to fix problems and guarantee that the code satisfies the criteria because the produced code quality may

not always be dependable. Syntax, run-time, and logic errors were among the several faults introduced by the

command. Although a number of logical mistakes were made, fixing the syntax issues was not too difficult[1].

Zhijie Liu et al.(2024) Wrong Answers, Compile defects, Wrong Details, Multi-hunk Errors, Incompatible

Parameters, Logic Errors, and Misunderstandings are the categories into which the article divides code defects,

emphasising problems such as misalignment, logical errors, and incorrect answers[12]. Rabimba Karanjai et al

(2023) describes the Non-deterministic code generation, unclear input, incomplete evaluation metrics, dataset

limitations, and security flaws are some of the mistakes that affect the reproducibility, code quality,

generalisability, and dependability of AI-generated code[10].

Fig 7 : Types of Errors

RQ2.3 Is there any tool which can be used to fix the errors in AI generated code?

Yes, QuixBug is a tool for fixing bugs in AI-generated code. It functions by automatically identifying

errors and offering solutions. QuixBug is particularly helpful since it may identify problems or feasible problems

in code produced by AI models, such as ChatGPT or GitHub Copilot. This includes errors in syntax, logic, and

even performance. The code becomes more dependable and effective when developers use QuixBug to quickly

find and fix bugs. In addition to saving developers time and effort, the tool helps improve the quality of AI-

generated code before it is utilized in real applications by reducing the need for human debugging[20]. Marchel

Christhoper Wuisang et al. (2023) assesses the use of the QuixBugs framework and how well GPT-3.5

automatically fixes Python issues. The results demonstrate that, with 30 out of 40 bugs successfully fixed, GPT-

3.5 works better than other programs like Codex and preferred application repair. The version works well because

it can comprehend and produce code that looks human. Nevertheless, there are drawbacks, such as the potential

for incorrect or illogical responses, sensitivity to input phrases, and QuixBugs' limited functionality. Future

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 65

research can assess it against various models and find out how well it performs in other languages. For GPT-3.5

to be fully utilized for efficient bug fixes, these obstacles must be removed[20].

Fig 8: Working of QuixBugs.

RQ3 Is there any similarity between the AI generated code and code generated by the developer?

Developer-generated code and AI-generated code are quite comparable, especially in terms of quantity

and complexity. In terms of McCabe complexity and code lines, AI assistants' code is often comparable to that of

human coders. Yet, AI-generated code still differs greatly from developers' implementations in terms of accuracy

and similarity, frequently requiring modifications. Even though AI code may pass test cases (plausible code),

human examination does not always confirm that it is accurate. Overall, AI-generated code still has to be improved

to closely match developer standards, although Tabnine's generated code had the highest degree of closeness to

developers' code[5].

 RQ3.1 Is code generated by AI helpful to everyone?

Although many individuals receive advantages from AI-generated code, its usefulness varies depending

on the profession at hand and the user's experience. AI may serve as a tutor for novices, teaching them syntax,

how to organize code, and how to solve typical programming issues. By providing immediate advice, it can help

make coding a bit easier. Experienced developers may concentrate on more difficult aspects of a project by using

AI technologies to generate basic code, speed up repetitive processes, and offer quick improvements[17]. AI may

also be used to find errors in code and provide solutions.It might not be as helpful, though, for jobs requiring in-

depth knowledge, such as developing highly specialized systems or complex algorithms, where human

imagination and sense of smell are still important. Furthermore, if developers rely too much on AI, they may

become dependent on recommendations, which could restrict their ability to improve their own problem-solving

abilities. In conclusion, AI-generated code may be a very useful tool, but it works best when paired with human

expertise and careful review[15].

RQ3.2 Which AI tool is better for coding?

There are several AI tools which are used to generate code.Copilot smoothly integrates with well-known

code editors and makes intelligent recommendations as you type, it is frequently regarded as one of the greatest

AI tools for coding. It speeds up manual tasks, generates code snippets, and assists in code completion. Because

it can explain code, assist with debugging, and provide answers to complex programming queries, ChatGPT is

widely regarded for a more conversational and problem-solving approach. Depending on whether you want a

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 66

more interactive problem-solving assistance (ChatGPT) or textual recommendations (Copilot), you may choose

between them[4].

Table 5 : Comparison of Different AI Tools

AI Tool

Code Quality

Correctness

Performance

Error Rates

Reliability

ChatGPT Good for general

code, but can be
verbose and may

need optimization

High for common

tasks, but variable
on complex code

Moderate; may

generate non-
optimized code

Occasional errors,

especially in
nuanced code

Reliable for broad

tasks, less so for
specifics

GitHub

Copilot

High; code is

concise and aligns

with developer

conventions

High for standard

patterns; excellent in

supported languages

Generally good;

suggests efficient

code, but context

matters

Lower error rate,

especially in IDE

Very reliable within

IDE environments and

supported languages

DevGPT Good, focused on
task-specific code;

may lack

adaptability in
complex scenarios

Moderate; strong for
repetitive or task-

specific code

Adequate, but some
outputs lack efficiency

Low to moderate;
fewer errors for

narrow tasks

Reliable within
supported workflows,

less adaptable

Tabnine Good for boilerplate
and repetitive code

High for standard,
repetitive patterns

Moderate; doesn’t
prioritize optimization

Low error rate for
predictable code

Reliable for repetitive
tasks; less versatile for

complex code

Google Bard Moderate; often

verbose or

simplistic code

Moderate; accuracy

drops in complex

tasks

Moderate; needs

refinement for

efficiency

Moderate error

rate on complex

code

Reliable for simpler

tasks; struggles with

nuanced code

Google PaLM

2

High; code often

refined, suitable for

complex problems

High; strong in

logic-heavy tasks

Good; more capable

of efficient solutions

than others

Low to moderate;

fewer errors on

complex code

Very reliable across

diverse coding tasks

V.Discussion
The dialogue surrounding the combination of AI tools in software program improvement highlights a

transformative shift in coding practices and productivity. As AI technology like ChatGPT, GitHub Copilot, and

others gain traction, they demonstrate the capacity to seriously enhance code quality, automate repetitive tasks,

and assist developers in generating code snippets correctly. However, challenges remain, including concerns about

the reliability, security, and performance of the AI-generated code. Issues which include verbosity, redundancy,

and adherence to best practices need to be addressed to make certain developers can trust these tools in difficult

situations. Furthermore, the dearth of deep contextual knowledge in AI models underscores the necessity for

human oversight in code validation and optimization. The effectiveness of AI tools varies across specific

programming languages and alertness contexts, indicating a need for tailor-made approaches. Ultimately, even as

AI tools give amazing opportunities for streamlining software improvement, a balanced attitude that

acknowledges their boundaries is crucial. By specializing in collaborative frameworks where human know-how

and AI abilities complement each other, the software program engineering can leverage those innovations to

power significant improvements in productiveness and code integrity

VI.Future Work
Future work inside the field of AI tools for software improvement have to consciousness on several key

areas to enhance their effectiveness and integration. This consists of growing comprehensive frameworks for

assessing AI-generated code quality, undertaking longitudinal studies to understand the long-term influences of

those tools on coding practices, and investigating user experience to optimize their interplay with AI technologies.

Additionally, studies must aim to enhance human-AI collaboration via incorporating developer feedback into AI

training procedures and ensuring diversity in training datasets to mitigate biases and vulnerabilities. Ethical issues

surrounding AI's use in coding, inclusive of intellectual assets and responsibility, must also be addressed.

Expanding the exploration of AI applications across diverse programming languages and domain names,

continuously enhancing AI models for context-aware code generation, establishing best practices for powerful

integration into development workflows, and analyzing the role of AI in newbie programmer training are crucial.

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 67

Collectively, those study guidelines will help maximize the importance of AI in coding whilst retaining high

standards of quality and security.

VII.Conclusion
The research concludes by way of highlighting the pivotal function of AI tools in reworking software

development methodologies. Technologies which include ChatGPT and GitHub Copilot significantly enhance

coding performance and productivity through automation of repetitive tasks and the provision of code

suggestions. However, developers need to continue to be privy to the intrinsic limitations and challenges

connected to AI-generated outputs, including code quality, the risk of bugs, security vulnerabilities, and efficiency

issues, which all necessitate human oversight and intervention. The paper underscores the significance of viewing

AI tools as supportive assistants as opposed to direct replacements for human developers. It stresses the want for

ongoing assessment and improvement of AI-generated code to make certain it meets high standards and aligns

with project requirements. Additionally, the paper proposes instructions for future studies aimed at discovering

the evolving abilities of AI in coding, with the goal of improving the trustworthiness and excellence of AI-

produced answers. In essence, the powerful integration of AI into software program improvement relies on a

collaborative framework that leverages each human expert and AI's capabilities. This partnership is important for

riding innovation even as upholding stringent requirements for code quality and security. Striking this stability

may be vital for progressing the field and absolutely tapping into the potential of AI technologies in programming

practices.

References
[1]. Aillon, S., Garcia, A., Velandia, N., Zarate, D. and Wightman, P., 2023, November. Empirical evaluation of automated code

generation for mobile applications by AI tools. In 2023 IEEE Colombian Caribbean Conference (C3) (pp. 1-6). IEEE.

[2]. Barenkamp, M., Rebstadt, J. & Thomas, O. Applications of AI in classical software engineering. AI Perspect 2, 1 (2020).
https://doi.org/10.1186/s42467-020-00005-4

[3]. Bucaioni, A., Ekedahl, H., Helander, V. and Nguyen, P.T., 2024. Programming with ChatGPT: How far can we go?. Machine

Learning with Applications, 15, p.100526.
[4]. Clark, A., Igbokwe, D., Ross, S. and Zibran, M.F., 2024, April. A quantitative analysis of quality and consistency in ai-generated

code. In 2024 7th International Conference on Software and System Engineering (ICoSSE) (pp. 37-41). IEEE.

[5]. Corso, V., Mariani, L., Micucci, D. and Riganelli, O., 2024, April. Assessing AI-Based Code Assistants in Method Generation Tasks.
In Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (pp. 380-

381).
[6]. Fagadau, I.D., Mariani, L., Micucci, D. and Riganelli, O., 2024, April. Analyzing Prompt Influence on Automated Method Generation:

An Empirical Study with Copilot. In Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension (pp.

24-34).
[7]. Feng, Y., Vanam, S., Cherukupally, M., Zheng, W., Qiu, M. and Chen, H., 2023, June. Investigating code generation performance of

ChatGPT with crowdsourcing social data. In 2023 IEEE 47th Annual Computers, Software, and Applications Conference

(COMPSAC) (pp. 876-885). IEEE.
[8]. Guo, M., 2024, April. Java Web Programming with ChatGPT. In 2024 5th International Conference on Mechatronics Technology

and Intelligent Manufacturing (ICMTIM) (pp. 834-838). IEEE.

[9]. J.N. Kok, E.J. Boers, W.A. Kosters, P. Van der Putten, M. Poel, Artificial intelligence: definition, trends, techniques, and cases. Artif.
Intell., 1 (2009), pp. 270-299

[10]. Karanjai, R., Li, E., Xu, L. and Shi, W., 2023, October. Who is smarter? an empirical study of ai-based smart contract creation. In

2023 5th Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) (pp. 1-8). IEEE.
[11]. Kuhail, M.A., Mathew, S.S., Khalil, A., Berengueres, J. and Shah, S.J.H., 2024. “Will I be replaced?” Assessing ChatGPT's effect on

software development and programmer perceptions of AI tools. Science of Computer Programming, 235, p.103111.

[12]. Liu, Z., Tang, Y., Luo, X., Zhou, Y. and Zhang, L.F., 2024. No need to lift a finger anymore? assessing the quality of code generation
by chatgpt. IEEE Transactions on Software Engineering.

[13]. Marcello Mariani, Yogesh K. Dwivedi,”Generative artificial intelligence in innovation management: A preview of future research

developments”, Journal of Business Research, Volume 175, 2024, 114542, ISSN 0148-2963,
https://doi.org/10.1016/j.jbusres.2024.114542.

[14]. Mendes, W., Souza, S. and De Souza, C., 2024, April. " You're on a bicycle with a little motor": Benefits and Challenges of Using

AI Code Assistants. In Proceedings of the 2024 IEEE/ACM 17th International Conference on Cooperative and Human Aspects of

Software Engineering (pp. 144-152).

[15]. Nikolaidis, N., Flamos, K., Gulati, K., Feitosa, D., Ampatzoglou, A. and Chatzigeorgiou, A., 2024, March. A Comparison of the

Effectiveness of ChatGPT and Co-Pilot for Generating Quality Python Code Solutions. In 2024 IEEE International Conference on
Software Analysis, Evolution and Reengineering-Companion (SANER-C) (pp. 93-101). IEEE.

[16]. Odeh, Ayman & Odeh, Nada & Mohammed, Abdul. (2024). A Comparative Review of AI Techniques for Automated Code

Generation in Software Development: Advancements, Challenges, and Future Directions. TEM Journal. 726-739. 10.18421/TEM131-
76.

[17]. Rabbi, M.F., Champa, A.I., Zibran, M.F. and Islam, M.R., 2024, April. AI writes, we analyze: The ChatGPT python code saga. In

Proceedings of the 21st International Conference on Mining Software Repositories (pp. 177-181).
[18]. Taeb, Maryam & Chi, Hongmei & Bernadin, Shonda. (2024). Assessing the Effectiveness and Security Implications of AI Code

Generators. Journal of The Colloquium for Information Systems Security Education. 11. 6. 10.53735/cisse.v11i1.180.

[19]. Wang, W., Ning, H., Zhang, G., Liu, L. and Wang, Y., 2024. Rocks Coding, Not Development: A Human-Centric, Experimental
Evaluation of LLM-Supported SE Tasks. Proceedings of the ACM on Software Engineering, 1(FSE), pp.699-721.

[20]. Wuisang, M.C., Kurniawan, M., Santosa, K.A.W., Gunawan, A.A.S. and Saputra, K.E., 2023, September. An evaluation of the

effectiveness of openai's chatGPT for automated python program bug fixing using quixbugs. In 2023 International Seminar on
Application for Technology of Information and Communication (iSemantic) (pp. 295-300). IEEE.

https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.1016/j.jbusres.2024.114542

Code Quality Generated by AI Tools: A Review

DOI: 10.9790/0661-2703035568 www.iosrjournals.org Page | 68

[21]. Yetistiren, B., Ozsoy, I. and Tuzun, E., 2022, November. Assessing the quality of GitHub copilot’s code generation. In Proceedings
of the 18th international conference on predictive models and data analytics in software engineering (pp. 62-71).

[22]. Zhou, H. and Li, J., 2023, April. A case study on scaffolding exploratory data analysis for AI pair programmers. In Extended Abstracts

of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-7).
[23]. Le, K.T. and Andrzejak, A., 2024. Rethinking AI code generation: a one-shot correction approach based on user feedback. Automated

Software Engineering, 31(2), p.60.

[24]. Omari, S., Basnet, K. and Wardat, M., 2024. Investigating large language models capabilities for automatic code repair in Python.
Cluster Computing, pp.1-15.

[25]. Mišić, M. and Dodović, M., 2024. An assessment of large language models for OpenMP-based code parallelization: a user perspective.

Journal of Big Data, 11(1), p.161.
[26]. Atkinson, C.F., 2023. ChatGPT and computational-based research: benefits, drawbacks, and machine learning applications. Discover

Artificial Intelligence, 3(1), p.42.

