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Abstract 
While there are many models of epidemic evolution perhaps the basis for such models finds itself in the lumped 

behavior expressed through the so-called SIR model (Susceptible, Infectious, Recovered) from which spring 

many related models. This paper discusses multiple analytic solutions to that equation including those that are 

available in closed analytic form and those for which at least one final integral has to be done numerically, so-

called 

quasi-analytic solutions. The solutions are intrinsically time-dependent of course. The hope is that such an 

investigation will lead to a better understanding of when and how models can be of use in studying the 

dynamical evolution of diseases including, perhaps, the great influenza pandemic of 1918 together with later 

pandemics and epidemics not excluding the 

Covid-19 pandemic of the present day. 
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I. Introduction 
It is now almost 100 years since a concerted effort was undertaken to describe quantitatively the 

temporal evolution of epidemic and pandemic diseases (Kermack and McKendrick, 1927) perhaps triggered by 

the devastating pandemic of the so-called Great Influenza which ravaged the world for over three year starting 

around 1918 and estimates put the world death toll at around 50-100 million people (Barry, 2004), although 

there is considerable uncertainty on even these estimates. Since then there have been numerous quantitative 

models suggested to describe the evolution of infectious diseases. A good summary is provided by Hethcode 

(2000) covering a wide variety of behaviors. 

Despite the progress made with such models, including their strengths and weaknesses, one is 

nevertheless in the situation where most model behaviors have been undertaken with numerical procedures so 

that one does not see so transparently the general structure of solutions and initial conditions dependency 

without an enormous numerical effort. The main difficulty is not so much in the mathematical equations per se 

but in the use of “blocks” to describe the epidemiology without due concern being given to the underlying 

causes of the block parameters. Perhaps such a description is inevitable but it leaves one with less than 

complete satisfaction with such models. 

Accordingly here we revert to the basic model of 1927 (Kermack and McKendrick, 1927) to 

investigate the solutions behavior for analytic models. i.e. models that can be completed in closed analytic form 

so that there is no influence of any numerical algorithm. The major point to be addressed is to see to what 

extent solutions are influenced by both the combined choices of parameters in the blocks and the initial 

conditions. The non-linearity of the basic equations is the main cause of the interaction of parameter choices 

and initial conditions and leads to constraints that would not otherwise obtain. Such an investigation points the 

way to a more complete description of model behaviors and so indicates the potential for obtaining quantitative 

results more closely in accord with observations. 

 

Technical Development 
Consider the basic evolution equation (Kermack and McKendrick, 1927) 

I+S+R =1 (1) 

where I, R, S are the relative fractions of infected, recovered and susceptible people involved at time t. Note 

that each of I, S and R is a fraction and each must be not only positive but also less than unity. In addition note 

that this basic model does not break out that fraction of the population that dies nor does it allow for a change in 

the base population due to immigration, emigration, non-epidemic death, immunity or birth. Nevertheless the 

behavior provides a useful block model from which one can springboard to more erudite models should one 

choose although, as will soon be shown, there are enough uncertainties within the basic model to raise concerns 
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about the worth increase of more sophisticated models. 

Following Kroeger and Schlickeiser (2020) let a(t) and μ(t) denote the infection and 

recovery rates, with both positive, then the dynamical block model is given through 

dI/dt = a(t)SI - μ(t)I (2) 

dS/dt = -a(t) SI (3) 

together with the constraint (1) .The reason for calling this model a block model is because the whole of the 

epidemiology is contained in the lumped factors a(t) and μ(t) without being more specific concerning, for 

example, asymptomatic effects, gender, race, age or recurrence rates. Nor indeed is any spatial variation 

considered so that all fractions of a country are handled as though they were all infected equally at a given time. 

 
The nonlinearity of equations (2) and (3) makes direct attempts to obtain solutions less than easy. In 

addition once one has solutions then one must address the problems of initial conditions for it is within the 

framework of chosen initial conditions that one is interested in solution behaviors. There is also the question of 

the values to use for the two lumped factors a(t) and μ(t) so that solutions to the model equations can mirror as 

closely as possible the actual behavior of an epidemic or pandemic disease. Alternatives exist of course. 

One could measure directly S, I and R at each instance of time and then invert equations (2) and (3) to write 

a(t) =dS/dt /(SI) (4) 

and 

μ(t) = (-dS/dt –dI/dt)/I (5) 

thereby determining the values as direct functions of time. While such may be more appealing to some the 

concern is that the data one needs to compute a(t) and μ(t) should be complete, accurate and precise. Such 

precision is not likely as evidenced by information for the great influenza pandemic of 1918 (Barry, 2004) 

where even to this day it is not known how many people died except for rough estimates of between 50 million 

and 100 million so that one can be duly skeptical of data made available. 

Accordingly interest here will center on determining analytic solutions to the relevant equations for particular 

behaviors of a(t) and μ(t). To this end write the ratio of equations (2) and (3) to obtain 

dI/dS = -1 + k(S)/S (6) 

where k(S) =(μ(t)/a(t)) and one uses S as a basic variable rather than time t. Note that only the ratio k(S) enters 

equation (6) so enabling considerable progress to be made with determining solutions. Perhaps the most 

obvious situation is when one considers k(S) to be constant, K say,  although individually a(t) and μ(t) may vary 

but in fixed ratio. 

The general solution to equation (6) is then 

 

I(S) = J –S +KlnS (7) 

 

where J is a constant. The initial condition that there be no infections (I = 0) at time t =0 (correspondingly there 

can be no recoveries at that time if no-one has been infected) and so one has S= 1 at time t = 0 with then J = 1 

so the complete solution in this case is 

I(S) = 1-S+K lnS (8) 

 
Now as time progresses one has S decreasing but the limit is when I = 0 because smaller values of S would then 

give negative values for I which are intrinsically forbidden. For specified K the limiting value of S, S*, is then 

given through 

lnS* = -(1-S*)/K (9) 

 

indicating a residual population of susceptible people. Figure 1 shows a plot of equation (9). 
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Figure 1. Plot of the critical value S* versus K from equation (9) 

 

But this solution for k(S) =K =constant is not analytic in all variables because the determination of S as a 

function of t is found through 

dS ( S(1-S+K lnS))
-1   

= -a(t)dt (10a) 

 

which must be done numerically. Thus the designation quasi-analytical. 

 

The choice of k(S)=K = constant was completely arbitrary and there seems to be no fundamental reason that a 

disease should choose to honor this requirement (there seems to be no obvious reason a disease is forbidden to 

have k(S) constant either!). It is, therefore, germane to consider other situations for they more be more realistic 

in their approach to understanding how well the basic model can pattern itself to observed disease behaviors. 

Generally then one has 

 

I(S) = 1 -S - ∫k(S’)/S’dS’ (10b) 

where the upper (lower) integral limits are 1 (S) respectively and I( S = 1) = 0.One also has dS/dt = -a(t) S (1 -S 

- ∫k(S’)/S’dS’) (11) 

 
 
with the recovery rate given through R =1-I-S. 

 

Simple solutions for variable k(S) are readily available in totally analytic form. For instance if k(S) = LS with L 

constant then I(S) = 1-S-L(1-S) or if k(S) = M S
2 

then I (S) = 1-S –M(1-S
2
)/2 and so on through k(S) = PnS

n 

when I(S)= 1-S –Pn(1-S
n
)/n. Indeed linear addition of such powers can also be undertaken to yield analytic 

results for I(S). However note that whatever one chooses one always has to have 0<I(S)<1. It is also possible to 

discuss situations in which one takes k(S) to be represented by negative powers of S such as QnS
-n 

and also of 

course linear combinations of negative powers. 

However, in order to obtain a complete closed form analytical solution for all components some care needs to be 

exercised. In order to ensure an analytic closed form result for both I(S) and S(t) one sees immediately that one 

must restrict a polynomial behavior for k(S) to polynomials of order S
4 

or less in the case of positive powers 

and equally so for negative powers . The reason is that in order to factor (1 -S - ∫k(S’)/S’dS’) so that one can 

perform the integration of dS/dt in closed form one cannot generally factor polynomials higher than degree S
4 

. 

To illustrate behaviors different than for the case of constant k(S) consider the situation where k(S) is linear 

with k(S) =FS where F is a positive constant. Then one has 

I(S) = (1-S)(1-F) (12) 

 

so that only for F <1 is there the chance of a solution. With equation (12) one then has 

 

dS/dt = -a(t) S (1 –S)(1-F) (13) 
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which has the general solution 

 

ln(S/(1-S)) = A-(1-F)T, (14) 

 

with dT =a(t)dt and A an integration constant. 

 

One can rewrite equation (14) in the more palatable form 

 

S = exp (A-(1-F)T)/(1+exp(A-(1-F)T)) (15) 

 

However note that on T= 0 one has S0 = exp(A)/(1+exp(A)) so that S does not reach unity for any finite A. 

Thus one does not start with a population of 100% uninfected people but rather with a smaller fraction S0 . In 

short the initial conditions one wishes to impose are not 
acceptable; they have to be modified. 

 
Thus one sees in both the case of constant k as well as that of k linear in S the solutions to the evolution 

equations limit what one can say and do and are not immune to the desired initial conditions. In short what is 

shown is that both the general structure of the equations as well as the initial conditions are beholden to the 

choice one makes for k(S). In addition analytic solution of the equations depends on whether one can truly 

provide a complete analytic solution or whether one is reduced to performing integrals numerically. In the 

latter case one has a quasi-analytic solution but also with restrictions. 

Should one wish to proceed further and solve the evolution equations for higher powers of k dependent on S 

then one again has restrictive behaviors as is also the case when one considers linear combinations in the sense 

of k(S ) =AS +BS
2 

+CS
3
+DS

4 
with A,B,C and D constants  but such that k(S) is positive. 

An example of the constraint is illustrated for the case where one chooses k(S) = AS+BS
2
. Because k(S) must 

be positive in 0<S<1 it follows that A>0 and A>-B. Thus B can be negative as long as A>mod(B). 

Under this choice for k(S) one obtains 

 

(1 -S - ∫k(S’)/S’dS’)   = (1-S)(1-A-B/2 -BS/2) (16) 

 

Then from equation (11) it follows that 

 

dS/(S*(1-S)*(1-A –B/2 –BS/2)) =-a(t)dt (17) 

 

with solution in implicit form 

 

S = exp(-L-T)/(g(S)+exp(-L-T)) (18) 

 

where L is a constant of integration, T is a time variable obtained from a(t)(1-A-B/2)dt =dT once one has 

specified a(t)>0, and where 

g(S) = ((1-A-B/2)/ (1-A-B/2-BS/2))
p 

*(1-S)
-p 

(19 ) with p =(B/2)*(1-A-B)/ (1-A-B/2). 

Note that if B = 0 then p = 0 and equation (18) reduces to the solution given through equation (15). But now 

consider that B is non-zero and then consider the behavior as S tends to unity- supposedly on T = 0. If B <0 and 

because A>mod(B) under all conditions then near S = 1 one has g(S→1) = (1-S)
-p  

which tends to zero because 

p <0 so that S→1 as required. However if 

B>0 then as S→1 one obtains the limiting behavior from g(S→1) = (1-S)
-p 

which tends to infinity because p>0 

so that S tends to 0 instead of the supposed unity. Thus the initial conditions cannot be satisfied and so only the 

solution with B<0 is appropriate. 

The point about this example is that the freedom to have ranges of parameters in a multi-parameter 

analytical solution is limited the moment one imposes the initial conditions. In the simple case here only after 

one has obtained the complete general solution can one determine that particular ranges of a parameter are not 

allowed. 

While many such calculations are relatively simple to perform (and so are not included here) the points 

made also apply – often solutions are available only under restricted ranges of parameters, solutions do not 

always satisfy the presupposed initial conditions for the start of a pandemic, and so on. In addition there is no 

known fundamental reason to suppose a disease should obey the requirements discussed here for analytic 

solutions to the evolution equations. After all what does a disease know about higher mathematics? 



Epidemic Evolution: Multiple Analytical Solutions for the SIR Model 

DOI: 10.9790/0853-1910064349                           www.iosrjournal.org                                                    47 | Page 

A further point is relevant. One can often determine the number of infections from a pandemic disease 

as a function of time with somewhat better resolution than one can determine either the recovery rate or the 

susceptibility rate particularly when one is often faced with asymptomatic situations in people. Suppose for 

instance there were no recoveries. Then μ(t) = 0 and the general solution to the evolution equations is simply 

I(t) = exp(A+T)/(1+exp(A+T)) (20) 

 

with A a constant of integration and dT =a(t)dt with, of course, T positive. 

 

Then note that one cannot have I =0 on t = 0 instead one has I(0) =exp(A)/(1+exp(A)) which is 

intrinsically less than unity but not zero. As T becomes large without limit I(t) tends to unity so that S tends to 

zero and the disease infects (kills?) everyone. So one starts with a percentage of the population infected and life 

gets worse with increasing time when there are no recoveries-something that seems obvious in hindsight of 

course. The point being made is that the initial conditions depend on how parameters are chosen and the 

consequent solution of the equations thereafter. One cannot choose parameters and initial values independently, 

they influence each other. 

It is also germane to note that a pandemic must start at some time, say t=0, so that one cannot have 

infected cases before that start time. Thus if one were to try to represent the infection rate with any model 

distribution that had a “tail” extending to values t<0 then that must at best be an approximation with, however, 

the possibility that the tail could have a major influence on the model results. Far better is to restrict one’s 

attention to model distributions that exist only for t equal to and greater than zero so that there is no chance of 

such possibilities. For example one such model is the logarithmic distribution 

P(t) = (tvπ
1/2

)
-1

exp(-(ln(t/r))
2
/v

2
) (21) 

 

where t is time and r and v are constants. A plot of P(t) (in %) versus time (arbitrary units) for selected values 

of r and v is given in Figure 2. 

 

 
Figure 2. Plot of the log normal distribution P(t) versus time from equation (21). 

 

One sees immediately that the plot restricts the cases of infection to positive values of time, as 

required, and that the plot also shows a sharp rise in cases before a long slow drop as observed in reality (This 

shaping representation is far superior to assessments based on the assumption of a symmetric rise and fall of 

infected cases around the peak value of infections and is also much more in accord with observed patterns of 

rise and fall). 

One can also investigate the cumulative probability with time. The logarithmic model is given in 

figure 3 and, for comparison, the observed patterns of behavior for several European countries are given in 

figure 2 of Lauer et al (2020). The similarity in the model and observed behaviors is striking and could be made 

even more so if one were to multiply the model behavior by the total number of observed cases or if one were 

to optimize the parameters v and r in equation (21) to agree with the observed behavior as closely as possible. 
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Figure 3. Model behavior for the cumulative probability (%) versus time based on the log normal distribution. 

 

II. Conclusions 
What has been shown here is that the behavior of analytical solutions to the SIR equations is highly 

dependent on the structure used for a single function entering the equations and the interlacing of parameters 

invoked is strongly coupled to the initial conditions required. There seems to be no obvious procedure available 

at the moment for determining the situations where one can effect an analytical solution from those where one 

cannot except for trial and error-a somewhat time consuming and not very transparent method. 

There are alternative methods of defining epidemic or pandemic patterns such as inverse methods to 

determine functional behaviors from real data or logarithmic type distributions to quantify the evolution of a 

disease. However such methods are at best empirical and one would like a more logical approach that covers all 

such eventualities. To date there is, apparently, no consensus on such a procedure. Until such time as one is 

available perhaps the best that can be undertaken is to see what individual calculations allow one to say. That 

theme has been the motivation behind the present work and will likely continue well into the future with the 

hope that such will eventually lead to a better understanding of when and how models can be of use in studying 

the dynamical evolution of diseases. 

 

Appendix 
While the SIR model of epidemic evolution is useful it has one very major drawback. As seen from the 

dynamical block model given through 

dI/dt = a(t)SI - μ(t)I (A1) 

dS/dt = -a(t) SI (A2) 

 

the evolution of infected people can proceed only if , at t = 0, there is a seed population of infected people 

because if I = 0 on t = 0 then it remains so forever after. Hence the need for a seed population of infected 

people. Indeed, there will also be no increase at time t= 0 in the fraction of the population infected if S(0) < 

μ(0/a(0) so that the fraction of susceptible people must also be large enough. 

The major problem is that one must have a seed pool of infected people. One cannot argue that such a 

seed population came from some earlier time for one could then just reset the clock to that time and so again 

one would face the same dilemma. The seed population of infected people must be added to the SIR model in 

an ad hoc manner. One could, perhaps, argue that incorporating other effects such as gender, spatial variation, 

immunity, age distribution, and so on would mitigate the dilemma but then one would be dealing with a much 

more complex model with even more parameters and such a modified model would have its own weaknesses. 

While such a complexity is arguably unavoidable it is well beyond the description of the SIR model and any 

such development is best left to those more able than I. The point being made here is that extreme care has to 

be taken when discussing a model representation of epidemic evolution in order that one does not end up 

drawing conclusions not warranted by either the underlying limiting behavior incorporated in the model nor in 

attempts to apply a model with serious weaknesses to real life data. 
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