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 Abstract: The widely used reliable transport protocol TCP, is an end to end protocol designed for the wireline 

networks characterized by negligible random packet losses. This paper represents exploratory study of TCP 

congestion control principles and mechanisms. Modern implementations of TCP contain four intertwined 

algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery. In addition to the standard 

algorithms used in common implementations of TCP, this paper also describes some of the more common 

proposals developed by researchers over the years. We also study, through extensive simulations, the 

performance characteristics of four representative TCP schemes, namely TCP Tahoe, New Reno and Vegas 

under the network conditions of bottleneck link capacities for wired network. 
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I. Introduction 
The standard algorithms in TCP implementations today can be found in RFC 2001[4]. This reference 

document specifies four standard congestion control algorithms that are now in common use. The four 

algorithms, Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recoveries are described below. 

 

1.1 Slow start 

Slow Start, a requirement for TCP software implementations is a mechanism used by the sender to 

control the transmission rate, otherwise known as sender-based flow control. This is accomplished through the 

return rate of acknowledgements from the receiver. When a new connection is established, the congestion 

window is initialized to one segment. Each time an ACK is received, the congestion window is increased by one 
segment. The sender can transmit up to the minimum of the congestion window and the advertised window. The 

congestion window is flow control imposed by the sender, while the advertised window is flow control imposed 

by the receiver. The former is based on the sender’s assessment of perceived network congestion; the latter is 

related to the amount of available buffer space at the receiver for this connection. The sender can transmit the 

minimum of the congestion window and the advertised window of the receiver, which is simply called the 

transmission window. The sender starts by transmitting one segment and waiting for its ACK. When that ACK 

is received, the congestion window is incremented from one to two, and two segments can be sent. When each 

of those two segments is acknowledged, the congestion window is increased to four. This provides an 

exponential growth, although it is not exactly exponential because the receiver may delay its ACKs, typically 

sending one ACK for every two segments that it receives. At some point the capacity of the internet can be 

reached, and an intermediate router will start discarding packets. This tells the sender that its congestion window 
has gotten too large. 

 

1.2 Congestion avoidance 

Congestion can occur when data arrives on a big pipe (a fast LAN) and gets sent out a smaller pipe (a 

slower WAN). Congestion can also occur when multiple input streams arrive at a router whose output capacity 

is less than the sum of the inputs. Congestion avoidance is a way to deal with lost packets. In the Congestion 

Avoidance algorithm a retransmission timer expiring or the reception of duplicate ACKs can implicitly signal 

the sender that a network congestion situation is occurring. The sender immediately sets its transmission 

window to one half of the current window size (the minimum of the congestion window and the receiver’s 

advertised window size), but to at least two segments. If congestion was indicated by a timeout, the congestion 

window is reset to one segment, which automatically puts the sender into Slow Start mode. If congestion was 

indicated by duplicate ACKs, the Fast Retransmit and Fast Recovery algorithms are invoked. 
 

1.3 Fast retransmit 

When a duplicate ACK is received, the sender does not know if it is because a TCP segment was lost or 

simply that a segment was delayed and received out of order at the receiver.  Typically no more than one or two 
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duplicate ACKs should be received when simple out of order conditions exist. If however more than two 

duplicate ACKs are received by the sender, it is a strong indication that at least one segment has been lost. The 

TCP sender will assume enough time has lapsed for all segments to be properly re-ordered by the fact that the 
receiver had enough time to send three duplicate ACKs. 

     When three or more duplicate ACKs are received, the sender does not even wait for a retransmission timer to 

expire before retransmitting the segment (as indicated by the position of the duplicate ACK in the byte stream). 

This process is called the Fast Retransmit algorithm and was first defined in [5]. Immediately following Fast 

Retransmit is the Fast Recovery algorithm. 

 

1.4 Fast recovery 

It is an improvement that allows high throughput under moderate congestion, especially for large 

windows. The receipt of the duplicate ACKs tells TCP more than just a packet has been lost. Since the receiver 

can only generate the duplicate ACK when another segment is received, that segment has left the network and is 

in the receiver’s buffer. 
     The fast retransmit and fast recovery algorithms are usually implemented together as follows. [4] 

1. When the third duplicate ACK in a row is received, set ssthresh to value:  

ssth = min (cwnd/2 , 2 MSS)  (1) 

Retransmit the missing segment. Set cwnd to ssthresh plus 3 times the segment size. This inflates the congestion 

window by the number of segments that have left the network and which the other end has cached. 

2. Each time another duplicate ACK arrives, increment cwnd by the segment size. This inflates the congestion 

window for the additional segment that has left the network. Transmit a packet, if allowed by the new value 

of cwnd: 

cwnd = ssth + no. of dupacks received  (2) 

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in step 1). This 

ACK should be the acknowledgment of the retransmission from step 1, one round-trip time after the 

retransmission. Additionally, this ACK should acknowledge all the intermediate segments sent between the 
lost packet and the receipt of the first duplicate ACK. This step is congestion avoidance, since TCP is down 

to one-half the rate it was at when the packet was lost. 

 

II. Congestion Control Mechanisms 
Here we will discuss three congestion control mechanisms. 

2.1 TCP Tahoe 

TCP Tahoe added the slow-start, congestion avoidance, and fast retransmit algorithms to TCP.  TCP 

Tahoe is briefly described in [8]. With fast retransmit, when a packet is lost, instead of waiting for the 

retransmission timer to expire, if tcprexmtthresh (usually three) duplicate ACKs are received, the sender infers a 
packet loss and retransmits the lost packet. The sender now sets its ssthresh to half the current value of cwnd 

(maintained in bytes) and begins again in the slow-start mode with an initial window of 1. The slow start phase 

lasts till the cwnd reaches ssthresh and then congestion avoidance takes over. In this phase, the sender increases 

its cwnd linearly by cwnd for every new ACK it receives. Note that with TCP Tahoe the sender might retransmit 

packets which have been received correctly. Timeouts are used as the means of last resort to recover lost 

packets. On receiving three dupacks Tahoe starts Fast retransmit phase in which it retransmits packet and set 

ssth to half of cwnd and then enters in slow start phase by setting cwnd to one segment. 

 

2.2 TCP Newreno 

Standard TCP schemes such as Reno are simple and effective for reliable data transfer in wired 

networks, where packet loss due to bit errors is rare. TCP newreno [1] have similar slow-start, congestion 
avoidance and fast retransmit- recovery algorithm as Reno. During the slow-start phase, the sender increases its 

congestion window cwnd by one with each acknowledgment (ACK) received, until the slow-start threshold ssth 

is reached and the congestion avoidance phase takes over. In congestion avoidance, the sender increases its 

cwnd linearly by 1/ cwnd with each ACK received. Upon receiving triple duplicate ACKs (TD), the sender 

infers a packet loss and retransmits the lost packet, i.e. fast retransmit. The sender then sets ssth to cwnd / 2 , 

halves its cwnd and activates the fast recovery algorithm. In fast recovery, upon receiving a duplicate ACK, by 

assuming that a packet has left the networks, the sender sends/retransmits a packet to maintain the link to the 

receiver full. Upon receiving a partial ACK, the sender retransmits the first unacknowledged packet. When an 

ACK acknowledges all the packets transmitted before the fast retransmit triggered, the sender exits fast recovery 

and sets the congestion window cwnd to the slow-start threshold ssth. Then the sender enters the congestion 

avoidance phase. 

      In the case of multiple packets dropped from a single window of data, the first new information 
available to the sender comes when the sender receives an acknowledgement for the retransmitted packet (that is 
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the packet retransmitted when Fast Retransmit was first entered). If there had been a single packet drop, then the 

acknowledgement for this packet will acknowledge all of the packets transmitted before Fast Retransmit was 

entered (in the absence of reordering). However, when there were multiple packet drops, then the 
acknowledgement for the retransmitted packet will acknowledge some but not all of the packets transmitted 

before the Fast Retransmit. We call this packet a partial acknowledgment. Which is described in [2]. 

 

2.3 TCP Vegas 

Vegas is an implementation of TCP that achieves between 37 and 71 % better throughput [3]on the 

Internet, with one-fifth to one-half the losses, as compared to the implementation of TCP in the Reno 

distribution. There are three techniques that Vegas employs to increase throughput and decrease losses. 

 

2.3.1 New retransmission mechanism 

TCP Vegas introduces three changes that affect TCP’s (fast) retransmission strategy. First, TCP Vegas 

measures the RTT for every segment sent. The measurements are based on fine-grained clock values. Using the 
fine-grained RTT measurements, a timeout period for each segment is computed. When a duplicate 

acknowledgement (ACK) is received, TCP Vegas checks whether the timeout period has expired. If so, the 

segment is retransmitted. Second, when a non-duplicate ACK that is the first or second after a fast 

retransmission is received, TCP Vegas again checks for the expiration of the timer and may retransmit another 

segment. Third, in case of multiple segment loss and more than one fast retransmission, the congestion window 

is reduced only for the first fast retransmission. 

 

2.3.2 Congestion avoidance mechanism 

TCP Vegas does not continually increase the congestion window during congestion avoidance. It 

controls cwnd by observing changes of RTTs (Round Trip Time) of segments that the connection has sent 

before. If observed RTTs become large, TCP Vegas recognizes that the network begins to be congested, and 

throttles cwnd down. If RTTs become small, on the other hand, TCP Vegas determines that the network is 
relieved from the congestion, and increases cwnd. 

In congestion avoidance phase, the cwnd is updated as shown in [6]: 

 

 

Cwnd (t+tA) =  cwnd(t)+1,   if  diff < α/base_rtt 

  cwnd(t),    if  α/base_rtt < diff <β/base_rtt  (3)    

  cwnd(t)-1,   if  β/base_rtt < diff 

 

 

diff =cwnd(t)/base_rtt-cwnd/rtt 

     where rtt is an observed round trip time, base_rtt is smallest value of observed RTTs, and α and β are some 
constant values. 

 

2.3.3 Modified slow-start mechanism 

A similar congestion detection mechanism is applied during slow-start to decide when to change to the 

congestion avoidance phase. To have valid comparisons of the expected and the actual throughput, the 

congestion window is allowed to grow only every other RTT.  

      In [3], an additional algorithm is presented, which tries to infer available bandwidth during slow-start 

from ACK spacing. However, this algorithm was marked experimental, and it was not used in the evaluation of 

TCP Vegas.  

 

III. Simulation Environment 
This section describes the simulation environment used to investigate the influence of the various 

congestion control mechanism in TCP. Here we used simulator ns-2 for better scheduling event and controlled 

environment. 

 

3.1 Network topology 
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Figure 1 Network topology 

  

The network model that we will use in the analysis is depicted in Fig. 1. The model consists of two sources (srcl, 

src2), two destinations (dst1, dst2), two intermediate nodes (or routers) (node 0 and node 1), and links 

interconnecting between the end stations and routers. We consider two connections; Connection 1 from src1 to 

dst1, which is assigned TCP traffic, and Connection 2 from src2 to dst2, which is assigned UDP traffic. Both 

connections are established via Node 0 and Node 1, and the link between Node 0 and Node 1 is shared between 

two connections. The bandwidth of the shared bottleneck link is 2 Mbps. The buffer size of Node 0 is 10 

[segments]. The propagation delays between srci and dsti is 40 ms (i=1,2). 

 

IV. Simulation for Congestion window versus time 
 Congestion window of TCP changes based on change in its basic algorithms for every TCP variant. 

Simulation result of congestion window describes slow start, congestion avoidance, fast retransmit and fast 

recovery algorithms in TCP variants. 

 

4.1 TCP Tahoe 

Fig. 2 shows cwnd vs time for TCP tahoe for network topology defined as above. 

 
Figure 2 cwnd vs. Time for TCP Tahoe 

 

     As shown in Fig. 2 TCP Tahoe cwnd is exponentially increased in slow start phase up to ssth. In congestion 

avoidance phase cwnd is increased linearly and after receiving three dupacks TCP enters in fast retransmit 

phase. The ssth is now set to the half of cwnd and congestion window is set to the one segment and TCP enters 

in slow start phase. 

 

4.2 TCP Newreno: 
Fig. 3 shows cwnd vs time for TCP Newreno for network topology defined as above.  

     As shown in Fig. 3 TCP Tahoe cwnd is exponentially increased in slow start phase up to ssth. In congestion 

avoidance phase cwnd is increased linearly and after receiving three dupacks TCP enters in fast retransmit 
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phase. The ssth is now set to the half of cwnd and congestion window is set to the value ssth, that is, half of the 

previous cwnd. So TCP enters in congestion avoidance phase after retransmission. 

 

 
Figure 3 cwnd vs. Time for TCP Newreno 

 

4.3 TCP Vegas: 

 

 
Figure 4 cwnd vs. Time for TCP Vegas 

 

Fig. 4 shows cwnd vs time for TCP Vegas for network topology defined as above. As shown in Fig.4 cwnd of 

TCP vegas increase by rate half than TCP Tahoe and Newreno in slow start phase. In congestion avoidance 

phase cwnd is set to constant value as cwnd is controlled according to network traffic prediction based on 

observed RTT values. 

 

V. Throughput vs time 
  Fig. 5 shows throughput vs  time graph of TCP Tahoe, Newreno and Vegas. As we can see that 

throughput value increases abruptly initially, but then throughput is constant with time which indicates that 

packets delivery per RTT epoch is constant i.e same number of packets are delivered by network in certain 

amount of cyclic period of time. 
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Figure 5 Comparison of TCP Tahoe, Newreno and Vegas throughput vs time 

 

     As shown in Fig. 5 TCP Vegas (indicated by RED line) has highest value of throughput, which is 974.803 

Kbps for given topology. This due to its wise changes in slow start, congestion avoidance and retransmission 

algorithms. TCP Newreno (indicated by GREEN line) is next to TCP Vegas. Throughput of Newreno is 918.249 

Kbps, which is degraded as compared to Vegas due to throttling of congestion window. TCP Tahoe (indicated 

by BLUE line) has lowest value of throughput, which is 810.187 Kbps for given topology, as it starts from slow 

start phase every time after retransmission. 

 

VI. Conclusion 
In this paper, we have evaluated the performance characteristics of various TCP congestion control 

schemes under the wired network conditions with bottleneck end-to-end link capacities, and both type of traffic 

TCP and UDP. We can conclude based on throughput calculation that TCP vegas gives highest performance as 

it can change its congestion window based on network traffic situation. However in wireless network the whole 

scenario may differ. This is because any packet loss over the wireline links is mainly on account of congestion 

unlike wireless links where packet losses can result both due to congestion and random losses. Since, TCP does 

not distinguish between congestion losses and random losses, the throughput of a TCP connection over a 

wireless link may suffers. 
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