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Abstract:

Background: Small, fast drones are now cheap and easy to use, and they are being used in hostile military or
other hostile settings. These drones can be armed or used to spy on people, and they represent a real threat to
our military safety and equipment. It is very important that we have good automatic systems that can find these
drones, no matter how hard they try to hide them.

Materials and Methods: Materials and Methods: This research investigates the efficacy of several supervised
and unsupervised machine learning algorithms for classifying in-flight drones. The evaluated algorithms include
linear regression, logistic regression, K-means clustering, random forests, decision trees, and naive Bayes
classifiers. Model performance was rigorously assessed using standard evaluation techniques focused on
minimizing classification errors, specifically false positives and false negatives.

Results: The study found that, when distinguishing between drone and non-drone items, the linear, logistic, and
decision tree models performed best. These tools significantly reduce false calls and missed signs, making them
very effective at spotting them.

Conclusion: The study shows that these machine learning tools, such as logistic regression and decision trees,
can be used in real-world settings to fight. They can help make decisions independently, which will improve air
defence. The work concludes with tips on developing better defence tools that can learn from new drone
technology to protect against threats in today's wars.

Key Words: Machine Learning Algorithms, Model Evaluation Techniques, Drone Safety, Military, Drone
Detection.
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I. Introduction

Over the last ten years, the technology of military drones has changed incredibly. Initially, drones were
mainly used for spying, but now they can conduct precision strikes. Whatever their size, they are instrumental in
providing aerial intelligence that can quickly lead to saving people's lives from unexpected dangers. Drones
certainly help keep an eye on areas too dangerous for humans in ways that normal cameras cannot; nonetheless,
they also create a whole realm of problems to be solved. Cybersecurity specialists reckon cyberterrorism is
among the most significant threats military commanders face today. At the end of the day, drones are counted as
one of the ultimate weapons ever devised in warfare [1, 2].

The enormous rise in unmanned aerial vehicles (UAVs), aka drones, in both military and non-military
fields is creating a significant security problem. Drones can pose a hazard and may hit a bird, putting personnel
at risk. Most current detection systems struggle to detect drones. Meanwhile, machine learning can significantly
improve detection, and utilising radar, video, and audio data together can raise accuracy further. Still, real-time
detection remains a problem. So, building robust UAV detection systems and bird-collision avoidance techniques
is essential to keep the sky safe for flying [3, 4].

New studies on drone safety show that intelligent systems are vital for collision avoidance in the air.
Machine learning methods, especially convolutional neural networks, not only improve the efficiency of object
detection but also help address the problem of distinguishing between birds and drones [5, 6]. With the help of
trajectory prediction models, unmanned aerial vehicles (UAVs) can predict the movement of birds, enabling real-
time avoidance and ensuring that the flying machine's changed route does not violate mission objectives [6, 7].
This piece has solved the problem of preventing bird and drone collisions while keeping everyone safe.

Drones, or Unmanned Aerial Vehicles (UAVs), have become a popular tool for various civilian and
military applications. However, they also bring about new risks of bird strikes. Bird strikes have been reported to
occur more than 16, 000 times annually (Sun et al.). In fact, these incidents can cause more damage to drones,
which are smaller and less robust, than to bigger, sturdier aircraft, according to [8, 9, 10].

DOI: 10.9790/0661-2801021628 www.iosrjournals.org 16 | Page



Advanced UAV Detection And Airspace Security Techniques In Military Environments

Studies show that the impact of bird-drone collisions is quite different from that of birdplane strikes.
Besides mechanical failures of the drone, there is also the risk of animal injury, and the situation may be
complicated in the case of vital drone uses, such as the delivery of medical supplies and disaster relief operations
[11, 12]. New solutions, such as machine learning algorithms and LiDAR sensing technologies, are being
developed to forecast bird behaviour and enhance drone safety. Combining these studies and reports underscores
the importance of recognising bird-drone collisions as a distinct safety issue, distinct from the usual cyber or
military threats. Controlling this danger is a prerequisite not only for the safe integration of UAVs into the airspace
but also for maintaining the balance of wildlife ecosystems [13, 14, 15].

This research aims to identify UAVs (Unmanned Aerial Vehicles) among a crowd of aerial objects. It is
primarily dedicated to improving detection accuracy when models are trained on a massive collection of UAVs
and other objects recorded under different environmental conditions. Additionally, machine learning and artificial
intelligence are employed in experiments to develop sophisticated detection algorithms and to analyse flight
patterns and sizes. Moreover, the system is installed and tested in simulated environments that replicate real-
world scenarios, including UAV swarms. Hence, a system is devised that quickly gathers and processes data, thus
enabling quick decision-making and maintaining high detection precision.

This paper presents machine learning as a tool to enhance drone security across multiple dimensions.
Firstly, machine learning techniques improve drone detection and path prediction. Secondly, machine learning-
powered detection systems can identify drones in a hostile environment where they are camouflaged. Thirdly,
these systems can monitor multiple drones simultaneously, regardless of their type or size. Fourthly, the same
technology helps identify objects suspected of being drones and neutralise their threat if necessary. This study
highlighted the acute need to combine multiple sensors for drone detection, as single-sensor systems are unreliable
under varying conditions (Carotenuto et al., 2017). Besides, the system can perform real-time signal processing
and efficiently handle noisy data from uncontrolled environments. Last but not least, robust UAV detection
systems will likely involve automatic target recognition features based on spectral, spatio-temporal, and other
signatures.

This research paper is organised as follows: In Section 2, a review of relevant literature is presented to
identify gaps in the topic. In Section 3, we describe our methods, including how we gathered data, the evaluation
techniques used, and the machine learning algorithms employed. Section 4 presents and discusses the results and
implications for airspace safety. Section 5 concludes with reflections and suggestions for further research.

II.  Related Work
Previous Studies

Some recent studies have proposed different collision-avoidance strategies for swarm drones using
distributed communication and repulsion vectors. Those methods, though quite successful in simulations, are
hardly applicable in military airspace security as they depend heavily on precise communication and location
awareness. This makes them susceptible to interference and GPS-denied environments. Hence, the plan is to
create a multi-layered UAV detection and coordination framework for military applications, which will serve as
the basis for the research. The idea is to improve collision avoidance and electronic countermeasures resilience
while ensuring UAV platform scalability [13, 11].

In recent years, some dramatic advances have been made in drone technology, as reflected in much of
the research. Using a drone motion capture system built on principles of computer vision for real-time tracking,
the researchers went beyond the limitations of a fixed-camera system, a significant drawback of the traditional
method [14]. However, this is not a solution to the problem of security in military or restricted airspace; as such,
military drone operations will require capabilities beyond those addressed by the study above. Another study [16]
has successfully shown how drones have been used to conduct a bird survey in a very short time compared to the
traditional survey method and with more accuracy; however, the study has not moved beyond passive observation
and its integration of military features, for example, the case of threat detection, which is a very crucial aspect has
been left out. This work aims to develop a UAV detection and airspace security framework suitable for military
operations. The system, equipped with deep learning models and dynamic flight pattern recognition, will
independently detect, track, and take appropriate action against unauthorised UAVs, thereby significantly
improving airspace defence capabilities.

Study [17] details bio, inspired morphing mechanisms that help the flight efficiency of birds but fails to
address important issues such as hiding from surveillance and interacting with radar systems, aspects that are very
important in the military context. On the other hand, the article [18] uses a random forest classifier to identify
aerial targets but it is not equipped to respond to threats in real time or to coordinate a swarm, thus this method is
not very effective against UAVs that try to escape.

The work presented here is intended to combine intelligent detection algorithms, adaptive swarm
coordination, and defensive behaviors, thus creating a unified system capable of handling changing threats in
military airspace. Moreover, studies [19, 20] show that machine learning, especially the random forest model, can
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accurately (up to 86%) predict security risks at public events. Still, these studies are mostly about threats on the
ground and thus they have limited use for the security of military airspace. Our project is aimed at closing this
gap by applying sophisticated deep learning methods that combine data from radar and GPS. This method not
only makes possible scalable detection and response to threats from unmanned aerial vehicles (UAVs) but also
forms a flexible system for dealing with aerial threats.

Recently, many papers on UAV detection have used methods such as radar-based micro-Doppler
analysis and deep learning classifiers to separate drones from other flying objects. In one paper [21], the authors,
using a deep CNN combined with handcrafted features, online local binary patterns, and range and Doppler maps
obtained from a radar system, achieved 96% UAYV detection accuracy across different scenarios, including open
space and cluttered environments. In another paper [22], the advantage of a convolutional neural network
combined with an LSTM cell for UAV classification from a radar system is highlighted, achieving 98.1%
accuracy in two-class scenarios. Given these research limitations, the study will focus on incorporating features
of multimodal sensors, using distributed deep learning algorithms for on-the-fly classification, extending multi-
class capability, and applying adaptive models to changing environments. The said methodology is aimed at
military UAVs operating in fully or partly controlled airspace, where it is paramount to deliver the fastest and
most accurate threat detection.

Recent advances in micro, Doppler signatures have made it possible to better distinguish drones from
birds, which is crucial for surveillance. In one research [28], the authors used a convolutional neural network
(CNN) on frequency-modulated continuous-wave (FMCW) radar data and obtained near-perfect accuracy.
However, the method was limited to batch-based inference. Another work [24] used a 10 GHz radar along with
Support Vector Machines (SVM) and Tensor Flow and got an accuracy of 96%. Still, the method could not be
used for live scenarios. Both solutions are affected by major challenges like being sensitive to environmental
conditions, losing accuracy with different movement patterns, depending on stationary setups, and focusing only
on drones and birds. We intend to overcome these barriers by combining CNNs with LSTM attention mechanisms,
implementing lightweight onboard models for UAVs, using multi-sensor fusion, and broadening the classification
capabilities to include swarm detection and anomaly identification. Such an approach will make UAV
surveillance systems of the future more scalable, real-time, and flexible.

Current drone detection research indicates that complex data poses a significant challenge, as it hampers
performance and leads to overfitting, among other issues. Tools like Principal Component Analysis (PCA) and
Autoencoders are helpful in data simplification, thus allowing machine learning models to work better. Among
the birds in the sky, radars can detect drones with 100% accuracy; on the other hand, deep learning models achieve
83% accuracy and are therefore considered suitable for real-world use. Still, some drawbacks remain, namely
complex methods, small datasets, and environmental changes that reduce accuracy [25, 26, 27]. In this paper, we
confront the issues by proposing solutions such as the combination of radar and computer vision data, increasing
the number of samples in the dataset to include different types of drones, and creating deep learning models that
are not only efficient but also light and fit for military applications. With such systems, we can enhance UAV
safety and strengthen airspace security in hostile environments.

Recent studies have uncovered UAV detection methods that have shown excellent results. One such
method is a self-supervised ConvNeXt V2 framework that achieved over 81% accuracy, and another is Garuda's
framework, which reached 94.5% accuracy at a 400-meter distance [29]. Some other studies suggest that bringing
radar together with audio and video can make it more reliable [30, 31]. However, not all problems have been
solved yet, for example, small datasets and high computing power requirements. Our framework should address
these points by combining radar, vision, and audio, employing efficient models, and expanding datasets to
improve UAV detection and, therefore, enhance airspace security in military environments.

Earlier research on avoiding aircraft collisions in the air can be grouped into four main areas. First,
pertain to the visual detection methods (like CNNs and YOLO-based detectors), which show good accuracy;
however, such methods often encounter problems due to changing lighting conditions and the presence of many
unwanted objects in the background. Secondly, radar-based classification systems can detect even in very low
visibility; however, they struggle to distinguish small UAVs from birds. Third, studies that focus on bird-detection
differentiation show that ensemble methods can improve classification accuracy, but, on the flip side, they can
become computationally intensive in real-time scenarios [6, 5]. Last but not least, machine learning, based
prediction models are designed to make use of the concept of trajectory prediction and optimisation algorithms
for creating a new route; however, such models are primarily dependent on the idea of perfect sensor inputs, and,
in addition, they are only to some extent validated on complex real-world scenarios [12]. One significant gap is
that few studies first efficiently differentiate between birds and drones, then consider predictive modelling and
real-time path rerouting. Thus, our paper aims to fill this void by integrating visual machine learning classification
with trajectory prediction and incorporating a lightweight avoidance algorithm that is optimised for UAV
operations [6]. We used synthetic datasets and real-world video footage to train and test our system, and we
applied transfer learning to fine-tune the models. The experiments were carried out using measures such as
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precision, recall, F1, score, and latency. We also ran a comparison of our solution with the state-of-the-art models
to assess where we stand fairly. Although we have identified ethical issues such as privacy and surveillance, we
primarily focus on the safety aspect of our work: eliminating the risk of ecological damage during flight.

III.  Methodology

Data Collection

The Kaggle dataset is an excellent resource for exploring how machine learning can be used to
distinguish drones from other objects. It has really nice folders full of good photos from the camera. One folder
contains pictures of various items collected via web scraping, which covers the real world well and makes the
dataset more useful. On the other hand, a folder contains images of drones taken from a different dataset, providing
a complete picture of both categories. Having such a wide variety of pictures is the main factor in creating strong,
powerful machine learning models that can successfully recognise and separate drones from other objects in
various situations [32.1].

In order to make our dataset uniform and suitable for training, we carried out several preprocessing steps.
Initially, we scaled all the images so they had the same size, as consistent sizing is crucial for processing. Besides,
we normalised pixel values to a range that allowed faster and more stable convergence during training. Moreover,
we diversified our dataset by applying various image augmentation methods, such as rotation, zoom, and
reflection. The rigorous efforts resulted in a model that generalises better and is more tolerant of changes likely
to occur in real-world situations [33].

Machine Learning Algorithms
Linear Regression

Linear regression is a statistical method for estimating values (e.g., house prices) from one or more
continuous variables. It describes how independent variables (things we can change) affect the dependent variable
(the result that we want to predict) by drawing a straight line through the data points. The line is given by the
equation Y = a*X + b. There are two main types of linear regression: simple linear regression, which considers
only one independent variable, and multiple linear regression, which considers two or more independent variables
for deeper analysis. Moreover, polynomial regression is capable of modelling more intricate, non-linear patterns
in the data, thus allowing for better prediction and understanding [34].

Logistic Regression

Logistic regression is essentially a tool for forecasting binary results, e.g., "success" or "failure". It differs
from regular regression in that it estimates the probability of an event occurring given the presence of one or more
factors. The method converts the data fed to it into a probability score between 0 and 1, indicating the likelihood
of the event; it can estimate a patient's risk of a particular disease by considering multiple symptoms. It is also
known as logit regression and is widely used across fields such as medicine, banking, and sociology, where it
describes how various variables are related and provides their probabilities [35].

K-Means

K-means is a well-known clustering technique widely used in data analysis. It enables grouping data
points into clusters based on their similarities. Initially, you decide the number of clusters that you want, referred
to as k. Following this, the algorithm designates each point to the closest cluster centre, thereby maintaining the
similarity of points within the same cluster. This separates the data into distinct categories, facilitating analysis
and decision-making [36].

Random Forest

Random Forest uses an ensemble of trees to combine multiple trees. A whole "forest" of trees is
generated, where each tree is trained on a portion of the data and classifies objects based on different attributes.
When there is a new object, each tree casts a vote for its class prediction, and the highest number of votes is the
final class. Since this method improves the accuracy of the results and reduces the risk of overfitting, it is
considered a powerful machine learning tool [37].

Decision Trees

The Decision Trees algorithm is a supervised machine learning method that serves both classification
and regression purposes. It develops a tree-like model which determines a target variable by using straightforward
and logical decision rules based on input features. Each node is a feature, and the branches show the possible

outcomes. The model is very understandable, as the prediction is obtained by moving from the root to a leaf node
[38].
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Naive Bayes Classifier

The Naive Bayes Classifier is one of the most widely applied supervised machine learning algorithms
based on Bayes' Theorem. It computes the likelihood of a data point belonging to a particular class by assuming
that its features are independent. This method is very efficient and is mainly used for text classification, spam
filtering, and sentiment analysis [39].

Model Evaluation Techniques in Machine Learning

Evaluation metrics are indispensable instruments used to quantitatively measure the effectiveness of
machine learning models. They not only help understand the model's accuracy, precision, recall, and other
performance indicators but also focus on each model's ability and limitations. Consequently, this enables users to
compare different algorithms and decide which one fits best for their requirements [40]. Here, we made use of
these metrics to accurately classify images of objects and drones:

Classification Accuracy

Classification accuracy measures the percentage of correct predictions made by a machine learning
model compared to the total number of predictions. This metric is easy to understand and ranges from 0 to 1. In
scikit, learn, every estimator has a score method, and the default evaluation metric for classifiers is accuracy [41].

Confusion Matrix

Classification accuracy measures the percentage of correct predictions made by a machine learning
model compared to the total number of predictions. This metric is easy to understand and ranges from 0 to 1. In
scikit, learn, every estimator has a score method, and the default evaluation metric for classifiers is accuracy [41].

Area Under the Curve

The AUC (Area Under the Curve) metric measures how well the model can differentiate between two
classes at different decision thresholds, which is extremely important in medical diagnostics to avoid misdiagnosis
and improper treatment. On the other hand, the F1 score is a harmonic average of recall and precision; thus, it is
extremely helpful for balancing between false positives and false negatives in high-risk situations where
inaccurate decisions lead to distrust among users of automated systems [42].

LogLoss

LogLoss reflects how confident a predictive model is in its predictions and the implications of possible
errors. This metric is of great importance in the medical field, as mistakes can have very grave consequences for
patients. Together with other metrics, LogLoss is used for assessing the effectiveness of a model based on the
machine learning technique and for grasping the seriousness of errors it can make [33].

K, S statistic

The K-S statistic is an important measure of how well a classification model distinguishes between
positive and negative cases. A K, S value of 100 means that the model has achieved perfect separation, whereas
a value of 0 means that the model cannot distinguish the two groups any better than a random selection. Usually,
classification models produce K and S values ranging from 0 to 100, and higher values indicate better predictive
power [43].

Gini Coefficient

The Gini coefficient is a measure that reflects how well a predictive model performs in classification
tasks. It is calculated from the Area Under the Curve (AUC) of the ROC curve using the formula: Gini =2 x AUC
- 1. A Gini coefficient of over 60% indicates a good model. In this study, the calculated Gini coefficient was
92.7%, indicating that the model was very accurate in predicting [40].

A Schematic of the Processes

A key advantage is that the model-building process leverages several very capable libraries, especially
the open-source Python Library Pandas. Since Pandas is a potent data processing and analysis tool, it is a must-
have for any data scientist. Besides, Pandas provides highly efficient data structures, such as Series and
DataFrames, which greatly simplify handling large datasets.

The next step is the implementation of automated machine learning (AutoML), which is a significant
breakthrough in model building. AutoML not only simplifies the machine learning (ML) workflow but also
democratises ML by making it accessible to people with limited experience through the automation of various
stages. For experienced engineers, AutoML will take away the burden of performing mundane tasks over and
over, so they can devote their time and creativity to developing better models and achieving superior results more
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efficiently. That is why a staggering combination of automation and expertise has produced a powerful synergy
capable of generating innovative ideas in machine learning; it is equally suitable for both beginners and experts

[38, 40, 44, 45].
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Figure no 1. Drone Safety Detections Models

The drone safety detection system starts by searching different databases to find the best routes to its
destination, as shown in Figure 1. Once the best route is found, the system still needs to ensure the airspace is free
of birds. It uses highly complex algorithms to identify these birds and avoid collisions. The drone stays on its path
while continuously observing bird activity around it, ensuring it reaches its destination safely without any bird
encounters.
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Figure no 2. A model for assessing drone safety in relation to birds, balancing safety and ecology.

Table 1 and Figure 2 show a well, thought, out set of criteria for assessing the safety of drones when
interacting with birds. The purpose of this framework is to find a perfect balance between imposing strict safety
requirements for drone operations and giving due consideration to the protection of birds and their natural habitats.
It examines a range of elements like the possibilities of crashes, the ways birds react, and the influence on the
environment. Ultimately, the goal is to make drones not only safe instruments for air navigation but also helpful
allies in the preservation of nature.

Table no 1. A framework for evaluating drone safety in relation to birds, striking a balance between safety and
ecological considerations.

Category Details
Environmental | Bird species, flock size, flight altitude, time of day, seasonal patterns, and weather conditions are essential
data for understanding bird behaviour and ecology.
Drone specs Consider the following key factors: size, speed, manoeuvrability, sensor suite (cameras, LIDAR, radar),
and battery endurance.
Operational Flight information should include the following details: route, altitude, speed, mission type (such as
factors hovering, transit, or delivery), and location (whether it's urban, rural, or near water).
Detection Performance metrics for machine learning models include precision, recall, and latency, as well as factors
system such as detection range and sensor accuracy.
Prediction The accuracy of machine learning trajectory forecasting is measured using metrics such as Mean Absolute
system Error (MAE) and Root Mean Square Error (RMSE), along with the forecast time horizon.
Avoidance Evasion success rates, minimum safe distances, and time-to-collision estimates are key factors in
system assessing safety.
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Bird Detection Models and Drone Safety

First: Bird Detection Using Computer Vision Relies on drone-mounted cameras.

Models used: Machine Learning Algorithms to detect birds in images and videos in real time.
Outputs: Determine bird locations, speed, and direction. Basic Equation:

bird® e ]
m = (blelX) (1)

Here, JS is the neural network's output for each class.

Second: Radar & Acoustic Sensors:

Radar waves reflect off small flying objects such as birds. Together with machine learning models, it
can be used to identify a bird, another drone or any other object.
Model used: Deep Neural Networks take radar data as input and classify it.

b+ softmax WTx = f(x) )
Third: Collision Prediction.
After we detect the bird, we predict whether a collision will occur by calculating the probability of a
collision. For this, we take into account the speeds of the drone and the bird, as well as their relative path.

Equation:
d(t) is the distance between the drone and the bird. ,u is the relative speed:
d(t)
—=cT 3
U - ¢ 3)

cT less a certain limit — we take escape or evasion action.
Fourth: Decision-Making System
If the system detects a risk of collision:
o Slows down
o Changes lane
o Stops mid-air
Mathematical model: We leverage an advanced machine learning algorithm, as detailed above, to
uncover insights and drive accurate predictions, enhancing our analytical capabilities and ensuring the reliability
of our results.

IV.  Results

To assess the effectiveness of machine learning models in real-world settings, we review and validate
their outputs. Such a procedure entails fitting the models to one dataset and evaluating them on another. Thus, we
obtain valuable indicators of the model's performance, including Classification Accuracy, Confusion Matrix, Area
Under the Curve, Logarithmic Loss, K-S Statistic, and Gini Coefficient. These indicators allow one to judge the
model's predictive capability and its overall robustness. It's crucial to perform these analyses to detect overfitting,
which occurs when a model performs very well on the training data but poorly on new data. Once overfitting is
detected, developers can continue fine-tuning the model and eventually obtain a model that is well adjusted to
and able to generalise from different data sets encountered in practice.

Analysis of Test Scores for Birds

Table 2 presents the performance of various systems using Machine Learning Evaluation Metrics for
drones. Linear regression scored the highest, at 98, with logistic regression close behind at 96 and decision trees
at 94. These results demonstrate how well the methods identified the correct bird types, as indicated by strong
scores in key metrics such as the Confusion Matrix and Classification Accuracy.

Table no 2. Analysis of Test Scores for Birds

i @)
Metrics > 5 Q = > 0%‘ E g
38 = 8 & 3 ] - e a
E8 | 52 | ¢ | g= g g E %
g2 | ¥ | 52 | ° 5 Z Y
= @ 2. = =4
Model = = e ° °
Linear Regression 1 1 0.99 0.97 0.93 0.96 98%
Logistic Regression 0.98 1 0.95 0.93 0.93 0.94 96%
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K-Means 0.93 0.94 0.91 0.89 0.8 0.82 88%
Random Forest 0.94 0.94 0.93 0.91 0.85 0.87 91%
Decision Trees 0.96 0.98 0.92 0.93 091 0.92 94%

Naive Bayes Classifier 0.95 0.97 0.94 0.9 0.9 0.9 93%
% 96% 97% 94% 92% 89% 90%

The Naive Bayes Classifier, Random Forest, and K-Means models obtained mean values of 93, 91, and
88, respectively. The Logarithmic Loss, K-S statistic, and Gini coefficients for these models were 92, 90, and 89,
respectively.

1.2
Analysis of Test Scores for Birds
0.8
0.6
0.4
0.2
0
Linear Logistic K-Means Random Decision Naive
Regression Regression Forest Trees Bayes
Classifier
W Classification Accuracy M Confusion Matrix Area Under The Curve M Logarithmic Loss
W K-S statistic Gini coefficient %

Figure no 3. Analysis of Test Scores for Birds

These outcomes reflect the challenges the models face in precisely identifying different bird species,
which makes them unsure about their predictions. This situation serves as a reminder that one should always
resort to sophisticated models and choose the right one according to the particular dataset's needs, as shown in
Table 2 and Figure 3.

Analysis of Test Scores for Drones

Table 3 shows that Linear Regression, Logistic Regression, and Decision Trees topped the charts with
scores of 99, 96, and 95, respectively, on primary metrics such as the Confusion Matrix and Classification
Accuracy. These significant numbers indicate their strong ability to correctly classify and distinguish the various
bird species in the dataset.

Table no 3. Analysis of Test Scores for Drones

Metrics . o) " o c =~ g
2 5 =g ® »
8¢ | 2 | &8 =% 2 g
G = o : =3 =] @ [}
< = ] 3 =2
g ® = & & g
Model -
Linear Regression 1 1 1 0.98 0.96 0.97 99%
Logistic Regression 1 1 0.96 0.95 0.92 0.94 96%
K-Means 0.93 0.95 091 0.89 0.81 0.85 89%
Random Forest 0.94 0.96 0.94 0.92 0.88 0.9 92%
Decision Trees 0.95 1 0.94 0.94 0.92 0.93 95%
Naive Bayes Classifier 0.96 0.98 0.95 0.92 0.9 0.91 94%
% 96% 98% 95% 93% 90% 92%

In contrast, the Naive Bayes Classifier, Random Forest, and K-Means models achieved average scores
of 94, 92, and 89, respectively, while the Logarithmic Loss, Gini Coefficients, and K-S Statistics were 93, 92,
and 90, respectively.
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Analysis of Test Scores for Drones
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Figure no 4. Analysis of Test Scores for Drones

Test and Score Analyses for The Average Performance Over All Target Classes

Here, the analysis compares various models using UAV machine learning metrics. Linear regression,
logistic regression, and decision trees have shown better results, with scores of 98, 96, and 94, respectively. These
models lead the pack in the use of confusion matrices and classification accuracy metrics, which is a strong
indication of their ability to classify bird species correctly, as evidenced by their high scores of 98, 96, and 95,
respectively.

Table no 4. Analysis of Test Scores for Average Drones & Birds

Metrics A 5 =
a g 2 2 o o
b = Y - \ =
22 2. Q= = b 8
s = o S = = P4 o o,
38 = ) 5 B 2 %
Z2 z &5 & z g
s 3 2 g & ]
= ® A
Model
Linear Regression 1 1 0.995 0.98 0.945 0.97 98%
Logistic Regression 0.99 1 0.955 0.94 0.925 0.94 96%
K-Means 0.93 0.95 091 0.89 0.81 0.84 89%
Random Forest 0.94 0.95 0.935 0.92 0.865 0.89 92%
Decision Trees 0.96 0.99 0.93 0.94 0.915 0.93 94%
Naive Bayes Classifier 0.96 0.98 0.95 0.91 0.9 0.91 93%
% 96% 98% 95% 93% 89% 91%

On the other hand, the Naive Bayes classifier, Random Forest, and K-means models only managed to
score, on average, 93, 92, and 89, respectively; these models also reported performance measures of 93, 91, and
89, respectively. This points to significant problems in correctly classifying Average Drones and Birds. The
results highlight the importance of selecting sophisticated models tailored to the task and dataset, as demonstrated
in Table 4 and Figure 5.

Analysis of Test Scores for Average Drones & Birds
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Figure no 5. Analysis of Test Scores for Average Drones & Birds
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A Comprehensive Analysis of the Confusion Matrix

A Confusion Matrix Analysis helps in evaluating the performance of a classification model by showing
the number of true positives, true negatives, false positives, and false negatives in a matrix form. Such a
representation makes it easier to understand the model's prediction accuracy for different classes and also indicates
areas of improvement.

The elements along the main diagonal of the matrix represent the correctly classified instances, whereas
the elements away from the diagonal represent the incorrectly classified ones. Several important metrics can be
computed from the confusion matrix, including precision (a measure of the correctness of optimistic predictions),
recall (a measure of the ability to find all positive instances), and the F1 score (a balance between precision and
recall). These performance measures are not only crucial in assessing the model's output but also in addressing
any class imbalance issues, as they bring to light any prejudices and guide the tuning of parameters.

Table no 5. A Comprehensive Analysis of the Confusion Matrix for Machine Learning Algorithms for Birds &

Drones
Expectation
Machine Learning Algorithms Birds Drones
Linear Regression 285 -0.15
g -0.09 591
. . 5.73 -0.27
Logistic Regrssion 023 577
542 -0.58
K-Means 0.52 5.48
5.44 -0.56
Random Forest 046 554
- 5.62 -0.38
Decision Trees 032 5 68
. . 5.56 -0.44
Naive Bayes Classifier 038 3

Table 5 compares the performance of several machine learning models for classifying targets as birds or
drones. Linear regression, logistic regression, and decision tree models achieve excellent accuracy, with precision,
recall, and overall accuracy rates up to 96%. On the other hand, the K-Means algorithm fails this test and achieves
only 89% performance because it produces many false positives. Both the Naive Bayes and the Random Forest
techniques yield average results, with prediction accuracy close to 93%. Thus, the first three models in the list are
very efficient, but Naive Bayes and K-Means can also improve classification accuracy, as shown in Table 5 and
Figure 6.

The Confusion Matrix For Machine Learning
Algorithms

<
\,“Q mDrones m Birds
Figure no 6. A Comprehensive Analysis of the Confusion Matrix for Machine Learning Algorithms for Birds
& Drones

V. Discussion

Drone detection and airspace security using UAVs are among the fields this paper advances, especially
in military settings where misidentification could have fatal consequences. Hence, the detection systems used in
military operations should not only be able to accurately identify drones but also assess their threat level
instantaneously. In our study, we have experimented with various machine learning algorithms, including Linear
Regression, Logistic Regression, K-Means Clustering, Random Forests, Decision Trees, and Naive Bayes
Classifiers. Several of these models can distinguish drones from birds quite easily while also being very precise
and efficient.
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This study shows that these methods can be trusted even under nonideal conditions. These algorithms
also work when faced with weather changes, varying visibility, and different types of ground. These factors are
rarely considered in experiments, but are very important in defence in real scenarios. Hence, their resilience makes
them basically a good fit for hostile airspace situations. It is very much the case that, on the one hand, too many
false alarms can lead the military to waste resources and, on the other, the failure to detect a threat can lead to an
attack on infrastructure or the loss of human lives. That is why minimising false positives and false negatives is
essential.

Within military settings, precision and swiftness are above all essentials for quick decision-making. Our
study reveals that algorithms such as Logistic Regression and Decision Trees are suitable for time-constrained
environments because their hardware requirements are low. On the other hand, Random Forests, being more
resource-hungry, offer better accuracy and versatility when dealing with bigger datasets. Hence, the highly
efficient models can serve as initial filters, and the more complex ones can be applied to narrow down the findings.

The models evaluated demonstrate good performance; however, adding them to existing military
surveillance systems would be a significant undertaking. These networks are equipped with a plethora of tools
such as radar, camera, and sound detection devices. In order for machine learning to be successfully applied,
compatibility, security from cyberattacks, and quick adaptability to changes in UAV technology must first be
guaranteed. The introduction of stealth UAVs and swarm tactics makes detection even more challenging, thus
underscoring the importance of having systems that can handle both individual and group threats from the air.

Future research should focus on developing hybrid detection models that integrate radar signals,
computer vision, acoustic data, and radio communications. The combination of these fields will not only increase
the accuracy but also make the system more resistant to tricks like drones mimicking birds. Furthermore, using
data reduction methods such as Principal Component Analysis (PCA) or autoencoders can help optimise
performance by reducing noise and increasing processing speed, which is essential for real-time applications.

This paper confirms that machine learning has great potential to enhance UAV detection and,
consequently, secure the airspace. There are still some issues to be addressed, mainly in system integration, dataset
generalisation, and scalability; however, the suggested frameworks and next steps in this line of research provide
an excellent basis for further innovation. In the future, it is expected that mixing various techniques and making
detection systems flexible will be the surest way to keep the airspace safe for both military and civilian use.

Our results not only confirm but also build on the previous research on UAV detection. Publications
exploring radar-based detection systems reported that drone-versus-bird classification flights powered by radar
have achieved near-perfect accuracy in challenging scenarios. Nonetheless, high costs and usage limitations are
among the barriers to deploying radar solutions. On the other hand, we have developed machine-learning methods
that can be easily embedded in existing sensor networks, making them adaptable not only to military forces with
abundant resources but also to those with scarce resources.

Studies developing deep learning models for pictorial identification have achieved precision rates of
83% to 94.5%, underscoring the potential of computer vision techniques. On the other hand, these models
generally need vast amounts of data and enough computational power, which may hamper their use in military
applications demanding instant results [22, 24]. Compared to that, we have shown through our research that less
complicated models, e.g., Logistic Regression and Decision Trees, can deliver a high level of precision with fewer
computational resources, and hence they are better suited for real-time operations where quick decision-making
is of paramount importance.

VI.  Conclusion

This research aligns with the military airspace security area, where the primary focus is on how machine
learning algorithms can be effectively used to detect unmanned aerial vehicles (UAVs) and distinguish them from
birds and other aerial objects. Our experiments reveal that algorithms such as Logistic Regression, Decision Trees,
and Linear Regression can pinpoint UAVs with high accuracy while requiring less computational power. This
feature of theirs makes them a perfect fit for the military operations in the real world, where it is very important
to be quick and accurate.

Moreover, a detailed analysis of our results relative to prior work was conducted, and the main benefit
of our method was emphasised: reliable detection can be achieved without costly infrastructure, massive datasets,
or resource-intensive computational models. This clever approach makes our research a highly pragmatic and
scalable solution for the air defence systems of the future, especially when it is crucial to combine resource
efficiency with high accuracy.

Furthermore, the paper emphasises the importance of developing hybrid detection systems that combine
radar, computer vision, and audio technology by taking advantage of their individual features. On top of that, the
next step in research should focus on validating these systems in real-world environments, as well as on
developing lightweight models capable of keeping pace with novel UAVs and the evolving tactics of adversaries.
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In summary, this study significantly enhances the UAV detection techniques currently in use, offering
immediate practical benefits. Moreover, it provides a sturdy base for the creation of adaptive, multi-layer airspace
security systems. Such highly advanced systems will be crucial for military and civilian protection against threats
posed by advanced, hostile UAV technologies.
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