
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) 

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 6, Ver. II (Nov - Dec. 2014), PP 23-31 
www.iosrjournals.org 

www.iosrjournals.org                                                    23 | Page 

 

A Novel Architecture for Radix-4 Pipelined FFT Processor using 

Vedic Mathematics Algorithm 
 

K.Naresh, Dr. G. Sateesh Kumar 
Electronics and Communication Engineer, AITAM College, India 

 

Abstract: The FFT processor is a critical block in all multi-carrier systems used primarily in the mobile 

environment. The portability requirement of these systems is mainly responsible for the need of low power   FFT 

architectures. In this study, an efficient addressing scheme for radix-4 64 point FFT processor is presented. It 

avoids the modulo-r addition in the address generation; hence, the critical path is significantly shorter than the 

conventional radix-4 pipelined FFT processor by modifying its operation sequence. The complex multiplier is 

one of the most power consuming blocks in the FFT processor. A significant property of the proposed method is 

that the critical path of the address generator is independent from the FFT transform length N, making it 

extremely efficient for large FFT transforms. The results confirm the speed and area advantages for large FFTs. 

Although only radix-4 FFT address generation is presented in the paper, it can be used for higher radix-4FFT. 

 Index Terms: Pipelined FFT, Switching activity, Coefficient ordering. 

 

I. Introduction 

 
Fast Fourier transform (FFT) is one of the key components for various signal processing and 

communications applications such as software defined radio and OFDM [2]. A typical FFT processor is 

composed of butterfly calculation units, an address generator and memory units. This study is primarily 

concerned with improving the performance of the address generation unit of the FFT processor by eliminating 
the complex critical path components. Please observe that the two data addresses of every butterfly differ in 

their parity. Parity check can be realized by modulo-r addition in hardware. Based on Pease‟s observation, 

Cohen proposed simplified control logic for radix-2 FFT address generation. Johnson proposed a similar way to 

realize radix-r FFT addressing. 

In this method, the address generator is composed of several counters, barrel shifters, multiplexers and 

adder units. Other FFT processors have been designed to realize high-radix FFT. A common drawback of all 

these methods is the need for successive addition operations to realize the address generation. The number of 

addition operations depends on the length of the FFT, so the address generation speed is slower as the FFT 

transform length increases. Several methods have been proposed to avoid the addition for radix-2 FFT but these 

methods cannot be used for higher radix FFT [10]. This study presents a new architecture to realize the address 

generation for radix-4 FFT. The new address generator is composed of counters, barrel shifters, multiplexers 

and registers, but no addition operation is required. The critical path of the address generator is shorter, and 
furthermore, the critical path of this address generator is independent of the FFT length making it extremely 

efficient for long length FFT. 

 

II. Partial-Column Radix-2 and Radix-2/4 FFTs 

 

Parallel FFT processors can be divided into the following principal classes‟ fully parallel, pipelined, 

column, and partial-column. In general, the pipelined FFTs have been popular due to their principal simplicity 

[6]. The advantage in using partial-column organization is that partial column processing is saleable where as in 

pipeline and column FFTs the number of butterfly units is dependent on the FFT size. The partial-column 
organization can also be combined to pipeline class, which results in parallel pipelines as proposed,. The high-

level organization of the FFT processor is not the only characteristic, which defines the key properties of the 

implementation. Most of the power in FFT processor is consumed by the butterfly operations. Therefore, the 

power optimizations should be performed for butterfly units. Butterfly units can be realized with several 

different principles‟. Butterfly units based on bit-parallel multipliers [7], CORDIC, and DA have been reported. 

The organization of the proposed energy-efficient partial-column FFT processor is described in the following 

sections [8]. 

2.1. Organization 

In general, in the partial-column processing all operands to the butterfly computations are transferred 

simultaneously from the memory implying need for high memory bandwidth. In our approach, the butterfly 

units are pipelined in a sense that a single operand (2K-bit word if real and imaginary parts take K bits each) is 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    24 | Page 

transferred to the butterfly unit at a time, thus each butterfly unit has a dedicated bus to and from memory. Such 

an arrangement increases the computation time but this can be compensated by increasing the number of 

butterfly units. Our approach is to minimize the RAM storage, thus the computation is performed in-place, i.e., 
results of butterfly units are stored into the same memory locations they were obtained. Therefore, N complex-

valued memory Locations is needed for an N-point FFT. The organization requires that there are 2M-ports in the 

RAM memory. 

 
When M butterfly units with through put of one is used. This can be arranged with multi-port 

memories, but more area-efficient approach is to use interleaved memories with a conflict-free access scheme. 

This arrangement requires that for an N-point FFT, there are 2M single- port memories with N/2M words and 

the memories are interconnected with a permutation network Butterfly operation and these are discussed in the 
following sections. 

 

III. Proposed Method Radix 4 

 

The N-point discrete Fourier transform is defined by [10]. 

 
The N-point FFT can be decomposed to repeated micro operations called butterfly operations. When 

the size of the butterfly is r, the FFT operation is called a radix-r FFT. For FFT hardware realization, if only one 

butterfly structure is implemented in the chip, this butterfly unit will execute all the calculations recursively. If 

parallel and pipeline processing techniques are used, an N point radix-r FFT can be executed by  clock 
cycles. This indicates that a radix-4 FFT can be four times faster than a radix-2 FFT. Fig.2 shows the signal flow 

graph of 16-point radix-4 FFT, and Fig. 1shows the general structure of the radix-4 butterfly. For hardware 

realization of FFT, multi-bank memory and "in place" addressing strategy are often used to speed-up the 

memory access time and minimize the hardware consumption. For radix-r FFT, r banks of memory are needed 

to store data, and each memory bank could be two-port memory.  

 

 
Fig.1: General Structure of Radix 4 butterfly unit 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    25 | Page 

With "in-place" strategy, the r outputs of the butterfly can be written back to the same memory locations of the r 

inputs, and replace the old data. In this case, to realize parallel and pipelined FFT processing, an efficient 

addressing scheme is needed to avoid the data conflict. A popular addressing scheme for radix-r (r>2) was 
presented by Johnson, however due to the modulo-r addition, this method is slow and the speed depends on the 

length of FFT. 

IV. Algorithm 

 

The N-point DFT of a finite duration sequence x (n) is defined by (2) as follows. 

 

 
 

Let N be a composite number of v integers so that N = r3r2...r, and define 

 
Where t is the stage number of the decomposed DFT and rt its radix. The pipelined FFT processor is obtained by 

decomposing an N-point DFT into v stages. The final stage is defined in as follows. 

 

 
 

Whereas intermediate stages (t) are given by the following recursive equation 

 

 

 
 

For  ri = 4, the flow graph of a 16-point FFT based on the above formulation is shown in Fig. 2. The 

corresponding equations are as follows. 

 
In Fig. 2, each open circle represents the summation while the dots define the stage boundaries. The number 

inside the open circle is the value of ml( for stage 1) or m2 (for stage 2). The number outside the open circle is 

the FFT coefficient applied. 

 
Fig.2. Signal flow graph of a radix-4 16 point FFT 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    26 | Page 

IV. Architectural Design 

 

The FFT processor will calculate a 64-point FFT on incoming data. For the radix 4 algorithm, the first 

3 stages of the flow graph involve choosing every 8th term to yield 8 octets [1], and for the last 3 stages, every 

successive octet makes up the input the FFT processor. The Figure 2 is the flow graph for the decimation in 

frequency algorithm. 

The FFT data-path is as shown below, from the point data enters the processor module from memory, 

to the point where it is written back to memory. Red lines represent the control signals and their delayed 

versions. A „D‟ is prefixed to represent the delayed versions of the original signal; each D signifies a clock 

delay. The pipeline is 4 stages long, and completes 3 stages of the FFT calculation before writing the data back 

to memory. Another point to note is that data is always written out to the memory from Register Bank 2, and it 

is always read to Register bank 1. The two register banks allow 2 octets to be in the pipeline at any given time. 
In place computations make it a simplified design. The outputs of the FFT computation are in bit-reversed order, 

and need to be shuffled back into normal order.  The results of butterfly computations are scaled down by a 

factor of 2 to avoid arithmetic overflow [4]. The 64 point FFT takes a total of 196 cycles. Clocking the 

processor at 40 MHz will result a latency of about 2 microseconds. 

 
Fig.3.The FFT processor date path 

 
The FFT processor has a modular design and comprises of 3 modules [3]. 

1. Butterfly Processor 

2. Address Generation Unit (AGU) 

3. Micro-Coded State Machine (MCSM) 

 

A. Butterfly Processor: 

 

The Butterfly processor‟s task is to carry out the complex butterfly computation [5].  

 

 
Fig.4.radix-4 butterfly diagram 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    27 | Page 

Where  



N

r

W  exp(2j r
N
)

 
To avoid using a complete digital multiplier to carry out multiplication with the twiddle factors, we used CSD 

(canonical signed digit multiplication, using shifts and ads) [9]. The results desired multiplication is controlled 

by 2 stages of multiplexing feeding into the CSD‟s.  The butterfly processor has two pipelined stages. The data-

path of the butterfly processor is shown below. 

 
Fig.5.butterfly processor data part 

 

B. Address Generation Unit (AGU): The address generation unit controls the address bus going to memory. 

The FFT processor reads and writes from and to the 8 dual port memory banks concurrently (each address is 3 

bits). The address mapping scheme ensures that no memory location is read from and written to at the same 
time. There are 8 read address buses, and 8 write address buses. The computations are in place, which simplifies 

the address generation unit. 

 

Table.2 Memory-Mapping scheme 

 
 

C. Micro-coded State Machine: The Micro-coded state machine stores and generates all the control signals for 

the FFT processor‟s operation at every, its progression is controlled by the clock. A reset signal en_fft resets the 

state machine counter and signals the beginning of a new 64-point FFT calculation. Upon completion the FFT 

processor asserts a done_fft signal to communicate the completion of the 64-point FFT. The number of states is 

196.  To perform an Inverse Fast Fourier Transform, all we need to do is swap the real and imaginary parts. 

 

V. Vedic Multiplier 

 
The proposed Vedic multiplier is based on the Vedic multiplication formulae (Sutras). These Sutras 

have been traditionally used for the multiplication of two numbers in the decimal number system. The multiplier 

is based on UrdhvaTiryakbhyam (Vertical & Crosswise) which is one of the sutra of ancient Indian Vedic 

Mathematics. It is based on a novel concept through which the generation of all partial products can be done 

with the concurrent addition of these partial products. The Parallelism in generation of partial products and their 

summation is obtained using UrdhvaTiryakbhyam explained in Fig.6 to illustrate the multiplication algorithm, 

let us consider the multiplication of two binary numbers a3a2a1a0 and b3b2b1b0. As the result of this 

multiplication would be more than 4 bits, we express it as... r3r2r1r0. Line diagram for multiplication of two 4-



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    28 | Page 

bit numbers is shown in Fig. 7 the simplicity, each bit is represented by a circle. Least significant bit r0 is 

obtained by multiplying the least significant bits of the multiplicand and the multiplier. Firstly, least significant 

bits are multiplied which gives the least significant bit of the product (vertical).Then, the LSB of the 
multiplicand is multiplied with the next higher bit of the multiplier and added with the product of LSB of 

multiplier and next higher bit of the multiplicand (crosswise). The Vedic multiplier is used for the calculation of 

twiddle factor W8, W16, W32, W512 .The twiddle factor values are stored in a RAM and used as multiplicand 

in Vedic multiplier. 

 
Fig.6. Block diagram of Vedic multiplier. 

 

 
Fig.7. Example of Vedic algorithm 

 

The Vedic multiplier reduces unwanted multiplication steps and hence reduces propagation delay. The block 

diagram of Vedic multiplier is shown in the Fig 6. The Vedic multiplier does not use any storage unit for storing 

intermediate product value and thus ensure substantial reduction in the propagation delay. From the figure it can 

be noted that it is as simple as array multiplier. Vedic algorithm is also reduced and more competitive and lower 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    29 | Page 

hardware complexity as compared to the conventional architectures. The power for radix-4FFT processor using 

conventional and Vedic algorithm are calculated using Xpower estimator from Xilinx XSE. 

 

VI. Results: Simulation &Synthesis 

 

A. Simulation Report 

 

The simulated waveforms of Address Generation Unit, where the top to signals indicates read data and 

write data respectively is shown in fig.8. It shows no memory location is read from and written to at the same 

time. 

 

 
Fig.8.Simulation Results in Address Generation Unit (AGU) 

 

The simulated waveforms of control unit , where the top to signals indicates clk ,fft enable and all control 

signals is shown in fig. 9. 
 

 
Fig.9. Simulation Results in Control Unit 

 

 

 
Fig.10. Simulation Results in Butterfly Unit 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    30 | Page 

 

 
Fig.11. Simulation Results in 64 Point FFT using Radix-4 Algorithm 

 

The simulation results of Butterfly Unit is shown in fig. 10 and the simulated waveforms of 64 point FFT using 

Radix-4 algorithm is shown in fig.11, where the top to signals indicates Butterfly operation and address 

generation and dual port RAM. 

 

B. Synthesis Report 

 
Synthesis is the processes of constructing a gate level net list from a register-transfer level model of a 

circuit described in Verilog HDL, a synthesis system may as an intermediate step generate a net list that is 

comprised of register-transfer level blocks such as flip-flops, arithmetic-logic-units, and multiplexers, 

interconnected by wires. Synthesis is the implementation of the design in to the actual hardware. 

 

 

 
Fig.12.Synthesis results in 64 point FFT using Radix-4 Algorithm 

 
 

VII. Conclusion 

 

This paper presented a new, very high speed FFT architecture based on the Radix-4^3 algorithm. A 

fully pipelined, systolic processing core of a 64-point FFT has been implemented in both FPGA and standard 

cell technologies and validated in the former case. The results demonstrate the very high operating frequencies 

and the low latencies of both the FPGA and VLSI implementations. The proposed FFT architecture 

demonstrates a significant latency reduction compared to existing solutions and at the same time, has reduced 

data memory required and improved multiplier utilization while occupying a smaller silicon area occupation 



A Novel Architecture for Radix-4 Pipelined FFT Processor using Vedic Mathematics Algorithm 

www.iosrjournals.org                                                    31 | Page 

consuming less power compared to similar solutions. The modular design of the Radix-4^3 allows them to be 

easily incorporated into larger systems for computing large scale FFTs while a fully registered, systolic 

architecture assures maximum operating frequency. Future research by our group will focus on the 
implementation of a reconfigurable FFT architecture, capable of performing the FFT transform of 64, 4K, 256K 

or 16M complex points. 

References 

 
[1]. S. Mittal, Z.A. Khan, and M.B. Srinivas, “Area efficient high speed architecture of Bruun's FFT for software defined radio”, IEEE 

Global Telecommunications Conference GLOBECOM '07, pages 3118 -3122, November 2007. 

[2]. L. Xiaojin, L. Zongsheng Lai, and C. Jianmin Cui, “A low power and small area FFT processor for OFDM demodulator”, IEEE 

Transactions on Consumer Electronics, 53(2):274-277, May 2007. 

[3]. M. C. Pease, “Organization of large scale Fourier processors”, J. Assoc. Comput. Mach., 16:474–482, July 1969. 

[4]. D. Cohen, “Simplified control of FFT hardware”, IEEE Trans. Acoust., Speech, Signal Processing, 24:577-579, December 1976. 

[5]. S. He and M. Torkelson, “Design and implementation of a 1024-point pipeline fft processor,” in Proc. IEEE Custom Integrated 

Circuits Conf., Santa Clara, CA, May 11-14 1998, vol. 2, pp. 131–134.  

[6]. E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline fft processors for vlsi implementations,” IEEE Trans. Comput., vol. 

33, no. 5, pp. 414– 426, May 1984. 

[7]. M. Wosnitza, M. Cavadini, M. Thaler, and G. Tr¨oster, “A high precision 1024-point fft processor for 2d convolution,” in Dig. Tech 

Papers IEEE Solid-State Circuits Conf., San Francisco, CA, Feb. 5-7 1998, pp. 118–119. 

[8]. A. M. Despain, “Fourier transform computers using cordic iterations,” IEEE Trans. Comput., vol. 23, no. 10, pp. 993–1001, Oct 

1974. 

[9]. A. Berkeman, V. Owall, and M. Torkelson, “A low logic depth complex multiplier using distributed arithmetic,” IEEE Solid-State 

Circuits, vol. 35, no. 4, pp. 656–659, Apr. 2000. 

[10]. Chu Yu, Member, IEEE, Mao-Hsu Yen, Pao-Ann Hsiung, Senior Member, IEEE,and Sao-Jie Chen, Senior Member, IEEE.A Low-

Power 64-point Pipeline FFT/IFFT Processor for OFDM Applications.’IEEE Transactions on Consumer Electronics, Vol. 57, No. 1, 

February 2011. 


