
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 5, Ver. V (Sep - Oct. 2014), PP 35-39
www.iosrjournals.org

www.iosrjournals.org 35 | Page

Design and FPGA Implementation of a simple time efficient

KOM Multiplier

Nagarjun B
1
, Poonam Sharma

2

1M.Tech Student, Department of Electronics & Communication, DayanandaSagar Institutions, India
2Associate Professor, Department of Electronics & Communication, DayanandaSagar Institutions, India

Abstract: Multipliers are key components of many high performance systems such as FIR filters,

microprocessors, digital signal processors, etc. A system’s performance is generally determined by the

performance of the multiplier. In most of the cases, the multiplier is the slowest element which affects the

performance of the system. Hence, optimizing the speed of the multiplier is a major design issue. Karatsuba-

Ofman Multipliers (KOM Multipliers) have less delay compared to other conventional multipliers which greatly

increase the performance of a system. In this work we have designed and implemented ‘n’ bit KOM Multiplier

by using FPGA. Using VHDL as the language we have implemented the hardware design and simulated using

Xilinx ISE System edition.

Keywords: Binary Multiplier, Delay, FPGA, KOM Multiplier, VHDL, Xilinx ISE

I. INTRODUCTION
A binary multiplier is an electronic circuit which is most commonly used in digital electronics, such as

computer, to multiply two binary numbers. It is built using simple binary adders. A wide variety of computer

arithmetic techniques can be used to design and implement a digital multiplier. Most of the conventional involve

computing the set of partial products, and then summing the partial products together [1]. This process of

summing the partial products together is a long process since it involves multiplying a long number by one digit

as shown in the example 1.

Example 1: Method based on calculating partial products

Until late 1970‟s, most computers didn‟t had the option of multiplying instruction, and so programmers
had used “Multiply routine” which repeatedly shifts and accumulates partial results which is often written using

loop unwinding. Mainframe computers had then option of multiply instructions, but they used to do the same

sort of shifts and add as a “Multiply routine”. Early multiprocessors also had no multiply instruction. The most

common method which was used to multiply decimal numbers was based on calculating partial products,

shifting them to the left and then adding them together as shown in example 1. Obtaining the partial products is

the most difficult task as it involves multiplying a long number by one digit [2].In binary encoding each long

number is multiplied by one digit either 0 or 1, and that is much easier than decimal, as the product by 0 or 1 is

just 0 or the same number. Therefore, the multiplication of two binary numbers comes down to calculating

partial products which are 0 or the first number, shifting them to left, and then adding them together which is

shown in example 2 given below.

Example 2: Method based on multiplication of two binary numbers.

Design and FPGA Implementation of a simple time efficient KOM Multiplier

www.iosrjournals.org 36 | Page

The above method is much simpler than the decimal system, as in this method there is no table of

multiplication to remember. Just shifts and additions will be present in the above method. This method is

mathematically accurate and has the advantage that a small CPU may perform the multiplication by using the

shift and add features of its arithmetic logic unit rather than a specialized circuit. This method is slower in

process because it involves lot of intermediate additions. These additions take lot of time. Faster multipliers may

be engineered in order to do fewer additions. For example, a modern processor can multiply two 64 bit numbers

with 6 additions rather than 64, and can do several steps in parallel. The second problem that we face is that this
conventional method handles the sign with a separate rule like “+ with + yield +” and “+ with – yields -”. Most

modern computers today embed the sign of the number in the number itself, usually in the two‟s complement

representation. That forces the multiplication process to be adapted to handle two‟s complement numbers, and

that makes the process more complicated.

II. INTRODUCTION TO KOM MULTIPLIER
The Karatsuba-Ofman Multiplier or the Karatsuba algorithm is a fast multiplication algorithm which

was discovered by AnatoliiAlexeevitchKaratsuba in 1960 and was published in 1962 [3][4][5]. This algorithm

reduces the multiplication of two n bit digit numbers to at most single-digit multiplications in general. It is
therefore faster than the classical algorithm, which requires „n2‟ single digit products. If n=210=1024, in

particular, the exact counts are 310=59049 and (210)2 = 1048576, respectively. The Toom-Cook algorithm is a

faster generalization of this algorithm. For sufficiently larger „n‟, Schonhage-Strassen algorithm is even faster.

The Karatsuba algorithm was the first and foremost multiplication algorithm which was faster than the earliest

algorithm. If n is four or more, the three multiplications in Karatsuba‟s basic step involve operands with fewer

than n digits. Therefore, those products can be easily computed by recursive calls of Karatsuba algorithm. The

recursion can be applied until the numbers are so small that they can be computed directly. In a computer with a

full 32 bit by 32 bit multiplier, for example, on could choose B=231=2147483648 or B =109=1000000000, and

store each digit as a separate 32 bit binary word. Then the sums x1+x0 and y1+y0 will not need an extra binary

word for storing the carry over digit as in case of carry save adder, and the Karatsuba recursion can be applied

until the numbers to multiply are only 1 digit long. It follows that, for sufficiently large n, Karatsuba‟s algor ithm
will perform fewer shifts and single digit additions than longhand multiplication, even though its basic step uses

more additions and shifts than the straightforward formula. For small values of n, however, the extra shift and

add operations may make it run slower than the longhand method. Hence, Karatsuba‟s algorithm is usually

faster when the multiplicands are longer than 320-640 bits.

III. KOM MULTIPLIER ARCHITECTURE
Karatsuba-Ofman Multiplier has a high speed, parallel multiplier architecture as shown in Fig 3.1. The

product of KOM is given in equation,

PKOM = aLbL + (aLbH + aHbL) z
n/2

+ (aHbH) z
n
 (1)

Where z=2, for binary number system. The architecture of KOM used in the proposed model is shown

in figure 3.1. The operands say a and b of size n bits are considered for multiplications. The each n bit operand

is decomposed into two n/2 bits operands as aL, aHof operand a and bL, bH of operand b. the KOM product given

in equation (1) is implemented using four multipliers and three additions.

Let,

a = 0011(2)

b= 1001(2)

z=2 for binary numbers

n=4 bits
aL = 11(2) and aH = 00(2)

bL = 01(2) and bH = 10(2)

So, aLbL= 11(2) x 01(2) = 0011(2).

(aLbH + aHbL) zn/2= (11(2) x 10(2) + 00(2) x 01(2)) z
2 = (0110(2) + 0000(2)) z

2= 011000(2); shifted left by 2 bits,

hence barrel shifter used in architecture.

(aHbH) zn= (00(2) x 10(2)) z
4 = 00000000(2)

(aLbH + aHbL) zn/2= 011000(2) is decomposed into 01(2) and 1000(2). Zero extension is used to make 01(2) as 4 bit

because n bit full adders are used in architecture. Therefore we get 0001(2) as the other decomposed part.

Design and FPGA Implementation of a simple time efficient KOM Multiplier

www.iosrjournals.org 37 | Page

Figure 3.1 KOM in Proposed Model [6]

Now aLbL + (aLbH + aHbL) zn/2 + (aHbH) zn implemented as

0011(2) + 1000(2) = 1011(2); Lower product

0001(2) + 0000(2) = 0001(2); Higher product

PKOM= 00011011(2); final product. ; Product aligned.

This KOM Architecture uses four n/2 KOM multipliers and barrel shifters for the radix operations and

summers for the addition operation respectively. The shifter performs the left shift operation and the final

product is obtained in the final summer as shown in the above figure. This KOM architecture is speedy in

operation compared to other multipliers since all the operations in it takes place together in parallel. This greatly

reduces the delay in the system and hence improves the performance.

IV. SIMULATION TOOL & LANGUAGE USED
We have implemented the hardware design using VHDL language and simulated using Xilinx ISE

System edition. VHDL is a Hardware Description Language used in Electronic design automation to describe
digital and mixed signal systems such as FPGA‟s and IC‟s. VHDL can also be used as a general purpose parallel

programming language. The key advantage of VHDL, when used for systems design, is that it allows the

behavior of the required system to be modeled and simulated before synthesis tools translate the design into real

hardware like gates and wires. Xilinx ISE (Integrated Software Environment) is a software tool produced by

Xilinx for synthesis and analysis of HDL designs, enabling the developer to synthesize ("compile") their

designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and

configure the target device with the programmer. System Generator for DSP™ is the industry‟s leading high-

level tool for designing high-performance DSP systems using FPGAs. The target device is xc3s50-5pq208 and

product version of Xilinx ISE used is 13.1.

V. SIMULATION RESULTS

Table 5.1. Timing Report

Speed Grade -5

Delay in Route 9.438ns

Delay in Logic 11.864ns

Delay (Levels of logic=17) 21.302ns

Design and FPGA Implementation of a simple time efficient KOM Multiplier

www.iosrjournals.org 38 | Page

Table 5.2. Macro Statistics
No. of Multipliers 16

2x2 Bit Multiplier 16

No. of Adders/Subtractors 10

16 Bit Adders 2

8 Bit Adders 8

No. of XOR Gates 24

1 Bit XOR 2 5

1 Bit XOR 3 19

Table 5.3. Experimental Values
A B OUTPUT

73 195 14235

73 10 730

85 10 850

850 20 1700

12 12 144

Table 5.4. Device Utilization Summary
Logic Utilization Used Available Utilization

No. of Slices 79 768 10%

No. of 4 input

LUT‟s
137 1536 8%

No. of bonded

IOB‟s
32 124 25%

VI. SIMULATION SNAPSHOTS

 Fig 6.1 RTL Schematic

Design and FPGA Implementation of a simple time efficient KOM Multiplier

www.iosrjournals.org 39 | Page

Fig 6.2 Simulation Output

VII. CONCLUSION
In this work, FPGA Implementation of KOM multiplier has been carried out using structural design of

VHDL language in Xilinx ISE. We have used Xilinx ISE System edition to perform the simulations for the 8 bit

binary numbers. Compared to other multipliers which are being used in the industry, KOM multiplier has low

delay levels and high performance which makes it as the best choice by the designers. In this project we have

simulated results for the 8 bit binary numbers which consists of four 4*4 KOM multipliers in the hardware level

along with summers and barrel shifters for the radix operations. This KOM multiplier uses very few additions

and shifting operations compared to other conventional multipliers which greatly enhance the speed.

VIII. ACKNOWLEDGEMENTS
I express my deepest gratitude and sincere thanks to my guide Ms. Poonam Sharma, Associate

Professor, Dept of ECE, DayanandaSagar Institutions, for her valuable time and guidance throughout this work.

I am immensely grateful to Prof. GirishAttimarad and DayanandaSagar Institutions for giving me an opportunity

to carry out this work. I am highly indebted to my dad for his immense love and trust on me throughout my

journey of life.I also thank all my M.Tech classmates &beloved friends (JASHD) for their continuous support

and motivation throughout my career.

REFERENCES
[1] "The Evolution of Forth" by Elizabeth D. Rather et al.

[2] "Interfacing a hardware multiplier to a general-purpose microprocessor"

[3] A. Karatsuba and Yu.Ofman (1962)."Multiplication of Many-Digital Numbers by Automatic Computers". Proceedings of the USSR

Academy of Sciences 145: 293–294. Translation in the academic journal Physics-Doklady, 7 (1963), pp. 595–596

[4] A. A. Karatsuba (1995). "The Complexity of Computations". Proceedings of the Steklov Institute of Mathematics 211: 169–183.

Translation from Trudy Mat. Inst. Steklova, 211, 186–202 (1995)

[5] Knuth D.E. (1969) The art of computer programming. v.2. Addison-Wesley Publ.Co., 724 pp.

[6] E L Hall, D D Lynch and S J Dwyer III. “Generation of Products and Quotients Using Approximate Binary Logarithms for Digital

Filtering Applications,” IEEE Transactions on Computers, Vol. C-19, No. 2, pp. 97-105. February 1970.

[7] K H Abed and R E Sifred, “CMOS VLSI Implementation of a Low-Power Logarithmic Converter,” IEEE Transactions on

Computers, vol. 52, no. 11, pp. 1421-1433, November 2003.

[8] K H Abed and R E Sifred, “VLSI Implementation of a Low-Power Antilogarithmic Converter,” IEEE Transactions on Computers,

Vol. 52, No. 9, pp. 1221-1228, September 2003.

[9] D J McLaren, “Improved Mitchell-based Logarithmic Multiplier for low-power DSP applications,” Proceedings of IEEE

International System On Chip Conference, pp. 53-56, September 2003.

[10] Davide De Caro, Nicola Petra and Antonio G M “Efficient Logarithmic Converters for Digital Signal Processing Applications,”

IEEE Transactions on Circuits and Systems. vol. 58, pp. 667-671, October 2011.

[11] H Mahrous and A P James, “An Artificial Cellular Convolution Architecture for Real-Time Image

[12] Processing,” International Scholarly Research Network (ISRN) Mission work, pp. 1-7, 2012

