Design of MEMS capacitive accelerometer with different perforated proof- mass for enhancement of performance

Kamran Akhtar, Dr.A. Vimala Juliet

Instrumentation and control Engineering SRM University Kattankulathur. Tamilnadu. Instrumentation and control Engineering SRM University Kattankulathur. Tamilnadu

Abstract:- This work represents a study of perforated proof mass of a micro fabricated accelerometer with different perforation shapes, by application of load stress and displacement is measured to know the deflection and flexibility of the proof mass. Perforation shapes of proof mass of capacitive accelerometer affects the sensitivity and other performance parameters of accelerometer. Eigen frequency analysis is done to know the stress and displacement distribution on vibrating proof mass which are used to measure and compare the sensitivity and mechanical strength of proof mass. As a result of this study it has been found that the proof mass with perforation shape of nozzle/diffuser is the most efficient perforation shape to get better performance from an capacitive micro fabricated accelerometers.

Keywords:- Accelerometer, Eigen frequency, MEMS, perforation.

I. Introduction

Accelerometer is a device used to detect magnitude and direction of the proper acceleration (or g-force), as a vector quantity, and can be used to sense orientation (because direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive medium.. Different types of accelerometer are available such as capacitive, piezo-resistive, tunnelling, thermal etc., studies and research on these accelerometer have proved that capacitive accelerometers are more efficient and widely used.Capacitive accelerometer is one of the earliest inertialinstruments studied intensively in MEMS (Micro-Electro-Mechanical Systems) field since 1980s because of its simple structure and easy integration with integrated circuit. Perforation is done to reduce the air damping which has significant effect on the performance Proof mass of capacitive accelerometer will act as movable plates which causes change in distance between the plates so capacitance will change. This change in capacitance will be measured as acceleration.

II. Device Description

Proof mass of accelerometer is act as a movable plates when load is applied, proof mass moves causes change in capacitance which can be measured as acceleration.Proof mass with different perforation has different stress and displacement distribution means flexibility and sensitivity of proof mass changes with perforation shapes. d is distance between the plates when load is applied this distance will change accordingly capacitance will change. Capacitance C is defined as:-

C=€A/d.

 \in is electrical permittivity of dielectric medium and is defined as $\in = \in_0 \in r$, for air as dielectric medium $\in = \in_0$.

Fig.Equivalent model of capacitive accelerometer

Accelerometer can be modelled as system composed of proof mass, spring, damper. This system can be expressed as: $F=ma=md^2z/dt^2+bdz/dt+kz$

Where z id displacement,k is spring constant,b is damping coefficient and m is mass of proof mass, a is applied stress. Poly-silicon is used in proof mass as well as in fixed plates since poly -silicon has excellent mechanical and yield strength. *Ikpa*loadis applied along negative z-axis.

Design of MEMS capacitive accelerometer with different perforated proof- mass for enhancement of

	Length in	Width in	Height in
	μm	μm	μm
Proof	5000	5000	100
mass			
Square	1000	1000	100
hole			
Anchor	1500	1500	100
Beam	5000	1500	100
Shin	3000	500	100

Table1:- Model dimension.

III. Simulation

All the simulations are done in COMSOL(multi physics), version 4.3and version 4.3a 1) Proof mass with square perforation:-

Fig.1:-Proof mass with square perforation

 Proof mass with cylindrical perforation:-Radius of circular hole=500µm

Fig. 2.Proof mass with cylindrical perforation

 3) Proof mass with nozzle and diffuser perforation:-Nozzle a-semi axis =500 μm Nozzle b-semi axis =500 μm Height =100μm Ratio=0.5

Fig. 3.Proof mass with nozzle diffuser perforation

4) Proof mass with pyramidal perforation:-Base length 1=1000μm Base length 2=1000μm Height= 100μm Ratio = 0.5

Fig. 4.Proof masswith pyramidal perforation

Table2:- Maximum stress and displacement values On the proof mass of different perforations

Perforation	Stress in	Displacement
	N/m^2	in µm
Square	1.71E7	18.25
Circle	1.85E7	19.40
Nozzle	4.97E7	23.74
diffuser		
Pvramidal	2.34E7	24.06

Fig.5:-Proof mass with square perforation and changed beam position change Stress and displacement values will be change if We change the spring position of the proof mass

and the mark marked		8r
Perforation	Stress in	Displacement
	N/m^2	in µm
Square	1.69E7	19.27
Circle	2.27E7	21.36
Nozzle	2.63E7	26.32
diffuser		
Pyramidal	2.35E7	25.03

Table3:- Stress and displacement values with change spring position

IV. Eigen Frequency Analysis

In this analysis proof mass vibrates in six different modes at six different frequencies. These frequencies decides the maximum stress and maximum displacement of the proof mass. These frequencies depend on the model design.

1. Proof mass with cylindrical perforation

Modes	Frequency	Stress	Displacement	
	In Hz	in N/m^2	in micro meter	
Mode1	2111.25	2.28E12	2.35E6	
Mode2	4436.62	5.46E12	3.51E6	
Mode3	4438.59	5.54E12	3.53E6	
Mode4	8231.76	8.50E12	4.43E6	
Mode5	9971.85	1.11E13	4.58E6	
Mode6	13094.56	1.88E13	4.17E6	

Table4:- Stress and displacement values at six modes.

2. Proof mass with square perforation:-

Table 5 Stress and displacement values at six mode	Table :	5:- 3	Stress	and	displacement	values	at six modes
--	---------	-------	--------	-----	--------------	--------	--------------

Modes	Frequency	Stress	Displacement
	In Hz	in N/m^2	in micro meter
Mode1	4385.68	5.98E12	4.37E6
Mode2	4385.95	5.94E12	4.36E6
Mode3	8339.22	8.34E12	4.46E6
Mode4	10062.45	10.4E12	4.64E6
Mode5	12997.44	2.35E13	5.65E6
Mode6	13010.51	2.40E13	5.57E6

3. Proof mass with pyramidal perforation

Table 6:- Stress and displacement values at six modes.

Modes	Frequency inHz	Stress in N/m^2	Displacement In micro meter
Mode1	2173.43	2.28E12	2.31E6
Mode2	4477.34	5.30E12	3.56E6
Mode3	4478.34	5.40E12	3.56E6
Mode4	7887.52	8.23E12	4.58E6
Mode5	9721.36	9.572E12	4.66E6
Mode6	13010.51	2.40E13	5.57E6

4. Proof mass with nozzle diffuser perforation

Table7:- Stress and displacement values at six modes

Modes	Frequency	Stress	Displacement
	In Hz	in N/m^2	in micro meter
Mode1	2028.33	3.29E12	2.31E6
Mode2	4376.26	5.80E12	3.88E6
Mode3	4379.78	5.88E12	3.79E6
Mode4	8875.34	27.52E12	4.63E6
Mode5	10375.38	16.62E12	4.76E6
Mode6	13199.45	28.87E12	5.73E6

V. Eigen Frequency Analysis With Spring Position Change

1. Proof mass with cylindrical perforation:-

Table8:- Stress and displacement distributio	m.
--	----

Modes	Frequency	Stress in	Displacement
	inHz	N/m^2	In micro meter
Mode1	1938.65	6.01E12	3.38E6
Mode2	4401.89	6.29E12	4.66E6
Mode3	4624.24	6.53E12	4.67E6
Mode4	8305.56	9.31E12	5.57E6
Mode5	9871.19	12.5E12	5.69E6
Mode6	12415.23	19.67E12	5.74E6

2. Proof mass with nozzle diffuser perforation

Modes	Frequency Stress in		Displacement
Modes	inHz	N/m^2	In micro meter
Mode1	1940.33	2.5E12	2.25E6
Mode2	4453.56	7.2E12	4.24E6
Mode3	4453.99	7.72E12	4.25E6
Mode4	8246.52	1.31E13	5.5E6
Mode5	9931.05	1.54E13	5.5E6
Mode6	12630.53	3.01E13	6.35E6

Table9:- Stress and displacement distribution.

3. Proof mass with square perforation:-

Table 10:-	Stress and	displacement	values	at six modes.
------------	------------	--------------	--------	---------------

Modes	Frequency	Stress in	Displacement
	inHz	N/m^2	In micro
			meter
Mode1	2121.60	2.30E12	2.42E6
Mode2	4645.65	6.47E12	4.30E6
Mode3	4648.61	6.54E12	4.33E6
Mode4	7851.48	8.35E12	4.88E6
Mode5	9817.13	10.34E12	4.88E6
Mode6	12979.01	23.38E12	5.77E6

4. Proof mass with pyramidal perforation:-

]	Table11:-	Stress	and	displa	cement	distrib	ution.
--	---	-----------	--------	-----	--------	--------	---------	--------

Modes	Frequency	Stress	Displacement
	inHz	in	In micro
		N/m^2	meter
Mode1	2019.17	2.56E12	2.57E6
Mode2	4560.45	6.46E12	4.33E6
Mode3	4562.98	6.50E12	4.34E6
Mode4	8346.18	8.86E12	4.57E6
Mode5	10196.20	1.23E13	4.76E6
Mode6	13056.83	2.4E13	5.40E6

Stress distribution

VI. Graphical Representation

1. Proof mass with circular perforation:-

2. Proof mass with square perforation

3. Proof mass with nozzle diffuser perforation

4. Proof mass with pyramidal perforation

Displacement distribution
 Proof mass with circular perforation

2. Proof mass with square perforation

3. Proof mass with nozzle diffuser perforation

4. Proof mass with pyramidal perforation

VII. Result

In the same perforated proof mass if position of spring changes maximum displacement and maximum stress will also change. Maximum stress is observed in proof mass with *nozzle-diffuse* perforation. Minimum stress is observed in proof mass with *square* perforation when spring position changes. Maximum displacement is observed in proof mass with *nozzle-diffuser* perforation when spring position changes. Minimum displacement isobserved in proof mass with *square* perforation.

VIII. Conclusion.

Maximum Stress and maximum displacement in nozzle diffuser perforation shows that it is more sensitive to stress and displacement on application of load. Minimum stress and displacement in square perforation shows that it is less sensitive to stress and displacement on application of load. So nozzle –diffuser perforated proof mass is more sensitive as well as has better mechanical strength.

References

- Inn am *etal*^{*}School of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-Dong, Kwanak-Gu, Seoul, South Korea "School of Electrical Engineering and Computer Science", Seoul National University, Seoul, South Korea.2004
- Isaac G.Macwanet al "Department of Electrical and Computer Engineering, University of Bridgeport", Bridgeport, CT 06604.
 2005
- [3] BanibrataMukherjeeet al, "Department of Electrical Engineering Institute of Technology, Kharagpur", Kharagpur-721302.
- [4] Jiri et al "Sensor for automotive Technology" Wiley-VCH GmbH &Co, 2003
- [5] G.K.Fedder,"SimulationofMicroelectromechanicalsystem" Ph.D thesis University of California Berkeley.
- [6] E.Peeters,S. Vergote,B.Puers and W.Sansen,"A highly symmetrical capacitive micro-accelerometer with singledegree-of-freedom response"J.Miceomech. Microeng

[1] E. Peeters, S. Vergote, B. Puers and W. Sansen," A highly symmetrical

capacitive micro-accelerometer with single degree-of-freedom response"

J.Micromech. Microeng.2 (1992) 104-112