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Abstract: The Evolution of Multiple symbol differential detection (MSDD) of  double differential QAM signal is 

studied in the presence of  frequency offset ,phase offset and additive white Gaussian noise. It is shown that in 

the case of nonzero frequency offset distorts the transmitted signal through attenuating its amplitude and MSDD 

receiver degrades by increases the number of  samples. MSDD signal makes use of maximum likehood sequence 

estimation of  transmitted phase rather than the symbol by symbol detection as in the conventional differential 

detection . It is shown that the proposed receiver is robust to the distortions caused by the random frequency 

variations and a lower bound on the error probability of the proposed MSDD receiver is also derived . 

Keywords-Differential encoding, maximum-likelihood detection, multiple symbol differential detection, 

Quadrature  Amplitude Modulation. 

                                                              I. Introduction 
It is well known that, in applications where simplicity and robust of implementation take precedence 

over  achieving the best system performance, differential detection is an attractive alternative to coherent 

detection .Aside from  implementation considerations. It is also possible that the transmission environment may 

be sufficiently degraded, e.g.., a multipath fading channel , that acquiring and tracking a coherent demodulation 

reference signal is difficult if not impossible. 

In the past, differential detection or multiple Quadrature Amplitude Modulation  (MQAM) has been 

accomplished by comparing the received phase in a given  symbol interval to that in the previous symbol 

interval and making a multilevel decision on the difference between these two phases. Differential detection of 

Quadrature Amplitude Modulation (QAM) signals is a well-known strategy for mitigating the performance 

degradation due to unknown phase offset. The constellation rotation caused by the phase offset can be removed 
using a differential QAM (DQAM) modulation scheme along with a differential detector[1]. However, this 

detector suffers from a signal-to-noise power ratio (SNR) loss compared to a coherent detector[1]. An effective 

means to mitigate this SNR loss is known as multiple-symbol differential detection (MSDD) [2]-[4].  

            The MSDD scheme is, indeed, a more general case of the conventional differential detection in which 

more than two consecutive samples are utilized to detect the information symbols. It is shown in [2] that by 

increasing the number of received samples in MSDD, the receiver performance approaches that of coherent 

demodulation of DQAM signals. 

In this paper, we study the effect of frequency variations on a QAM signal transmitted over an additive 

white Gaussian noise (AWGN) channel. We show that frequency offset attenuates the amplitude of the 

transmitted signal and rotates its constellation points about the origin by a time-varying phase. Then, we derive a 

MSDD scheme to demodulate a DDQAM signal and show that this scheme is not sensitive to constellation 

rotation caused by the frequency offset.  
The proposed demodulator suffers from a SNR loss compared to a conventional MSDD with DQAM 

modulation when frequency offset is not present. However, as will be seen in the sequel, the SNR loss can be 

less than 3 dB for some modulation schemes resulting in a net performance gain relative to the ACD-based 

MSDD scheme proposed [10]. 

This paper is organized as follows. In Section II, we present system model and maximum-likehood 

detection of MQAM. In Section III, we propose a new MSDD scheme for DDQAM signal and derive a lower 

bound on its bit error probability. Numerical results are presented in Section IV. In Section V, some conclusion 

are drawn. 
 

I. System Model And Maximum-Likehood Detection Of MQAM 
Consider communication over an additive white Gaussian noise (AWGN) channel. Assuming  perfect 

symbol timing at the receiver, the baseband equivalent received signal can be expressed as 

                                             𝒓𝒌= 𝑺𝒌𝒆
𝒋(𝒌𝜳+Ø) +𝒏𝒌       (k-1)T ≤ t ≤ kT        (1) 

 
 Where Ψ=2𝛱𝑓0𝑇 ,S𝑘is theinformation symbol at the 𝑘𝑡ℎsymbol interval, 𝑛𝑘  is the AWGN sample at the 𝑘𝑡ℎ  
symbol  interval with zero mean and variance 
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                                                       𝛔𝐧
𝟐 =

𝟏

𝟐
𝐄 𝐧𝐤

  𝐧𝐤
∗  =

𝐍𝟎

𝐓
                  (2) 

T is the symbol interval and𝑓𝑜  and 𝜙are the frequency offset and phase offset, respectively,.  Assumenow ,a well 

known DQAM modulation scheme is used to modulate the information symbols, then the  𝑘𝑡ℎ transmitted  
symbol can be written as  

                                                               𝑺𝒌 = 𝟐𝑷𝒆𝜽𝒌                          (3) 

 
Where P is the transmitter’s power and  𝜃𝑘 ∈  2𝜋𝑚/𝑀}𝑚=0

𝑀−1    is the transmitted phase at the  𝑘𝑡ℎ  symbol interval 

and 𝑀denotes size of the constellation.  

 

 
Fig. 1. The frequency domain representation of a band  limited received signal, and its demodulated version in the presence of 

frequency offset. 

 

In contrast, the constellation rotation caused by the frequency offset can degrade the performance rather rapidly 

even for small values of 𝜓. This is because the angle of rotation is a function of time and varies from one 

symbol interval to the other. The time-varying constellation rotation can be converted to a time invariant 

rotation by using a DQAM modulation scheme. In a DQAM modulation scheme the 𝑘𝑡ℎ  transmitted phase is 
defined as  

                                                     𝜽𝒌 ≜  𝜽𝒊
 𝒌

𝒊=𝟏                                          (4) 
 

Where 𝜃 𝑖is the 𝑖th uncoded information phase and clearly 𝜃 𝑖can be written as 𝜃 𝑖= 𝜃𝑖− 𝜃𝑖−1. Assume that the 

term exp(𝑗𝑘𝜓) in (1) is absorbed into𝑆𝐾 . Then, eq(1) can be written as 

 

                                                                    𝒓𝒌 = 𝒗𝒌𝒆
𝒋∅ + 𝒏𝒌                           (5) 

 

Where 

                                                              𝒗𝒌 ≜  𝟐𝑷 + 𝒆𝒋(𝜽𝒌+𝒌𝜳)                     (6) 
 

                 𝛖𝐤 =  𝟐𝐏𝐞𝐱𝐩  𝐣 (𝛉 𝐢

𝐤

𝐢=𝟏

+ 𝛙)             (𝟕) 

 
This means that in the presence of the frequency offset, the information phases should be chosen from 

{2𝜋𝑚/𝑀+𝜓}𝑀−1𝑚=0 rather than {2𝜋𝑚/𝑀}𝑀−1 𝑚=0 . In other words, the effect of 𝜓on a DQAM signal is 

similar to the effect of phase offset on a QAM signal. Therefore, a DDQAM modulation should be invariant to 

frequency offset as the DQAM modulation is invariant to phase offset. 

 

II. Frequency Offset Insensitive Differential Detection 
A . Receiver Derivation: 

Assume that the frequency offset and the phase offset are constant over 𝑁 successive samples. Then, 

using (4) one can define a new variable  𝑟 as 

 

𝐫 𝐤 ≜ 𝐫𝐤𝐫𝐤−𝟏
∗  
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    𝒓𝒌  =𝒓𝒌𝒓𝒌−𝟏
∗ 𝒆𝒋𝝍 + 𝒏 𝒌                                                                         8(a) 

 
               Where 

  𝐧 𝐤 ≜  𝐬𝐤𝐞
𝐣(𝐤𝛙+∅)𝐧𝐤−𝟏

∗ + 𝐧𝐤𝐬𝐤−𝟏
∗ 𝐞−𝐣 𝐤−𝟏 𝛙+∅ +  𝐧𝐤𝐧𝐤−𝟏

∗             8(b) 
 

Assume that a QAM modulation is employed, i.e., 𝑟𝑘 is given by (1). Then, the first and second terms 

on the right of (8b) are independent Gaussian random variables each with mean zero and variance 𝜎𝑛
2 . In 

contrast, the last term has a complicated probability density function[12]. However, for practical SNR values 

this term is relatively small compared to the first two and can be ignored. Moreover, it can be shown that 𝑛 𝑘and 

𝑛 𝑙are uncorrelated for 𝑘≠ℓ. Therefore, we approximate {𝑛 𝑘} as a zero-mean Gaussian random sequence with 

 

                                   𝑬{𝒏 𝒌𝒏 𝒍
∗}=𝝈𝒏

𝟐𝜹(𝒌 − 𝓵)                         (9) 
 

Where (⋅) denotes the Kronecker delta function. 

Assume now that 𝜓has a uniform distribution over the interval [0, 2𝜋) and that any amplitude 

variations due to frequency offset can be ignored. Also assume that in (8a) the  

term𝑃𝑘𝑃𝑘−1
∗   =𝜀𝑠  exp(j𝜃 𝑘 ) denotes the 𝑘𝑡ℎ  transmittedsymbol. Then, the maximum-likelihood (ML) receiver 

should maximize the metric[2]. 
 

                          𝚲 =   𝐫 𝐤−𝐢
𝐍−𝟏
𝐢=𝟎 𝐞−𝐣𝛉 𝐤−𝐢 

𝟐
                             (10) 

                             =  𝐫 𝐤−𝐢𝐞
−𝐣(𝛉 𝐤−𝐢−𝛉 𝐤−𝐍+𝟏𝐍−𝟏

𝐢=𝟎  
𝟐

                 (11) 

 

Where the last equation follows from the fact that multiplying the argument of the  .  in (10) by𝜃 𝑘−𝑁+1  
does not change the metric[2]. Note that in this case we need N+1 samples to detect N−1 information symbols. 

It can be readily verified that 

 

     𝜽 𝒌−𝒊 − 𝜽 𝒌−𝑵+𝟏 =  𝜽 𝒌−𝒊−𝒎
𝑵−𝒊−𝟐
𝒎=𝟎                                       (12) 

 

Where now 𝜃 𝑘 = 𝜃 𝑘 − 𝜃 𝑘−1 is the information phase at the 𝑘th time interval. Thus, (11) can be rewritten as 
 

=  𝐫 𝐤−𝐍−𝟏 +  𝐫 𝐤−𝐢𝐞𝐱𝐩  −𝐣  𝛉 𝐤−𝐢−𝐦

𝐍−𝐢−𝟐

𝐦=𝟎

 

𝐍−𝟐

𝐢=𝟎

 

𝟐

                        (𝟏𝟑) 

ʌ 
 

Clearly, the metric in (13) is independent of the frequency offset and the phase offset. Assuming that 𝜃−1 =𝜃𝑜  = 

0 and 

 

𝜽𝒌 =  (𝒌 − 𝒊 + 𝟏)𝜽 𝒊

𝒌

𝒊=𝟏

 

                                                                    =  𝜽 𝒎
𝒊
𝒎=𝟏

       𝒌
𝒊−𝟏                                       (14) 

 
Encoding the information symbols using (14) is equivalent to encoding the information symbols using a DQAM 

encoder once, and then encoding the resulting symbols one more time with the same encoding rule. Note that 

the analysis presented in this section serves as the proof of optimality for the MSDD receiver when the {𝑛 𝑘 }are 

Gaussian. This occurs when the cross-noise term in (8b) is negligible, i.e., when the SNR is relatively large. 

 

B. Bit Error Probability performance: 

For DDQAM signals, the I–Q demodulator presented in[10,Section V]  is a special case of the 

proposed receiver when 𝑁= 2. In the absence of the frequency offset, an exact expression for the BER of the I–

Q demodulator with binary DDQAM modulation has been derived in [8],[13]. For higher order DDQAM 

signals, i.e., when 𝑀>2, an exact expression for the BER of the MSDD is not known to the best of authors’ 

knowledge. However, an upper bound for the symbol error rate (SER) for the case where 𝑁= 2 has been derived 

in [8],[13]. 
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We now obtain a reasonably tight lower bound on the BER of the MSDD for the case where 𝑁→ ∞. To 

this end, we recall a fact presented in [2] that the performance of the MSDD with DQAM modulation and 

𝑁→∞, is lower bounded by that of the coherent detection of differentially encoded QAM [14, eq. (8.36)],2 i.e., 

 

𝐏𝐬
𝐋𝐁 = 𝐏𝐬 𝟐 − 𝐏𝐬 −  𝐏𝐦

𝟐

𝐌−𝟏

𝐦=𝟏

                                (𝟏𝟓) 

 

where𝑃𝑚 is the probability that the AWGN moves the transmitted 𝑀QAM symbol 𝑚decision regions away from 

the correct region and 𝑃s is the SER of the optimum decision rule for detecting a single symbol transmitted over 

an AWGN channel for QAM,DQAM and DDQAM modulation is given by 

 

                     QAM:        𝒂𝒓𝒈𝜽𝒌

𝒎𝒂𝒙 𝒓𝒌
  𝒆−𝒋𝜽𝒌                                         (16) 

                    DQAM:       𝒂𝒓𝒈𝜽𝒌

𝒎𝒂𝒙 𝒓𝒌𝒓𝒌−𝟏
∗   𝒆−𝒋𝜽𝒌                              (17) 

                  DDQAM:    𝒂𝒓𝒈𝜽𝒌

𝒎𝒂𝒙 𝒓𝒌𝒓𝒌−𝟏
∗  (𝒓𝒌−𝟏

  𝒓𝒌−𝟐
∗ )𝒆−𝒋𝜽𝒌          (18) 

 

The lower bound in (18) is valid only when the received samples, {𝑟𝑘 }, are used to evaluate the 

MSDD’s decision metric. However, the receiver uses the {𝑟 𝑘} to evaluate the decision metric given by (11). 

Therefore, the lower bound in (15) should be adjusted to account for the above fact. To this end, by replacing 

𝑟𝑘with 𝑟 𝑘 in (18), one has that 
 

𝐚𝐫𝐠𝛉𝐤

𝐦𝐚𝐱 𝐫 𝐤𝐞
−𝐣𝛉𝐤                                             (𝟏𝟗) 

 

Eq. (19) denotes the decision rule of the optimum differential detector of 𝑀DQAM when 𝑁= 2. The SER of this 
receiver is given by [15 eq. (3)] 

 

                                   𝐏𝐬 =
𝟏

𝛑
 𝐞𝐱𝐩  

−𝛄𝐬𝐬𝐢𝐧
𝟐 

𝛑

𝐌
 

𝟏+𝐜𝐨𝐬 
𝛑

𝐌
 𝐜𝐨𝐬𝛉

 
𝛑−𝛑/𝐌

𝟎
𝐝𝛉(20) 

 

We also use the distribution of the phase angle between two vectors corrupted by uncorrelated Gaussian noise 

given to obtain 𝑃𝑚, after some manipulations, as 

 

         𝑷𝒎 =
𝟏

𝟐𝝅
 𝒆𝒙𝒑  

−𝜸𝒔𝒔𝒊𝒏
𝟐  
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𝑴
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𝑴
 𝒄𝒐𝒔𝜽
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𝝅−
(𝟐𝒎−𝟏)𝝅

𝑴
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                                               -
𝟏

𝟐𝝅
 𝒆𝒙𝒑 

−𝜸𝒔𝒔𝒊𝒏
𝟐 

(𝟐𝒎+𝟏)𝝅

𝑴
 

𝟏+𝒄𝒐𝒔 
(𝟐𝒎+𝟏)𝝅

𝑴
 𝒄𝒐𝒔𝜽

 𝒅𝜽
𝝅−

(𝟐𝒎+𝟏)𝝅

𝑴
𝟎

 

                                                                                   m=1,2,........M-1.                   20(b) 

 
For the special case when 𝑀= 2, 𝑃𝑏

𝐿𝐵can be expressed in closed-form as 

 

                                                            𝐏𝐛
𝐋𝐁 = 𝐞−𝛄𝐛 −

𝟏

𝟐
𝐞−𝟐𝛄𝐛                    (21) 

 

Where 𝛾𝑏denotes the SNR per bit. Note that for moderate to large values of SNR the square terms on the right 

of (19) are very small and can be ignored. Hence, for these SNR values𝑃LB s is approximately equal to 2𝑃s. 

 

III. Numerical Results 
As mentioned in Section II, the expression given in (1) is an approximation for the sampled received 

signal as it does not account for the amplitude attenuation caused by the frequency offset. It is, therefore, 
important to examine the receiver performance in the presence of this attenuation and indicate how good the 

aforementioned approximation is. To this end, we evaluate the error probability performance of the proposed 

MSDD receiver as a function of 𝜓for 𝛾𝑏= 10 dB and selected values of 𝑁.We assume a rectangular pulse-

shaping filter is used at the transmitter. The results are shown in Fig.2  for binary DDQAM (BDDQAM) and 
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quaternary DDQAM (QDDQAM) modulations. Note that the error probability performance at 𝜓= 0 represents 

the case where equations (1) is identical.  

 

 
Fig.2.The average error probability of the proposed MSDD as a 

function of DQAM modulation for SNR =10dB and N=2,4,6,8 and 

10. 

 
 

Fig. 3. The lower bound on the SER of the proposed receiver and 

the average  SER for   coherent detection of BQAM and QAM as a 

function of SNR for 𝑀= 2, 4, 8. 

 

Fig. 3 illustrates the error probability performance of the proposed receiver DQAM with QDDPSK modulation 

for the cases where 𝜓= 0, and selected values of 𝑁. As seen in the figure, the performance of the receiver is 

approximately the same for both cases. Note that in this case, increasing the observation interval significantly 

improves the receiver performance. For example, when the SER = 10−5, increasing 𝑁from 2 to 10 leads to a 

SNR gain of 3.5 dB. It is shown in [10] that the ACD receiver suffers from a 3 dB SNR loss compared to the 

coherent detection of DQAM signals when 𝑁→∞ and SNR is very large. It is, therefore, desirable to investigate 
the SNR loss of the proposed receiver relative to the coherent detection of DQAM.   

  

 
Fig. 4. The average BER as a function of SNR for the QAM 

modulation for N=4, 16,64,256. 

 

 
 

Fig: 5 SER Comparison between the QAM and QAM modulation 

for N=16. 

Fig. 4 illustrates the error probability performance of the proposed receiver with QAM modulation for 

the cases where 𝜓= 0, and selected values of 𝑁.  It is assumed that the band pass filter prior to the ACD has a 

bandwidth of 8𝜋/𝑇 [10]. When 𝑁 = 2, the ACD outperforms the proposed receiver for SNR ≥ 11 dB. Increasing 

the observation interval improves the performance of the proposed receiver relative to the case where 𝑁 = 2 

rather rapidly. However, this increase does not have a significant impact on the performance of the ACD 

receiver. For example, when the average BER equals 10−6, increasing 𝑁 from 2 to 8 results in a 3 dB SNR gain 

for the proposed receiver, whereas the corresponding gain for the ACD is approximately 0.35 dB. Fig. 3 also 

shows that the lower bound becomes quite tight when 𝑁 increases. Note that for 𝑁 = 16 and BER = 10−6, the 
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proposed receiver achieves a gain of 2.5 dB relative to the ACD receiver. As seen in the figure, the performance 

of the receiver is increasing the observation interval significantly improves the receiver performance.  

Fig.5 shows the comparison of error probability performance of the proposed receiver with QAM and PSK 

modulation. As seen in the figure, the performance of  QAM modulation is better than  the PSK modulation. For 

example, when the SER = 10−3, increasing SNR gain of 5dB. 

 

IV. CONCLUSION 
A MSDD scheme was proposed for detection of DDQAM signals in the presence of random frequency 

variation and AWGN. It was shown that the proposed receiver is insensitive to constellation rotation due to 

frequency offset, and is robust to amplitude attenuation provided that the frequency offset is not large. Carrier 

frequency variation was shown to deteriorate the amplitude and the phase of a QAM signal transmitted over an 

AWGN channel. It was also shown that the proposed receiver outperforms an ACD receiver when the number 

of received samples contributing to the detection process becomes large. We have tested our algorithm on QAM 

modulation also. Those Figures are shown in above figures. We have found that the better Error probability is 

obtained. 
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