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Abstract 
Lithium-ion battery cells play a critical role in meeting the rising demand for electric vehicles (EVs) due to their 

superior nominal voltage, energy density, extended cycle life, and high-power capacity. Among the key parameters 

for assessing battery performance, the State of Charge (SOC) serves as a vital indicator of a battery’s available 

capacity and ensures the safe and efficient operation of EVs. Accurate SOC estimation is essential for effective 

Battery Management System (BMS) functionality. This study proposes an Enhanced Equivalent Circuit Model 

(ECM) combined with Kalman Filter (KF)-based techniques to improve SOC estimation accuracy in EV batteries, 

as compared to traditional Feedforward Neural Network (FNN) data-driven methods. The methodology begins 

with the development of a second-order RC ECM to characterize lithium-ion battery behavior. Battery operational 

parameters—including terminal voltage, load current, and temperature—are measured to establish baseline 

values for SOC estimation. These measurements ensure compliance with safety standards during charge-

discharge cycles. Subsequently, the Kalman Filter (KF), Extended Kalman Filter (EKF), and Unscented Kalman 

Filter (UKF) are applied to minimize SOC estimation errors and boundary deviations. Results demonstrate that 

the KF and EKF algorithms maintain SOC boundary errors within ±2.4% while achieving estimation errors below 

1.6%. However, the UKF outperforms both, yielding a reduced estimation error of 0.4% and a boundary error of 

1.4%, highlighting its robustness against measurement noise and operational uncertainties. Further validation 

reveals that the UKF approach achieves an exceptionally low Root Mean Squared Error (RMSE) of 0.01%, 

ensuring high precision. For comparative analysis, an FNN trained over 200 epochs with three repetitions 

achieves an RMSE of 0.03%, confirming its viability but with marginally lower accuracy than the UKF. In 

summary, the proposed filtration-based SOC estimation method proves more reliable than data-driven techniques, 

with the UKF improving Simulink model accuracy by 0.39% over conventional methods, while the FNN enhances 

precision by 0.37%. These findings underscore the efficacy of model-based filtering strategies for precise SOC 

determination in EV applications. 

Keywords: Battery Management System (BMS), Equivalent Circuit Model (ECM), Unscented Kalman Filter 

(UKF), Extended Kalman Filter (EKF), Kalman Filter (KF), EV applications. 
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I. Introduction 
In Since lithium-ion batteries have a big capacity, a high energy density, a long lifespan, and are easy to 

control and operate, they have been widely used in electric cars. One of the most important criteria for enhancing 

Li-ion battery performance in electric vehicles is state of charge (SOC). Accurate SOC calculation is necessary to 

manage Li-ion batteries efficiently and guarantee their longevity by preventing over-discharge. Since SOC relies 

on observable components, it is challenging to measure them directly. As a result, a precise SOC estimation 

technique is necessary. This thesis aims to provide a clear and accessible explanation of a precise SOC estimation 

method with an emphasis on lithium-ion batteries. To preserve battery health and operational safety, accurate 

SOC estimation is essential. As a result, electric vehicles will perform better and have longer battery life [1]. 
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There are several models and techniques available for calculating SOC, including those for electrical 

circuits, PDEs, hybrids, direct measurement, and accounting systems. These methods, however, have limitations 

that make it challenging for them to produce accurate SOC estimations. Filtering techniques stand out as a 

suggested choice among them because of their capacity to reduce noise in internal parameter estimation, which is 

a crucial part of ensuring safety in electric vehicles. Kalman filters are often utilized in linear system SOC 

estimates. Given the prevalence of non-linear systems, two variants of Kalman Filter (KF) have been developed 

to improve the accuracy of lithium-ion battery SOC calculation: Extended Kalman Filter (EKF) and Unscented 

Kalman Filter (UKF). One important component of the KF's effectiveness is the model's accuracy in identifying 

the battery properties needed for the SOC calculation. 

 

Adaptive filters are dynamic techniques that constantly adjust their settings to account for shifting battery 

behavior. This flexibility enhances SOC estimation, especially when non-linear battery characteristics and a range 

of operating situations are present. One type of adaptive filter is the LMS (Least Mean Squares) algorithm. The 

mean squared error between their estimations and the actual data is reduced, making them valuable tools for real-

time applications. SOC is estimated using RLS (Recursive Least Squares), NLMS (Normalized LMS), and Sign-

Sign LMS, which are variations of the LMS (Least Mean Squares) filter. 

These filters offer multiple methods for precisely tracking state of charge (SOC) in battery management 

systems by adjusting to different system dynamics and non-linear situations. Changing to a more contemporary 

method will work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedforward Neural Networks (FNNs) enhance State-of-Charge (SOC) estimation by processing input 

data through multiple hidden layers, adjusting connection weights iteratively to minimize prediction errors. This 

enables accurate modeling of complex battery behavior patterns. 

Developing reliable SOC estimation algorithms remains critical for optimizing electric vehicle (EV) 

battery performance. This work addresses the nonlinear dynamics of lithium-ion batteries by comparing FNN 

Nomenclature 
 
C capacity of cell (Ah/mAh)                                                       Voc the Open Circuit Voltage          

It current defined as It(A) = rated capacity (Ah) / 1(h)           R0   battery ohmic resistance (Ω)       

IL current drawn by load (A)                                                         Abbreviations                   

Vt terminal voltage of battery (V)                                          EV        Electric Vehicle                                 
T temperature (◦C)                                                                            CC       Coulumb Counting 

C1, C2, C3 the polarization capacitances (F)                                             SOH    State of Health 

R1, R2, R3 the polarization resistance (Ω)                                                 C-rate   Charging /Discharging rate 

Greek letters and symbols                                                                                     Li-ion lithium-ion battery 

– mean value                                                                              ECM State of Function  
 ̂ estimated value                                                                                   DOD Depth of Discharge  

~ error (residual) value                                                                SVM Support Vector Machine  

T transpose operator                                                                      RUL

 Remaining Useful Life   

 R sampling points/sigma points 

i information content 

S distribution of sigma set 

p probability distribution function 

c auto-correlation function 

  

a status vector PDE Partial Differential Equation 

e system noise vector/process noise OCV Open Circuit Voltage 

c system control vector LSTM Long Short Term Memory 

d observation noise vector                      FFNN Feed-Forward Neutral Network 

G filter gain MAE Mean Absolute Error 

b observation vector RMSE Root Mean Square Error 

k sample time MAX  Maximum Error 

E[ ] expected value HEV Hybrid Electric Vehicle 

Exx[ ] covariance KF Kalman Filter 

E[ ׀] conditional probability EKF Extended Kalman Filter 

 β weight for the UKF computations UKF Unscented Kalman Filter 

m mode number in UKF   
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data-driven approaches with Unscented Kalman Filter (UKF)-based adaptive filtering, aiming to improve 

estimation accuracy and robustness across operational conditions. 

 

II. Literature Review 
An outline of the many kinds of electrochemical batteries and their characteristics can be found in the 

introduction to Section 2.1. In Section 2.2, various methods for estimating SOC are examined, along with their 

uses, disadvantages, and restrictions. A brief description of how to use model-based techniques to estimate the 

state of charge (SOC) of lithium-ion batteries in electric vehicles (EVs) is given in Section 2.3. A brief overview 

of the categorization of filtering techniques is provided in Section 2.4. The use of the Least Mean Square 

Algorithm and its variations is introduced in Section 2.5. In Section 2.6, we finally examine a different method 

for estimating SOC that makes use of feedforward neural networks. 

 

2.1      Introduction  

Since batteries are necessary for many multimedia-based devices, their use is growing globally. One of 

the primary issues with the increasing demand for batteries is ensuring their reliability and calculating their 

lifespan to achieve the best possible energy efficiency [2–3]. Our increasing reliance on batteries has led to 

advancements in battery technology, with a focus on characteristics like memory-free functioning, high energy 

density, small size, and long lifespan. Of all the battery types that are currently accessible, lithium-ion batteries 

are the most widely used. These batteries are ideal for a range of gadgets and applications, including solar street 

lighting, power tools, medical equipment, power trains, cameras, laptops, and cell phones, because they are more 

efficient and rechargeable than their counterparts. Because lithium-ion battery life is dependent on how they are 

charged and discharged, it is extremely difficult to predict [4]. After being fully depleted, a battery won't last very 

long. Therefore, it is crucial to conduct study on battery longevity prediction. 

 

2.1.1      Classification of Batteries 

Since batteries are necessary for many multimedia-based devices, their use is growing globally. One of 

the primary issues with the increasing demand for batteries is ensuring their reliability and calculating their 

lifespan for the best energy efficiency [5]. The exponential rise of batteries in portable electronic devices such as 

computers, laptops, and mobile phones, as well as their ubiquitous use in electric cars and businesses, has spurred 

ongoing study and technological advancements. Because of this, these technologies have advanced significantly 

and are now widely used [6]. Batteries are frequently categorized according to a number of factors, including size, 

lifetime, and chemical makeup [7-8]. 

There are some basic battery types. 

• Physical battery 

• Solid state battery [9] 

• Bio battery [10-11] 

• Electrochemical battery 

• Supercapacitors 

• Flow battery 

• Lithium-Polymer (Lipo) 

• Zinc-Air battery 

• Sodium-Ion battery 

• Fuel cells 

Figure 2.1 offers further classification of these batteries. 

 

Because of their exceptional efficiency, electrochemical batteries are the best option among these battery types 

for electric cars and are strongly advised for use in a variety of application scenarios. 

 

2.1.1.1    Electrochemical Batteries 

When compared to other battery technologies, electrochemical batteries offer excellent performance, elevated 

energy density, and greater efficiency in electric cars, making them a suitable choice for the future generation [12]. 

An electrochemical battery pie graph is shown in Figure 2.2. 

 

Depending on their chemical makeup, electrochemical batteries can be divided into primary and secondary 

varieties. Once fully depleted, primary batteries cannot be recharged and are not used.  

Examples of secondary batteries include the following battery types: 

• Lithium-ion (Li-ion) 

• Nickel-metal hydride (NiMH) 
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• Nickel-cadmium (NiCd) 

• Lead-acid 

 Unlike nickel and lead acid batteries, lithium-ion batteries are frequently used as electrochemical energy storage 

devices [13–15]. Because of its greater capacity, lighter weight, and better energy density, lithium-based 

technologies are primarily used in electric vehicle batteries (EVBs). Lithium-ion batteries are a better option for 

EV applications, as evidenced by their performance characteristics, which include nominal voltage, life cycle, 

efficiency, and energy capacity [16]. 

 

 

 
Fig. 2.1: Categorization of batteries 

 

 
Figure 2.2: Pie graph of the electrochemical batteries 
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Figure 2.3: Features of several EV batteries 

 

2.1.1.2        Lithium-ion Secondary Battery  

Lithium-ion batteries stand out from other rechargeable options like lead-acid and nickel-based batteries, thanks 

to their superior performance and reliable recharging capabilities shown in Figure 2.3. Among these advantages 

are its high energy density, minimal maintenance requirements, extended lifespan (more than 2,000 cycles), 

memory-effect-free design, increased capacity, and dependable performance at high temperatures. Due to its many 

advantages, particularly in the electric vehicle (EV) sector, lithium-ion battery utilisation has been growing 

quickly all over the world [17-18]. 

 

 2.1.1.3      Application of Lithium-ion Battery as Electric Vehicle 

Lithium-ion batteries have become indispensable in modern technology, powering everything from portable 

electronics to electric vehicles and renewable energy systems. Their widespread adoption stems from superior 

energy density and longevity, making accurate State of Charge (SOC) estimation critical for battery management 

and operational safety. Precise SOC determination ensures reliable performance monitoring, safeguards battery 

health, and optimizes remaining capacity utilization in electric vehicles. 

 

2.2     SOC Estimation for Electric Vehicles  

 Accurate State of Charge (SOC) estimation is critical for lithium-ion battery performance in electric vehicles, 

directly impacting energy efficiency, safety, and lifespan by preventing overcharge/discharge [19–20]. While 

methods like electrochemical models and circuit-based approaches [21–31] have advanced SOC estimation, 

operational factors like temperature and aging complicate real-world accuracy. This section evaluates these 

techniques and their role in optimizing EV battery management systems. 

 

2.3     Method of State for Charge (SOC) Estimation  

Several SOC estimate techniques are listed below: 

• Direct Measurement 

• Model-based method 

• Indirect estimation methods 

• Trained data estimation method 

• Hybrid method 

Additionally, Figure 2.4 shows how the approaches are divided. 

 

2.3.1       Direct Measurement Method 

Types of methods are: 

• Open circuit Method (OCV) 

• Terminal Voltage Method 

• Impedance spectroscopy  

These techniques utilise the physical characteristics of batteries, including their impedance ('z') and terminal 

voltage ('v'). Measurement of battery temperature "T" is also necessary for estimating SOC because these 

quantities rely on temperature. 

SOC = ∫ (v, z)
d

T
                                                        (2) 

The relationship between OCV and SOC varies amongst batteries, despite being nonlinear in the context of 

lithium-ion batteries due to the unreliability of SOC estimation [32–33]. Nevertheless, the terminal voltage method 
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requires accurate voltage readings, which are not accessible [34]. When employing the impedance spectroscopy 

method, expensive equipment is needed to estimate SOC. 

 

2.3.2      Indirect Measurement Method 

1-Book-keeping Method 

Accurately estimating SOC via direct methods is challenging. To address this issue, engineers have created 

indirect procedures known as "book-keeping estimation methods," which are described in reference [35].The most 

popular of these methods is the coulomb counting method, which primarily relies on measuring and integrating 

current. 

2-Coulomb counting method 

The coulomb counting method analyzes a battery's discharge current and integrates the terminal current to estimate 

SOC [36]. 

𝑆𝑂𝐶 = ∫ (𝑖)𝑑𝑡
𝑡

𝑇
                                                      (3) 

However, the Coulomb counting is simple to employ. The discontinuous integration of current limits the accuracy 

of the SOC estimation and results in mistakes in the discharge current and battery lifespan calculations. 

 

2.3.3      Hybrid Method 

Hybrid methods improve SOC accuracy by combining complementary approaches - notably coulomb counting 

with either EMF analysis or Kalman filters - while remaining sensitive to initial conditions and aging effects [37-

40]. Estimation methods are listed in Table 1. 

 

 
Figure 2.4 Sub Division of SOS estimate methods 
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2.3.4     SOC Estimation Methods Comparison 

Table 1: comparisons of various SOC estimate techniques: 
Method References Input 

Parameters 

Advantages Disadvantages Accuracy 

Model-based 

Filtering 
Wang, 2019 
[41] 

Battery model, 
self-discharge 

rate, starting 

SOC value, 
terminal voltage, 

and terminal 

current 

Precise, closed-loop, 
noise-insensitive, can 

handle errors in 

starting SOC value 

Computationally 
expensive, highly 

dependent on the 

accuracy of the battery 
model 

Max < 0.8%, Mean < 0.4% 

Hybrid Xia et al., 

2018 [42–43] 

Terminal 

temperature, 

current, and 
voltage 

Accurate, highly 

precise if model is 

correct 

Complex, requires 

highly accurate input 

variables 

Maximum error: 3.5% 

Indirect 

Estimation 

Xia et al., 

2018 [44] 

Current, 

Temperature 

Input parameters are 

easily obtainable 

Susceptible to error 

accumulation, leading to 

unreliable estimates 

Maximum error: 3% 

Direct 

Measurement 

Zhang et al., 

2018 [45] 

Terminal 

voltage, 

impedance, 
temperature 

Simple, low 

computational 

demand, minimal 
mathematical 

modeling 

Open-loop, sensitive to 

sensor accuracy 

Maximum error: 1.5% 

 

2.4      Model-based Filtering Method 

Kalman filters are the go-to tool for battery state estimation—noisy data is no match for them. Since their 

debut in 1960 [46-47], they’ve been a game-changer for EVs, cleaning up messy signals like a pro shown in 

Figure 2.5. But batteries don’t play by linear rules, so researchers leveled up with Extended and Unscented 

Kalman Filters. These smarter versions handle the twists and turns of real-world battery behavior Figures. 2.6-

2.7, constantly fine-tuning their predictions to nail SOC estimates in real time. Figure 2.8 shows working of 

Kalman filter with battery model. 

 

   
Figure 2.5: Noise reduction in battery systems using filtering techniques      Figure 2.6: State of Charge 

(SOC) prediction using recursive    Kalman filtering 

 

 
Figure 2.7: Real-time SOC tracking algorithm for EV batteries with noise filtering 
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Figure 2.8: Smart SOC Prediction - How Battery Models and Kalman Filters Work Together 

 

2.4.1       Modeling of Battery for Parameter Identification 

Utilizing an effective battery model is essential when using filtering techniques for parameter identification in 

order to obtain an accurate State of charge (SOC). In practical applications, the internal SOC is closely linked to 

external variables like as temperature, voltage, current, and a number of other characteristics. Numerous battery 

models are used to determine battery parameters, comprising partial differential equation (PDE) models, Thevenin 

circuit models, Coulomb counting models, Open Circuit Voltage (OCV) models, and mathematical models. 

Among the different modeling approaches, the Equivalent Circuit Model (ECM) is a highly recommended choice 

because it is simple to identify parameters and has no effect on the basic characteristics of the battery. As a result, 

the best choice for determining battery state of charge (SOC) is ECM. 

 

2.4.1.1      Equivalent Circuit Model 

One important instrument in the field of battery modeling is the Equivalent Circuit Model (ECM). It 

simplifies the intricate electrical behavior of batteries by using basic electrical components such as resistors, 

capacitors, and voltage sources. Due to its accuracy and usefulness, this modeling approach has gained a lot of 

traction in the market and is now a mainstay for figuring out crucial battery characteristics including temperature, 

terminal voltage, current, and beginning parameters for the filtering process. 

 

2.4 Filtering Method Categories 

Figure 2.9 presents the classification of filtering approaches used in SOC estimation, highlighting their 

relationships and applications. 
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Figure 2.9: Filtering Method Categories 

 

2.5.1 The Kalman Filter: A Two-Step Process 

Figure 2.10 [48] demonstrates how the Kalman filter continuously refines SOC estimates through its dual-phase 

operation             

:  

Figure 2.10: Iterative prediction-correction cycle of the Kalman filter. 

 

This method combines the best of both worlds: a battery model and real-time observation. The Kalman filter acts 

like a smart interpreter, using live battery data (voltage and current measurements from the equivalent circuit 

model) as its starting point to continuously refine its predictions 

Integrated SOC Estimation Framework 

 

1A step: Time update for state prediction 

âk
− = E[ak|Yk−1] = E[f(ak−1, ck−1, ek−1)|Yk−1]            (5) 

 

1B step: Time update for error covariance 

∑ =−
a,̃k E[(ãk̅)(ãk̅)T] = E[(ak − âk̅)(ak − âk̅) T]            (6) 

 

 

1C step: A system's output estimationb̂ = E[bk|Yk−1] = E[h(a, ck, dk)|Yk−1]                             (7) 

 

2A step: Gain matrix for estimator 

Gk =  ∑ ∑ 1−
b̃,k

−
ãb̃,k                                                             (8) 

 

2B step: Update the state estimation measurement 

âk
+ = âk

− + Gk(bk − b̂k)                                                  (9) 

 

2C step: Update the error covariance measurement. 

∑ = ∑ −−
a,̃k

+
a,̃k Gk ∑ Gk

T−
b̃,k                                                (10) 
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For nonlinear systems (common in real-world batteries), EKF/UKF variants overcome linearity limitations while 

retaining this recursive structure. Assumptions: system/observation noise vectors (w,v) have zero mean. 

2.5.2         Extended Kalman Filter 

The extended Kalman Filter is one of the most useful algorithms for nonlinear filter systems to offer real-time 

SOC estimation [49]. EKF's basic idea is to focus on the significance of first-order nonlinear Tylor series 

expansion [50] with respect to the estimation state. EKF then linearizes the nonlinear system by converting it into 

a linear equation [51]. EKF is used to estimate the best and most accurate SOC values. To find the terminal voltage 

and current values, SOC estimation uses ECM as an input or as a starting point. In Figure 2.11, the EKF algorithm 

is presented. 

    

 
Figure 2.11: The Extended Kalman filter algorithm 

 

Evaluating the subsequent EKF equations 

EKF 1A step: During time updates, the EKF predicts future states via: 

 

âk
− = E[f(ak−1, ck−1, ek−1)|Yk−1]                                       (11) 

 

Where e̅k−1 = E[ek−1]. (Often, ek−1 = 0. )                      (12) 

ek−1 = 0 

âk−1
+  & e̅k−1 are assumed to be logically propagable by the state equation, resulting in the expected value of the 

new state. 

EKF 1B step: Time update for error covariance 

Making an approximate calculation for ãk̅  is the first stage in the covariance prediction process. 

 ãk̅ = a − âk̅                                                                            (13) 

 

= f(ak−1, ck−1, ek−1) − f f(âk−1,
+ ck−1, e̅k−1).                       (14) 

EKF 1C step: System’s output estimation  

The estimated system output is 

b̂k = E[h(ak, ck, dk)|Yk−1]                                                    (15) 

≈ h(âk−1,
− ck, d̅k ), 

It is therefore assumed that the mean sensor noise and ãk̅ are the best approximations for calculating the output. 

EKF 2A step: Estimators’ gain matrix 

b̃k̅ = bk − b̂k̅ = h(ak, ck, dk) − h(âk−1,
− ck, d̅k)                  (16) 

EKF 2B step: Update the state estimation measurement 

In this stage, the prediction is updated using the estimator gain, and the innovation  bk − b̂k̅ provides the posterior 

state estimate. 

âk
+ = âk

− + Gk(bk − b̂k̅)                                                           (17) 

EKF 2C step: Update measurement of the error covariance 
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∑ = ∑ −−
a,̃k

+
a,̃k Gk ∑ Gk

T−
b̃,k                         

2.5.3 Advanced Estimation with Unscented Kalman Filtering 

 

While EKF struggles with computational complexity from its linearized Taylor approximations [52], the 

Unscented Kalman Filter (UKF) offers smarter nonlinear estimation. Instead of linearizing, UKF strategically 

samples 'sigma points' shown in Figure 2.12 to capture true system behavior with 2nd-order accuracy [53-56]—

yielding more reliable SOC predictions through its sampling mean (a) and covariance (G) adjustments. 

 
Figure 2.12: The algorithm for unscented Kalman Filter 

 

UPKF 1A step: Time update for state prediction 

Start by creating a posteriori state estimate vector for the previous time interval: 

âk−1
x,+ = (âk−1

+ )T, e̅, d̅]T                                                           (19) 

 

And enhanced a posteriori covariance estimation: 

∑ =x,+
a̅,k  Diag (∑ ∑ ẽ+

a,̃k , ∑ d̃)                                                (20) 

 

To produce the p+1 augmented sigma points, these variables are used. 

Rk−1
x,+ = {âk−1

x,+ , âk−1
x,+ + β√∑ ,+

a̅,k−1 âk−1
x,+ − β√∑ .+

a̅,k−1 }     (21) 

 

SPKF 1B step: Time update for error covariance 

∑ =−
a̅k ∑ αi

(c)p
i=0 (Rk,i

x,− − âk̅)(Rk,i
x,− − âk̅)T                        (22) 

 

SPKF 1C step: System’s output estimation bk 

The output b is estimated by assessing the model's final equation 

Firstly we calculate the points. 

 bk,i = h(Rk,i
a,−, uk, Rk−1,i

a,+ )                                                 (23) 

Next, the output estimation is 

b̂k = E[b(ak, ck, dk)|Yk−1]                                              (23) 

≈ ∑ xi
(m)p

i=0 (Rk,i
x,−, ck, Rk−1,i

x,+ )                                    (24) 

= ∑ xi
(m)p

i=0 bk,i                                                                  (25) 

As we did when determining âk
−  after the 1A step, this can be calculated using straightforward matrix 

multiplication. 

SPKF 2A step:  Gain matrix for estimators Gk. 
∑ =b̅,k ∑ xi

(c)p
i=0 (bk,i − b̂k)(bk,i − b̂k)T                            (26) 

∑ =−
a̅,b̅k ∑ xi

(c)p
i=0 (Rk,i

x,− − âk̅)(Rk,i
x,− − b̂k̅)T                         (27) 

 

Both of these are dependent on the sigma-point matrices R and bk,  which were already computed in steps 1B and 

1C, as well as  âk
−and b̂k , which were already computed in the above steps. 

Matrix multiplies can be used to produce the summing, as we did in the 1B step. 

Next, we just compute. 
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Gk = ∑ ∑ 1−
b̃,k

−
ãb̃,k                                                                (28) 

 

SPKF 2B step: Update the state estimation measurement 

The calculation for the state estimate is 

ak
+ = âk

− + Gk(bk − b̂k̅)                                                     (29) 

 

SPKF 2C step:  Update for error covariance 

The optimal formulation is utilized to calculate the final step directly. 

∑ = ∑ −−
a,̃k

+
a,̃k Gk ∑ Gk

T−
 b̃,k                                                     (30) 

 

2.5.4         Adaptive Filters 

Adaptive filters offer a dynamic solution for SOC estimation by continuously adjusting to battery aging 

and operational changes, overcoming limitations of static models. The Recursive Least Squares (RLS) algorithm 

[57] excels in real-time system identification, providing fast convergence for ECM parameter estimation, while 

adaptive EKF variants [58] enhance noise tracking capabilities. For simpler implementations, the Least Mean 

Squares (LMS) approach [59] operates reliably with incomplete data streams, though its susceptibility to weight 

drift has spurred specialized variants like Polarity-Based and Self-Adjusting Step Size LMS. Particle filters 

complement these methods by handling severe nonlinearities through probabilistic sampling. Together, these 

adaptive techniques provide robust SOC estimation across a battery's operational lifespan by addressing the 

inherent nonlinearities and time-varying characteristics of lithium-ion cells [60] 

 

 2.6         Data-Driven Estimation Methods 

A branch of machine learning that focuses on multi-layered artificial intelligence networks is the trained data 

estimation approach. This approach, which has been shown to be reliable and effective, estimates the SOC. 

2.6.1       Feed-Forward Neural Network 

In a feedforward neural network, data is sent from source to sink in a single direction without iterations or intervals. 

Another term for this particular kind of neural network is the multilayer perceptron (MLP). In a neural network, 

data travels via intermediate hidden layers from the first layer to the final layer predictions or classifications [61–

62]. The FNN uses a variety of input characteristics, including temperature, time, voltage, and current, to predict 

the state of charge. In this study, the network method is shown in Figure 2.13. 

 

        
Figure 2.13: SOC estimate using FNN 
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III. METHODOLOGY 
3.1 Model-based Estimation Method 

In order to avoid adverse impacts on battery characteristics, ECM is frequently utilised as a simple 

parameter identification. In addition to analysing voltage and current behaviour, this model is used to determine 

key battery parameters such internal impedance, resistance, and charge status. These projections help manage and 

monitor batteries for electric vehicles. Better outcomes, more accuracy, and less complexity follow. 

 

3.1.1 2nd Order RC ECM 

In comparable circuit modeling, a second-order RC model is frequently used to depict the properties of Li-ion 

batteries. The battery is represented in this model by a parallel connection of resistors (r1, r2) and capacitors (c1, 

c2). Capacitors, resistors, and voltage sources make up an analogous circuit model. Temperature T, battery state 

of charge (SOC), charging current (Ic), and terminal voltage (Vt) will all be measured by the ECM. A simple 

ECM with an ohmic resistor Ro and a voltage source as seen in Figure 3.1. MATLAB is used to build a second 

order RC circuit design with preset variables.   

 

3.1.2 Filtering Procedure 

Inner parameter values that serve as initializations in the SOC estimate process are determined by the Equivalent 

Circuit Model (ECM). It will be suggested that the Kalman, Extended, and Unscented filters be utilized. Figure 

3.2 explains the state and update equation step technique. 

 

 
 Figure 3.2: Kalman filtering state and update procedure based on ECM   
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3.1.3           State Transition Diagram 

Figure 3.3 presents the state transition algorithm for lithium-ion battery SOC/SOH estimation across three 

operational modes. During charging, voltage increases until threshold, while current (Ib) drops sharply then 

gradually to zero at full charge, enabling SOC derivation from constant-current charging curves. In discharge 

mode, voltage-current correlation allows SOC calculation through current variation analysis, transitioning to 

OCV-based reference during inactive periods. Our three-stage approach first establishes ECM baseline parameters, 

then applies Kalman filters for SOC estimation, and finally employs UKF for enhanced dynamic condition 

accuracy. The UKF-based health monitoring system integrates real-time voltage, current and temperature data to 

evaluate remaining capacity (%), performance efficiency and reliability - critical metrics for EV battery 

management. 

 

 
Figure 3.3: SOC & SOH state transition flowchart for lithium-ion battery  

 

3.1 Trained Data Estimation Method 

A train data-based FNN framework for SOC estimation was presented in this part. The battery data is necessary 

in order to train the FNN. Data about temperature, average current, average voltage, and voltage must be gathered. 

Following the collection of parameters, the layer data will be required. 

3.1.1 Data Acquisition  

As was already indicated, Figure 3.4 illustrates the three levels of FNN. The input layer is a design's initial layer. 

Temperature, average current, voltage, and current have all been measured in order to train the initial layer of 

design. The second hidden layer is where the first data is processed. For our proposed approach, we generated 55 

neurons in this layer. The last layer is the output layer, which combines the input and hidden layers. 

3.1.2 Data Computation 

The process of compiling all the data required to finish an operation into a single unit is known as data computation. 

The next step determines the length of a sequence and small batch measurements to ensure consistency throughout 

the dataset. There should be no difference between the test and validation data sets. 

3.1.3 Designing Networks 

As shown in Table 4, we supplied the network architecture with the necessary FNN variables. The iteration level 

should be at least 20 for accuracy. Small batches and training capacities determine how accurate the validation 

data is. In order to obtain more precise and useful findings in our case, we completed the initial data processing 

without rearranging the data. The process diagram of FNN is shown in Figure 3.5. 
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Figure 3.4: FNN layering diagram    

 

 

 
Figure 3.5: Train data estimation network’s flow diagram  
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IV. Experiments and Results 
4.1 How We Estimated Battery States 

Our experiments followed the SOC estimation process shown in Figure 3.3. Here's what we found: 

4.1.1 Measuring Battery Characteristics 

We built a 2RC equivalent circuit model in Simulink (Figure 4.1) to pin down the lithium-ion battery's exact 

parameters. This model helps us understand how the battery behaves in different conditions. The subsystem of 

2RC cell is shown in Figure 4.2. 

 

 
Figure 4.1: Simulink implementation of the 2RC     Figure 4.2: Subsystem for 2-RC Lithium Cell equivalent 

circuit model for battery parameterization.             

     

 

Figure 4.3: Charging Current                                                                              Figure 4.4 Terminal Volt 

 

 

 

 

 

 

 

 

 

 

 

           

 

Figure 4.5: State of charge                                                                                Figure 4.6: Temperature 
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We analyze battery performance using a hybrid pulse discharge method, initialized at 100% SOC to track 

parameter changes. During testing, the lithium-ion battery undergoes repeated charge/discharge cycles, generating 

pulse-form data for each phase. The 2RC equivalent circuit model proves superior to the 1RC alternative, offering 

greater accuracy in capturing complex battery dynamics—including external voltage behavior and internal 

parameter shifts. Key results (Figures 4.3–4.6) depict load current, terminal voltage, temperature fluctuations, 

and SOC trends, revealing predictable capacity fade with cycling. Initial SOC values typically range from 80–

100%, with a stable 'flat zone' near 80% SOC followed by a gradual rise during charging. Derived 2RC parameters 

are summarized in Table 2. 

 

Table 2: Identified Parameters of the 2-RC Equivalent Circuit Model 
Parameters Range 

𝐕𝐭 Voltage Range 3.3 - 3.7 V 

𝐈𝐋 Current Flow Alternates between -4.2A (discharging) 

and +3.2A (charging) in intermittent bursts 

T(Operating Temperature) -20~20.1 ºC 

SOC (Initial state of charge) 80~100% then progressively decline after 

each period  

The mathematical framework is set up in KF, EKF, and with inputs obtained from the battery design in order to 

estimate SOC. 

 

4.1.2 Results of the Filtering Process 

 

  
 

Figure 4.7: Kalman filter (i) True, estimated, & bound results (ii) Error of SOC estimation 

 

   
     Figure 4.8: Extended Kalman Filter  (i) True, estimated, & bound results 

              (ii) Error of SOC estimation 
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Figure 4.9: Unscented Kalman Filter Performance 

(i) True state, estimated state, and confidence bounds 

(ii) State of Charge (SOC) estimation error 

 

Table 3 Error Analysis of the Filtering Method 
Error KF EKF UKF 

Error at bounds ± 2.4 ± 2 ± 1.4 

Error of estimation  < 1.6 < 0.6 < 0.4 

 

To get reliable SOC estimates, we start by zeroing out the detector (dₖ) and process noise (eₖ), then let 

the Kalman filter work under real-world noisy conditions. When we compare methods (Figs. 4.7-4.9), the UKF 

stands out—it locks onto the true SOC faster than traditional KF or EKF, cutting errors to under 0.4% thanks to 

its clever sigma-point sampling. This isn’t just theory: the UKF’s precision (Figure 4.10) shows a razor-thin 0.01% 

SOH error) actually translates to better EV performance and longer battery life listed in Table 3. 

 

4.1.2 Unscented Kalman Filter SOC & SOH Estimation 

 

 
(i)                                                                                                                   
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(ii)                                                                                                                  (i ii) 

 
(iv) 

Figure 4.10: Performance of the Unscented Kalman Filter (UKF) for (i) Battery State Estimation (ii) Real 

value vs. estimated value (iii) Estimation error (iv) State of health and estimated resistance 

 

4.1 Train Data Estimation Method  

This chapter presents the Root Mean Square Error (RMSE), Maximum Error (MAX), and Mean Absolute Error 

(MAE) for State of Charge (SOC) estimation, following the FNN process outlined in Figure 3.5 and the network 

specifications detailed in Table 4. The training process was repeated three times, with the results summarized in 

Tables 5 to 7. These experiments used the Adaptive Moment Estimation (ADAM) optimizer, running for 200 

epochs with validation performed every 30 iterations. 

The initial RMSE results from the computational analysis are illustrated in Figures 4.11 to 4.13, while Figures 

4.14 to 4.20 display the RMSE, MAX, and MAE errors at different temperatures (–10°C, 0°C, 10°C, and 25°C). 

To train the FNN for SOC prediction, input variables such as voltage, current, average current, average voltage, 

and temperature were collected at each time step. Before training, the data underwent pre-processing to ensure 

proper validation, testing, and network training. Analysis at different temperatures is listed in Table 8. 

Comparative analysis of evolving variables and operating characteristics is presented in Table 9.  

 

Table 4: Key Architectural and Training Parameters for the Feedforward Neural Network (FNN) 
Parameters Given data 

Number of output neurons 1 

Number of input features 5 

Total neurons in hidden layers 55 
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Training epochs 200 

Epochs required for learning rate decay 1000 

Initial learning rate 0.01 

Learning rate decay factor 0.1 

Validation frequency (epochs) 30 

Training repetitions 3 

 

4.2.1 Input Data Normalization Protocol 

 
Table 5: First Repetition Performance Metrics 

 

 
 

Table 6: Third Repeat 

 

Table 7: Model Robustness Analysis Across Repeated Validations 

Repetition no. Validation RMSE % Validation Loss 

1 0.02 0.0002 

2 0.03 0.0005 

3 0.03 0.0005 
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 4.2.2 Training & Validation Performance Analysis 

 

 
Figure 4.11: First repeat  

 

  
Figure 4.12: Second repeat                   Figure 4.13: Third Repetition Performance Benchmark 

 

 

 
Figure 4.14                                    Figure 4.15 
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4.16: Estimation Error Stability Analysis 

 

Table 8: Comparative Analysis of Estimation Methods for Dynamic Systems 
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Figure 4.17: Test at (-10°C)     Figure 4.18: Test at (0°) 

 
 

 
Figure 4.19: Room-Temperature (10°C) Estimation Benchmark Figure 4.20: Moderate Temperature Performance (25°C) 

 

 Table 9: Comparative Analysis of Evolving variables and Operating characteristics 
Sr.no Estimation 

Technique 

Core 

Methodology 

 

 

Evolving variables Operating characteristics 

E1 E2 E3 E4 O1 O2 O3 

Accuracy 

(RMSE) 

Processing 

Time 

Design 

Constraints 

Recovery 

Capability 

System 

Efficiency 

SOC 

Error 

(%) 

Predictive 

Utility 

1 Feed-forward 
neural network 

Layered 
artificial 
neuron 

architecture 

Exceptional 
(<0.02%) 

Moderate Significant 
limitations 

Outstanding Optimal (< 
0.02) 

Adaptive 
value 

prediction 

2 Unscented 
Kalman filter 

Deterministic 
sampling for 

nonlinear 
systems  

Outstanding 
(<0.01%) 

High 
latency 

Minimal 
constraints 

Outstanding Optimal  (< 
0.01) 

Degradation 
pattern 
analysis 

4 Extended 
Kalman filter 

First-order 
linearization 

approximation 

Competitive 
(<0.6%) 

Efficient Moderate 
constraints 

Outstanding Optimal (< 
0.6) 

Remaining 
useful life 
projection 

5 Kalman filter Linear system 
state 

estimation 

Acceptable 
(<2%) 

Moderate Significant 
constraints 

Limited Optimal (< 2) Real-time 
state tracking 

6 Coulomb 
Counting  

Current-time 
integration 

method 

Tolerable 
(<2.7%) 

Rapid Significant 
constraints 

Limited Suboptimal (< 
2.7) 

Historical 
data 

dependence 
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V. Conclusion 
It is advised that lithium-ion batteries be used in cars using the SOC estimate method. MATLAB 

simulations for various stages of lithium-ion battery degeneration have been used to validate them. The results 

show that the KF, EKF, and UKF-based ECM's estimated errors are contained within a restricted range. Although 

UKF and EKF both perform well, UKF's error reduction is ±0.035% when compared to EKF and ±1.6% when 

compared to KF. This highlights the UKF's crucial function in SOC estimation because it successfully lowers the 

estimated RMSE to 0.01. A narrow range of errors indicates that these methods may eliminate noisy measurements 

and operational errors, ensuring accurate SOC convergence under time-dependent estimate errors. 

But when compared to all of the above techniques, the training data approach, FNN, shows noticeably 

lower estimation errors. Since they successfully lower system noise and guarantee the safe functioning of EVs, 

both strategies have undergone extensive verification and are considered appropriate for EVs.  

Research on SOC estimate has made significant strides, but a solid methodology to overcome the 

shortcomings of previous methods has not yet been developed. This study demonstrates the superior outcomes of 

the suggested methods for estimating SOC, specifically the UKF in conjunction with ECM. These model-based 

filtering strategies show improved precision, more adaptability, and reduced prediction error compared to previous 

filtering techniques. Additionally, the article proposes a revolutionary technology known as Feed Forward Neural 

Network (FNN), which blends prediction techniques with artificial intelligence to produce extremely dependable 

results. FNN accelerates the rate of learning for SOC estimation by outperforming recently proposed techniques 

in terms of lowest RMSE, MAE, and MAX errors. Similarly, this paper presents a technique for accurate SOC 

estimation using FNN under different temperature settings. The literature hasn't before examined this strategy. 

The proposed method is less complex and more adaptable since it may effectively train any pertinent operation 

with the right datasets. The findings demonstrate that, in comparison to traditional approaches, both of the 

proposed methods provide correct SOC estimations with short computation times, demonstrating exceptional 

precision and rapid convergence. 
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