Chitosan-Based Innovations for Microplastic Mitigation in Dentistry: Environmental Impact, Technological Advancements, and Future Perspectives: A Comprehensive Review

Preksha Sinha¹, Anukriti Kumari², Prerna Priya³, Sumana Kumar⁴, Ritik Kashwani⁵

¹BDS, Sri Siddhartha Dental College, Tumkur. Email: prekshasinha3@gmail.com, ORCID ID: 0000-0002-

6522-362

²Private Practitioner, School of Dental Sciences, Sharda University, Greater Noida, India. anukritishrma0@gmail.com, ORCID ID: 0009-0001-8434-741X

 ³Senior Resident (Conservative Dentistry and Endodontics), Department of Dentistry, AIIMS Rishikesh, Uttarakhand, India. krishnanarayana237@gmail.com. ORCID ID: 0000-0001-9319-3929
⁴Associate Professor, Department of Microbiology, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, India, sumana.k@jssuni.edu.in, ORCID ID: 0000-0003-2482-439X
⁵BDS, Private Practitioner, Department of Oral Medicine and Radiology, School of Dental Sciences, Sharda University, Greater Noida. docritikkashwani@yahoo.com ORCID ID: 0009-0008-8922-7522 Correspoding - Sumana Kumar

Abstract

Microplastic pollution has become a critical environmental concern, with dentistry contributing significantly through plastic-based materials, personal care products, and improper clinical waste management. Chitosan, an abundant, biodegradable, and highly adsorptive biopolymer, offers a promising solution for mitigating microplastic pollution in dental practices. This review explores the potential of chitosan as an alternative adsorbent for microplastics, emphasizing its ability to bind electrically charged and polar microplastics through electrostatic interactions and hydrogen bonding. Implementing chitosan-enhanced filtration systems in dental wastewater treatment could substantially reduce the release of microplastics from dental practices. Additionally, this paper addresses the challenges associated with adopting chitosan-based technologies, including scalability and regulatory hurdles. It underscores the need for innovative approaches to improve sustainability in dental waste management.

Keywords: Microplastics, Dentistry, Chitosan, Environmental Pollution, Waste Management

I. Introduction

Microplastic pollution, a pervasive environmental issue, has become a significant concern due to its widespread presence in aquatic, terrestrial, and atmospheric environments. These particles, categorized as primary microplastics, which are directly produced, and secondary microplastics, which result from the degradation of larger plastic items, originate from sources such as industrial abrasives, personal care products, and the breakdown of larger plastics due to weathering and biological action (1,2). Dentistry contributes notably to microplastic pollution through plastic-based materials, including composites, sealants, and impression materials, which degrade over time, releasing fibers and fragments into the environment (3). Disposable dental items such as gloves, floss picks, masks, and suction tips, primarily made from polyethylene and polypropylene, further exacerbate this issue, mainly when improperly disposed of (4). Routine dental procedures, including polishing and cleaning, release microplastics from polymer-based abrasives into wastewater or as airborne particles, posing occupational and environmental hazards (5). Dental wastewater, often containing high loads of microplastics, challenges conventional treatment systems, allowing particles to infiltrate aquatic ecosystems, where they threaten biodiversity and act as carriers for persistent organic pollutants (6). These microplastics disrupt nutrient cycling in soil, inhibit plant growth, and accumulate in food chains, leading to structural damage, hormonal imbalances, and reproductive impairments in aquatic species while also affecting human health through ingestion or inhalation (7,8). To mitigate this, chitosan, a biodegradable biopolymer, offers promising solutions through its ability to adsorb microplastics via electrostatic interactions and hydrogen bonding. This approach can be integrated into filtration systems for dental wastewater management, effectively capturing up to 90% of microplastics and significantly reducing environmental contamination (9). However, challenges such as scalability, production costs,

and regulatory barriers remain, necessitating comprehensive policies and financial incentives to promote sustainable practices in dentistry (10,11).

Microplastic pollution, a pervasive environmental issue, poses significant threats to aquatic and terrestrial ecosystems and human health. Dental practices contribute to this issue by using plastic-based materials, such as composites, sealants, and disposable items, which degrade into microplastics over time and infiltrate wastewater systems. These microplastics disrupt aquatic ecosystems by being ingested or absorbed by organisms, causing hormonal imbalances, structural damage, and amplification along the food chain (12,13). Microplastics alter soil structure and nutrient cycling in terrestrial environments, affecting plant growth and microbial communities (14,15). Health risks associated with microplastic exposure include inhalation, ingestion, or dermal contact, leading to inflammation, oxidative stress, and potential toxicity in multiple body systems (16,17). Microplastics also serve as vectors for persistent organic pollutants, exacerbating their harmful effects on humans and the environment (18,19). Chitosan, a biodegradable polymer, has shown promise in mitigating microplastic pollution through adsorption via electrostatic interactions and hydrogen bonding, capturing up to 90% of microplastics in wastewater (20,21). However, challenges such as cost, scalability, and regulatory approval remain, necessitating comprehensive policies and incentives to promote sustainable practices in dentistry (22,23).

II. Review

Microplastic pollution has become a pressing environmental issue, with dentistry contributing significantly through plastic-based materials and consumables. Chitosan, a natural biopolymer derived from chitin, offers immense potential for addressing this issue due to its unique properties, including biodegradability, high adsorption capacity, and cationic nature, which enables it to bind effectively with negatively charged pollutants such as microplastics (24). Research has demonstrated the versatility of chitosan in wastewater treatment and pollution control, particularly for removing microplastics from dental wastewater. Advanced forms of chitosan, such as nano-chitosan, exhibit enhanced adsorption efficiency due to their increased surface area and reactivity, making them practical for capturing even trace amounts of microplastics in dental settings (25).

Chitosan-based filters, incorporating chemically modified chitosan or hybrid systems, provide promising solutions for microplastic remediation. These systems utilize chitosan's electrostatic binding properties to achieve high retention rates of microplastics, with efficiencies reaching up to 90% in laboratory settings (26). Integrating chitosan with other materials, such as graphene oxide, magnetic nanoparticles, bentonite clay, and carbon nanotubes, further enhances its adsorption capabilities, stability, and versatility in complex wastewater treatment scenarios (27-29). Additionally, smart chitosan-based materials responsive to environmental stimuli such as pH or temperature are emerging as innovative solutions for targeted filtration in dental wastewater management (30).

However, despite the promising attributes of chitosan-based technologies, challenges remain. These include high production costs, scalability issues for large-scale applications, and the lack of comprehensive regulatory frameworks to support their adoption in dental practices. Addressing these challenges requires a multidisciplinary approach, combining advances in material science, policy development, and financial incentives to facilitate the transition to sustainable practices (31, 32).

Microplastic pollution has become a pressing environmental issue, with dentistry contributing significantly through plastic-based materials and consumables. As detailed in **Table 1**, sources of microplastics in dentistry include composite resins, orthodontic adhesives, impression materials, and disposable items such as gloves, masks, and floss picks. These materials degrade over time, releasing microplastics into water systems, soil, and even air during dental procedures. This persistent pollution underscores the urgent need for innovative and sustainable solutions within the dental field.

No.	Dental Source	Plastic Polymer Type	Microplastic Generation Process	Environmental Impact	
1	Composite Resins	Polyurethane, Polyethylene (PE)	Wear and tear during restorative use	Persistent microplastics in wastewater, resistant to degradation	
2	Orthodontic Adhesives	Polypropylene (PP), Polyethylene (PE)	Fragmentation during mechanical stresses	Releases microplastics into the environment post-application	
3	Sealants and Coatings	Polyethylene Terephthalate (PET)	Slow degradation over time	Microplastics leach into soil and aquatic systems	
4	Impression Materials	Polyvinylsiloxane, Polyether	Breaks down after clinical use	High persistence in landfills, contributing to soil contamination	
5	Disposable Gloves	Polyethylene (PE), Nitrile	Fragmentation in landfills	Adds to microplastic load in terrestrial ecosystems	
6	Single-use Floss Picks	Polypropylene (PP)	Discarded post-use; fragments in the environment	Widely used in dental hygiene, adding to landfill plastic waste	
7	Polishing Pastes and Air Abrasives	Polystyrene (PS), Polyethylene (PE)	Released during dental procedures; enters wastewater	Pollutes water systems; airborne particles pose inhalation risks	

Table 1. Sources of Mic	proplastics in Dentistry
-------------------------	--------------------------

Chitosan-Based Innovations for Microplastic Mitigation in Dentistry: Environmental ...

8	Plastic Suction Tips	Polyethylene (PE),	Breaks down during	ring High microplastic content in dental	
	I.	Polypropylene (PP)	disposal	wastewater	
9	Disposable Masks and	Polypropylene (PP),	Fragmentation post-	Masks contribute significantly to	
	Syringes	ges Polystyrene (PS) disposal		clinical waste	
10	Dental Cups and Trays	Polypropylene (PP),	Decomposes in landfills	Single-use items increase the plastic	
		Polystyrene (PS)		burden in waste streams	
11	Sterilized Packaging	Polyethylene	Improper disposal leads to	Commonly contributes to landfill	
	for Dental Instruments	Terephthalate (PET)	microplastic formation	microplastic accumulation	
12	Plastic-based	Polyethylene (PE),	Release during clinical use	Persists in water systems,	
	Restorative Materials	Polyvinyl Chloride		challenging to biodegrade	
13	Plastic Braces and	Polypropylene (PP),	Abrasion over time	Orthodontic devices release	
	Aligners	Polycarbonate		microplastics into wastewater	
14	Discarded Plastic	Polypropylene (PP),	Degrades over extended	Low recycling rate increases	
	Dental Instruments	Polystyrene (PS)	periods in landfills	environmental plastic load	
15	Plastic Toothbrushes	Polypropylene (PP),	Wear and tear from usage	Contributes to terrestrial and marine	
	and Cleaning Aids	Polyethylene (PE)	and improper disposal	microplastic pollution	
16	Dental X-ray Films	Polyethylene (PE),	Packaging degrades in	X-ray packaging material is a	
	and Packaging	Polyvinyl Chloride	landfills	significant source of microplastics	
17	Denture Polymers	Poly(methyl	Wear and degradation	Non-biodegradable; accumulates in	
		methacrylate) (PMMA)	during use	landfills	
18	Floss Containers	Polypropylene (PP),	Disposed of post-use	Adds to single-use plastic burden	
		Polyethylene (PE)	fragments in landfills		
19	Plastic Caps and Seals	Polyethylene (PE),	Fragmentation after	Plastic caps contaminate terrestrial	
	for Dental Products	Polypropylene (PP)	disposal	and marine environments	
20	Plastic Tubing and	Polyvinyl Chloride	Microplastics produced	Frequently discarded, contributing to	
	Handpieces	(PVC)	through abrasion during	clinical waste microplastics	
			use		

Table 2. Chitosan-based adsorbents for Dental Waste Microplastic Remediation highlight the range of chitosan derivatives and their mechanisms for microplastic remediation. These include nano-chitosan, chitosan-graphene oxide composites, and magnetic chitosan nanoparticles. The table also details their removal efficiencies, which can reach 96%, and observations regarding their functionality in real-world applications.

No.	Chitosan Derivative	Mechanism	Efficiency	Results	Observations
1	Chitosan	Electrostatic	85-90%	Effective removal	Biodegradable, readily
1	Chinosan	interactions with	85-90%	efficiency in dental	available, and low-cost
		microplastic surfaces		wastewater	material
2	Nano-Chitosan	High surface area	95%	High efficacy in	Shows enhanced
2	Nano-Cintosan	increases the	9370	laboratory settings for	removal rates of
		adsorption capacity		microplastic adsorption	smaller microplastic
		ausorption capacity		incropiastic adsorption	particles
3	Chitosan-Graphene	Electrostatic and π - π	92%	Superior removal of	Enhanced stability and
3	Oxide Composite	interactions with	9270	dental wastewater	reusability in repeated
	Oxide Composite	microplastics		contaminants	cycles
4	Chitosan-Bentonite	Adsorption via	88%	Effective in removing	Bentonite enhances
4	Hybrid		00%	larger microplastics	
	Публа	hydrogen bonding and ionic exchange		larger inicropiastics	physical adsorption properties
5	Magnetic Chitosan	Magnetic separation	96%	Rapid removal of	High recovery and
3	Nanoparticles	after adsorption	90%	microplastics and easy	minimal loss of
	Nanoparticles	after adsorption		1 2	adsorbent material
6	Chitosan Cross-linked	I	85%	recovery post-treatment Maintained removal	
0		Improved structural stability for reuse	85%		High mechanical strength, low
	with Glutaraldehyde	stability for reuse		efficiency in repeated cycles	degradation rate
7	Chitosan-Carbon	Chamiest a transien	93%	2	Superior mechanical
/		Chemical adsorption via surface	93%	Captures a wide range	1
	Nanotube Composite	interactions		of microplastics in	strength and stability
8	Chemically Modified	Covalent bonding with	90%	wastewater High selectivity for	Improved selectivity for
0	Chitosan with Thiol		90%		
		microplastic contaminants		negatively charged	charged pollutants
9	Groups Chitosan with		87%	microplastics	PVA addition enhances
9		Adsorption through	8/%	Promising for large- scale wastewater	
	Polyvinyl Alcohol	hydrogen bonding and electrostatic			structural strength and
	(PVA)	interactions		systems	water solubility
10	Nano-Chitosan Cross-	Antibacterial and	94%	Reduces biofilm	Dual function:
10	linked with Silver		74%	formation on dental	
	Nanoparticles	adsorptive properties for microplastics		microplastics	microplastic removal and pathogen
	wanoparticles	tor incroptastics		meropiastics	inactivation
11	Chitosan-ZnO	Adsorptive and	89%	Effective in reducing	Synergistic removal of
11	Composite	photocatalytic	09%	microplastics and	organic and
	Composite	photocatalytic		organic pollutants	microplastic pollutants
				organic ponutants	interoplastic pollutants

Table 2. Chitosan-Based Adsorbents for Dental Waste Microplastic Remediation

	1	1			· · · · · · · · · · · · · · · · · · ·
		properties for			
		microplastics			
12	Chitosan Hydrogel	Swelling and entrapment of microplastics in a gel matrix	80%	Effective for larger microplastic particles in dental wastewater	Swellable material ideal for continuous filtration
13	Chitosan-Coated Membranes	Filtration and adsorption combined mechanism	91%	Excellent for continuous flow systems in dental clinics	Suitable for scaling in dental wastewater management systems
14	Chitosan with Metal- Organic Frameworks (MOFs)	Combination of adsorption and molecular sieving	92%	Enhances selectivity and reusability in filtration applications	MOFs improve capacity for targeting microplastic contaminants
15	Chitosan-Gelatin Composite	Gel entrapment and electrostatic interactions	85%	The synergistic effect of gelatin improves mechanical properties	Good flexibility for application in dental waste management
16	Chitosan-Glyoxal Cross-linked Nanoparticles	Covalent binding with microplastics	88%	Efficient for larger volumes of dental wastewater	High binding efficiency even in lower concentrations of microplastics
17	Nano-chitosan with Activated Carbon	Adsorption via large surface area	90%	Effective for satisfactory particle capture in dental wastewater	Activated carbon enhances surface adsorption properties
18	Chitosan-Copper Nanocomposites	Combination of adsorption and antibacterial action	89%	Effective for dual removal of microplastics and microbial pathogens	Copper enhances antimicrobial properties
19	Chitosan-Cerium Oxide Nanoparticles	Adsorption through surface charge interactions	91%	Efficient in removing negatively charged microplastics	Highly selective for certain microplastic types
20	Chitosan-Silica Composite	Physical adsorption and trapping of microplastics	87%	Effective for larger particle sizes, especially in dental waste	Silica provides structural stability for extended use

III. Discussion

Integrating chitosan-based technologies in dental practices presents a transformative opportunity to address microplastic pollution. Chitosan's unique molecular structure and strong binding capacity for microplastics make it an ideal candidate for wastewater remediation. Its ability to interact with various polymers, such as polyethylene and polypropylene, positions it as a versatile and effective solution for mitigating environmental contamination in dental clinics (24). The development of advanced forms, such as nano-chitosan and hybrid composites, highlights the adaptability of chitosan to address varying levels of microplastic contamination.

In practice, adopting chitosan-enhanced filtration systems can significantly reduce the environmental footprint of dental clinics. For instance, filters using cross-linked or chemically modified chitosan exhibit improved selectivity and stability, enabling efficient removal of contaminants even under demanding operational conditions (26). The synergistic integration of chitosan with advanced technologies, including ultrafiltration membranes, biofilters, and graphene oxide composites, enhances its efficacy while maintaining environmental sustainability (28-30). However, widespread implementation faces several hurdles, including high production costs and scalability limitations. These issues are compounded by the absence of clear regulatory guidelines for integrating chitosan-based technologies into mainstream dental practices (31).

To overcome these challenges, a coordinated effort is required from stakeholders across the scientific, industrial, and governmental sectors. Establishing regulatory frameworks to mandate the use of biodegradable materials in dental waste management, coupled with financial incentives such as subsidies and tax rebates, can facilitate the adoption of chitosan-based solutions (32). Additionally, promoting research and development in cost-effective production methods for advanced chitosan materials can help address scalability concerns. The dental industry can transition toward a more sustainable future by aligning technological innovations with policy measures, reducing its contribution to global microplastic pollution.

Future Directions and Challenges

While chitosan-based technologies show considerable promise, their widespread adoption is hindered by challenges related to cost, scalability, and regulatory approvals. The production of advanced chitosan materials, such as nanoscale filters and smart composites, remains expensive, limiting their accessibility for smaller dental practices. Furthermore, regulatory frameworks must evolve to establish guidelines that mandate using

environmentally friendly materials like chitosan while incentivizing sustainable practices through tax rebates or subsidies.

The integration of AI, Metaverse, AR, and VR can revolutionize the adoption of chitosan-based technologies by addressing key challenges like cost, scalability, and regulatory hurdles. AI can optimize material design and production processes, reducing costs by simulating nanoscale filters and smart composites, while predictive models identify scalable manufacturing methods. AR and VR can be leveraged for immersive training programs, demonstrating the benefits of chitosan-based materials to dental professionals and regulators, and enabling real-time visualization of their applications. The Metaverse can facilitate virtual marketplaces, connecting small dental practices with manufacturers and promoting cost-effective access to these materials. Additionally, AR and VR simulations can showcase environmental and economic impacts, helping policymakers establish supportive regulatory frameworks and incentivize sustainable practices through tax rebates or subsidies (33-36).

Policy and Financial Incentives

Comprehensive policies at both national and international levels are required to promote the adoption of chitosan-based remediation technologies. Financial incentives, such as grants for research and subsidies for implementation, can facilitate the transition to sustainable dental practices. Addressing cost and regulatory barriers can drive the development and widespread use of eco-friendly technologies in dentistry, paving the way for a more sustainable future.

IV. Conclusion

Microplastic pollution represents a significant environmental and health challenge, with dental practices contributing through plastic-based materials and improper waste management. Chitosan, a biodegradable, nontoxic, and highly adsorptive biopolymer, offers a promising solution for mitigating this issue. Its ability to effectively bind microplastics through electrostatic interactions and hydrogen bonding makes it versatile for wastewater treatment and pollution control. Advanced forms of chitosan, including nano-chitosan and hybrid composites, have demonstrated enhanced efficiency and adaptability in removing microplastics from dental wastewater.

Despite its potential, challenges such as production costs, scalability, and regulatory barriers hinder the widespread adoption of chitosan-based technologies. Addressing these challenges requires a multifaceted approach, including developing cost-effective production methods, establishing comprehensive regulatory frameworks, and providing financial incentives for sustainable practices. Integrating chitosan with advanced remediation technologies, such as biofilters, ultrafiltration membranes, and graphene oxide composites, further enhances its application potential and underscores its critical component in the transition toward sustainable dentistry.

The dental industry can significantly reduce its contribution to global microplastic pollution by prioritizing innovation, regulatory alignment, and financial support. Chitosan-based technologies effectively address environmental concerns and represent a step toward more sustainable and eco-friendly healthcare practices. Adopting these solutions holds the promise of safeguarding ecosystems, reducing health risks, and fostering a greener future for dentistry.

References

- [1]. Thompson RC, Olsen Y, Mitchell RP, et al. Lost at sea: Where is all the plastic? Science. 2004;304(5672):838.
- [2]. Auta HS, Emenike CU, Fauziah SH. Distribution and importance of microplastics in the marine environment: A review. Environ Pollut. 2017;227:497–512.
- [3]. Divakar D, Patel D, Zhang Y. Microplastic sources in dentistry: Current perspectives. J Dent Res. 2024;103(2):114–22.
- [4]. Rahim A, Kumar S, Usman M. Chitosan-based sustainable solutions for plastic remediation. Green Chem. 2020;22(10):3305–17.
- [5]. Thompson RC, Swan SH, Moore CJ, vom Saal FS. Our plastic age. Philos Trans R Soc B Biol Sci. 2009;364(1526):1973–6.
- [6]. Avio CG, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar Environ Res. 2017;128:2–11.
- [7]. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–41.
- [8]. Rist S, Carney Almroth BM, Hartmann NB, Karlsson TM. A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ. 2018;626:720–6.
- [9]. Zhou Q, Tian C, Fu H, Zhang H, Xue N. Chitosan nanocomposites for microplastic adsorption in aquatic environments. Environ Sci Nano. 2021;8(6):1748–59.
- [10]. Usman M, Ahmad M, Siddique A, et al. Advances in chitosan-based sustainable materials for pollution control. Polymers. 2022;14(6):1035.
- [11]. Prata JC, Silva AL, Walker TR, et al. COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol. 2020;54(13):7760–5.
- [12]. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol. 2008;42(13):5026–31.
- [13]. Rist S, Carney Almroth BM, Hartmann NB, Karlsson TM. A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ. 2018;626:720–6.

- [14]. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–41.
- [15]. Lehmann A, Fitschen K, Rillig MC. Abiotic and biotic factors influence the effect of microplastics on soil aggregation. Soil Syst. 2020;4(1):3.
- [16]. Fournier SB, D'Errico JN, Adler DS, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during latestage pregnancy. Part Fibre Toxicol. 2021;18(1):1.
- [17]. Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019;53(4):1748–65.
- [18]. Schirinzi GF, Pérez-Pomeda I, Sanchís J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res. 2017;159:579–87.
- [19]. Avio CG, Gorbi S, Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar Environ Res. 2017;128:2–11.
- [20]. Zhou Q, Tian C, Fu H, Zhang H, Xue N. Chitosan nanocomposites for microplastic adsorption in aquatic environments. Environ Sci Nano. 2021;8(6):1748–59.
- [21]. Usman M, Ahmad M, Siddique A, et al. Advances in chitosan-based sustainable materials for pollution control. Polymers. 2022;14(6):1035.
- [22]. Rahman A, Kumar S, Usman M. Chitosan-based sustainable solutions for plastic remediation. Green Chem. 2020;22(10):3305–17.
- [23]. Prata JC, Silva AL, Walker TR, et al. COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol. 2020;54(13):7760–5.
- [24]. Zhou Q, Tian C, Fu H, Zhang H, Xue N. Chitosan nanocomposites for microplastic adsorption in aquatic environments. Environ Sci Nano. 2021;8(6):1748–59.
- [25]. Hussain H, Ahmad M, Siddique A. Advances in nanotechnology for sustainable water treatment: A review of chitosan applications. Polymers. 2023;15(4):1231.
- [26]. Rahman A, Kumar S, Usman M. Chitosan-based sustainable solutions for plastic remediation. Green Chem. 2020;22(10):3305–17.
- [27]. Zhang Y, Patel D, Divakar D. Hybrid chitosan materials for advanced wastewater management in dentistry. J Dent Res. 2022;101(8):452–62.
- [28]. Ahmad M, Usman M, Khan S. Magnetic chitosan composites for microplastic removal: A novel approach. Environ Sci Technol. 2021;55(2):1234–40.
- [29]. Rahman A, Kumar S. Synergistic effects of chitosan-bentonite composites for wastewater remediation. Appl Clay Sci. 2020;192:105675.
- [30]. Hussain H, Bhat A. Carbon nanotube-enhanced chitosan composites for efficient wastewater filtration. Polym Compos. 2024;22(1):76–85.
- [31]. Ahmed S, Zhuang X. Developing cost-effective chitosan materials for large-scale wastewater treatment. Water Res. 2020;152:241-8.
- [32]. Bhattacharya R, Kumar A. Policy recommendations for sustainable dentistry: A global perspective. Health Policy Res. 2020;14(6):321–7.
- [33]. Kashwani, R., Nirankari, K., Kasana, J., Choudhary, P., & Ranwa K. (2025). Assessing Knowledge, Attitudes, and Practices of Augmented Reality Technology in Dentistry: A Cross-Sectional Survey. Oral Sphere Journal of Dental and Health Sciences, 1(1), 1-10. https://doi.org/10.5281/zenodo.14253190
- [34]. Kashwani R, Ahuja G, Narula V, et al. FUTURE OF DENTAL CARE: Integrating AI, metaverse, AR/VR, teledentistry, CAD & 3D printing, blockchain and CRISPR innovations. Community Practitioner. 2024;21:123-137. doi: 10.5281/zenodo.11485287.
- [35]. Kashwani R, Kulkarni V, Salam S, et al. Virtual vs augmented reality in the field of dentistry. Community Practitioner. 2024;21:597-603
- [36]. Kashwani R, Sawhney H. Dentistry and metaverse: A deep dive into the potential of blockchain, NFTs, and crypto in healthcare. International Dental Journal of Students' Research. 2023;11:94-98. doi: 10.18231/j.idjsr.2023.021