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 Abstract: This Paper provides an approach  for reducing delay and  area in asynchronous communication. A 

new class of error correcting Delay Insensitive (ie., unordered) codes is introduced for global asynchronous 
communication.It simultaneously provides timing-robustness and  fault tolerance for the codes.A systematic and 

weighted code is targeted. The proposed error correcting unordered (ECU) code, called zero-sum can provide 

1-bit correction.The extensions to the zero-sum code are given.The zero_sum⁺ code provides 3-bit error 

detection,or it can provide 2-bit detection and 1-bit correction.The zero_sum* code support 2-bit 

correction,while still guaranteeing 2-bit detection under different strategies of weight assignments. Zero_sum* 

code  provides  2-bit correction coverage (50 % to 70%) of all 2-bit errors. The proposed method  reduces delay 

occurred, due to the transfer of  corrupted bits in a packet on the channel by the removal of timer and also 

reduces the area with the proposed Completion Detector (CD). 

Keywords : Asynchronous communication, Four phase protocol ,  error-correcting codes, delay insensitive and 

unordered.   

 

I. Introduction 
      In past, significant effort has been spent in designing efficient codes for detection and correction of 

symmetric, unidirectional and asymmetric errors. Application of such codes to asynchronous buses has also 

been explored. An asynchronous bus consists of wires whose transmission delays are unpredictable. The 

problem of detecting the arrival of information on such a bus has been shown to be equivalent to the problem of 

designing unordered codes, such codes are also used for the error control. 

      There are mainly three classes of errors that can be handled [3].They are unidirectional, asymmetric 
and symmetric errors. Unidirectional errors may include either 0 → 1 or 1 → 0 type bit corruptions, but only 

one type may occur within any given codeword; the type need not be known in advance [3]. Asymmetric errors 

involve only one error type for all codewords (0 → 1 or 1 → 0), where the type must be known in advance [4]. 

Symmetric errors may simultaneously include both 0 → 1 and 1 → 0 bit corruptions within the     same 

codeword [3]. The main focus of this paper is on handling the symmetric errors. 

     The contributions of this paper are centered around a family of error-correcting unordered (ECU) 

codes for use in asynchronous global communication, called Zero-Sum [1], [2].These codes simultaneously 

targets two types of robustness: timing-robustness, allowing variability in the arrival times and orders of 

individual bits in a codeword on a channel, by the use of DI encoding, and fault tolerance, providing error 

detection and correction capabilities.          

     All proposed Zero-Sum codes are systematic [3], [4], where data appears in unaltered form in each 

codeword and can be directly extracted by the receiver without any decoding hardware. They are also weighted, 
where the check field is computed as the sum of data index weight. When compared to the best previous 

systematic ECU code, the new code provides significant reduction in transition power for most field sizes,with 

better or comparable coding efficiency. 

 

II. System Model 
2.1. Point-to-Point Asynchronous Communication 

  An asynchronous communication channel [5] is the means by which information is transmitted. Fig. 1 

gives an example of point-to-point communication. 

 
Fig.1: Block diagram of Point-to-point asynchronous communication 



Implementation of error correcting methods to the asynchronous Delay Insensitive codes with 

reduced delay and area 

www.iosrjournals.org                                                             79 | Page 

     If the sender issues a request signal (REQ) to the receiver and the receiver in turn provides an 

acknowledgment signal (ACK) to the sender. If the sender passes actual data to the receiver, the REQ is 

typically replaced by the encoded data, as shown in the fig.1. The ACK indicates that data has been received by 

the receiver and new data can eventually be sent. 

  

2.2. Four-phase Communication Protocol 

    Given an asynchronous communication channel, a protocol is needed to transfer information from 

sender to the receiver.The most widely used protocol is four-phase or return-to-zero (RZ) [6], is shown in fig(2). 

 

 
Fig.2: Four-phase return-to-zero  protocol. 

   

   The request signal is encoded into the data signals using two wires per bit of information that has to be 

communicated. The information is encoded as follows: {x.f,x.t} ={1,0} for a logic 0 and {x.f,x.t} = {0,1} for a 

logic 1 represent valid data and {x.f,x.t} = {0,0} represents no data. The codeword {x.f,x.t} = {1,1} is not used, 

and a transition from one valid codeword to another valid  codeword is not allowed.The protocol has two  

operations. 1) Evaluate and 2) Reset. During evaluate operation, the sender issues a valid codeword, the receiver 

absorbs the codeword and sets acknowledge high.At this  point the reset operation begins, the sender responds 

by issuing the empty codeword,and the receiver acknowledges this by taking acknowledge low. At this point the 

sender may initiate the next communication cycle. 

   An alternative to the RZ protocol is two-phase or non-return to zero protocol [7],which avoids reset 
phase. This also use the dual-rail coding,contains even phase and odd phase. The codes designed for this 

typically have large overheads and it has more complex structure. Therefore, four-phase communication 

protocol is used for communication in this paper. 

 

2.3. DI Codes 

   When asynchronous communication is used, data must be suitably encoded so that the receiver can 

identify when a packet has been received. DI codes [5] (i.e.,unordered codes) are insensitive to propagation 

delays on individual bits in a codeword. A code C is said to be unordered or delay-insensitive (DI) when no code 

word is covered by another code word. When an unordered code is used, arrival of a code word can be unambiguously 
recognized by the receiver, in the presence of arbitrary delays in the wires. 

Definition 1 (Unordered Code ): A codeword X = x1x2 . . . xn covers another codeword Y = y1y2 . . . yn  if   and  

only if, for each bit position i, if yi = 1 then xi = 1. In these cases, Y is covered by X, or Y ≤ X. Codewords X and 

Y are unordered if X _ and Y _ X. A code, C, is unordered iff each pair of codewords in C is unordered. 

Example 1: Given codewords, X = 001, Y = 100, Z = 011, the DI pairs are {X, Y} and {Y, Z}. X is not unordered 
when compared to Z.  

      There are two types of DI codes: Systematic and non-systematic codes. A systematic code [8] 

contains separate data and check fields. For asynchronous communication, the check field provides extra bit to 

indicate the entire code is DI. Types of systematic codes are Berger [9] and Knuth [10] codes. In this no 

hardware decoders are required for the extraction of data because the original data directly appears in 

codeword.In non systematic codes [5], there are no separate data and check fields. Data is encoded in a unified 

field, which ensures delay insensitivity. Dual-rail, 1-of- 4 and general class of m-of-n codes are example for 

these codes. 

. 

2.4. Basic Zero_sum code 

              The basic Zero-Sum code, uses the single index weight assignment only as discussed in Berger [7] 

and Bose [3] codes. The code provides 1-bit error correction or 2-bit error detection for symmetric errors, as 

well as delay-insensitivity, thus forming an ECU code. 

         Code construction combines aspects of both Hamming codes [11] and Berger[7]  codes. In particular, 

as in Berger codes, the pattern of 0 bit in the dataword is used to generate the DI field. However, while the 

Berger method counts the number of 0s, the Zero-Sum approach adds the 0-bit index weights. Similarly, Zero-

Sum uses the bit index numbering scheme used in Hamming codes, but typically requires extra bits. 
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Fig 3: 4-bit zero-sum codeword structure 

. 

2.4.1. Overview of Code: Fig.3 shows the codeword structure for a Zero-sum ECU code. It contains two fields: 

1) data word, and 2) check field. Each bit position is given an index. The check bits index weights are powers-

of-two (for non negative exponents), and the data word index weights are given power of two weights starting 

from the smallest check bit index. The index weights assigned to the dataword field is called the weight set. For 

example, given a 3-bit dataword field, the weights of the check bits are 1, 2, 4, and 8 and dataword weights are 
consecutively assigned integers of 3, 5, and 6. Fig.4 shows examples of Zero-Sum ECU codes for  2-bit, 3-

bit,and 4-bit information fields. 

 

2.4.2. Check Field Generation: Checkfied of Zero-sum Code is the binary representation of the arithmetic sum 

of the dataword index weights whose bit is 0, hence the name of the codes, Zero-Sum. 

 

2.4.3. Formal Calculation of Code Length: The check field must be large enough to support the binary 

representation of the sum of all of the data field index weights, i.e., to handle the extreme case where all data 

bits are 0. Therefore, the total number of check bits allowed is the [log2(_dataword index weights)] + 1. A 

closed-form equation for the check field length k in terms of the data field length n is [7]: 

k = _log2([(n + μ)(n + μ + 1)/2] − 2μ + 1)    , (1)  where μ is determined by      2μ−1 < n+μ < 2μ  , (2) 
 

Example 2: For the 4-bit dataword 1010 in Fig. 4(c), the sum of those dataword index weights whose bits are set 

to 0 (i.e., weights 6 and 3) is 9. Therefore, the corresponding check field value is the binary representation of 9, 

which is 01001.  

 

 
Fig 4: Examples of Zero_sum ECU codes (a)2-bit ECU code (b)3-bit ECU code (c)4-bit ECU code. 

 

2.4.4. Detecting and Correcting 1-Bit Error: Hamming code provides a syndrome which is a vector of 
individual check bits (i.e., one for each parity group) [11], the Zero-Sum ECU code provides a unified syndrome 

which is a single positive integer: the absolute value of the difference between the appended check field and a 

newly calculated check field. Error detection and correction uses a modification of the Hamming approach. In 

both Zero-Sum and Hamming codes, nonzero syndrome indicates an error. However, in Zero-Sum, the 
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syndrome is computed differently: the receiver creates a regenerated check field C' from its datafield ,and 

compares C'  to the actual received check field C. The resulting Zero-Sum syndrome, is the absolute difference 

of|C' − C|. If the difference is zero, there is no error. The syndrome is also used to correct a 1-bit error: its value 

is the index of the corrupted bit, as in Hamming codes. However, unlike Hamming, the Zero-Sum appended 

check field also ensures delay-insensitivity, as will be proven below. 

Example 3: Following Example 2 above, suppose there is an error in transmitting the 4-bit dataword 1010, due 

to a flip in the data bit with index 7 (i.e., erroneous dataword 0010), transmitted with the original error-free 

check field (i.e., 01001). The newly calculated check field, based on the corrupted dataword, is 16 (i.e., 7 + 6 + 

3). Therefore, the syndrome is 16 − 9 = 7, which is nonzero and not a power-of- two. This syndrome therefore 

precisely identifies the index (i.e., 7) of the corrupted data bit. In contrast, if a single check bit has an error, the 

syndrome will be a power-of-two and identify the corresponding index of the corrupted check bit. 
 

Theorem 1 (zero-sum code delay – insensitivity [5]): Every zero sum code is unordered 

Proof: By definition1, it is sufficient to show that zero-sum code, c, is unordered if each pair of code words is 

unordered. Given two data words X and Y, by definition 1 if X covers Y, then X has more 1’s and Y, and Y has 

more 0’s than X. The check field is computed as the sum of the data field indexweight which are `0’. The sum of 

index weights of check field must be greater than the sum of index weights of data word. 

 

Theorem 2(Zero-sum code error detection): Every zero-sum code provides 2-bit detection. 

Proof: The proof is immediate from Theorem 2. Since all 1-bit errors can be corrected, the code must have 

minimum distance of at least 3; therefore, all 2-bit errors can be detected. 

 

III. Extending The Zero-Sum Code 
3.1. Zero-Sum+ Code 

      It is an enhancement of  Zero-sum code, provides two alternative modes. In one mode, up to 3-bit 

errors and all odd errors can be detected. In a second mode, both correction and detection can be handled 

together: every 2-bit error can be detected and every 1-bit error can be corrected. 

 
Fig 5: 4-bit zero-sum⁺ code word structure 

 

. 

DataWord Check bits parity 

i₈ i₇ i₆ i₅ i₄ i₃ i₂ i₁ i₀ i₀ 

7 6 5 3 16 8 4 2 1 0 

0000 10101 1 

0001 

0010 

0100 

1000 

10010 

10000 

01111 

01110 

1 

0 

1 

0 

0011 

0101 

1001 

0110 

1010 

1100 

01101 

01100 

01011 

01010 

01001 

01000 

1 

0 

1 

0 

0 

1 

0111 

1011 

1101 

1110 

00111 

00110 

00101 

00011 

0 

1 

1 

1 

1111 00000 0 

Fig 6: 4-bit zero_sum⁺ code 



Implementation of error correcting methods to the asynchronous Delay Insensitive codes with 

reduced delay and area 

www.iosrjournals.org                                                             82 | Page 

3.1.1. Overview: Zero-Sum+ code is essentially a Zero-Sum code with a parity bit attached,as shown in fig (5). 

Both the data word and check fields of a Zero-Sum+ code are identical to those of a basic Zero-Sum code. The 

new field is the parity bit, which provides even parity. Its index weight is 0. The fig.6 shows the zero-sum⁺code 

for 4-bit data 

 

3.1.2. Error Detection: Error detection mode can detect up to 3-bit errors and all odd  numbers of bit errors. As 

shown in Table 1, each error type is detected by its parity and syndrome values. The case of 0 errors in the 

received codeword is distinct, where the parity is correctly set to even and the syndrome is equal to 0. In the 

remaining cases, the parity is either odd or the syndrome is nonzero. When a 1-bit error occurs, there are two 

possibilities, each resulting in odd parity. If a 1-bit error occurs in either the data word or the checkfields, the 
syndrome will be nonzero; if a 1-bit error occurs in the parity bit, the syndrome will be zero. When a 2-bit error 

occurs, the parity of the received codeword will be correctly set to even; however, the syndrome is guaranteed to 

be nonzero. Finally, any odd number of errors results in odd parity, with either a nonzero or a zero syndrome. 

 

Table 1:Zero_sum⁺error detection classification. 

# of errors parity Syndrome value 

0 even Zero 

1 Odd Zer or nonzero 

2 Even Nonzero 

3(or odd) odd Zero or nonzero 

 

3.1.3.Error Correction: Similar to the Zero-Sum code, the Zero-Sum+ code also guarantees that 1-bit errors can 

be corrected. As an additional parity bit is added in the Zero-Sum+ approach, a variant set of correction methods 
is needed. As shown in Table 2, When 0 errors occur, the parity is even and syndrome values is correct. 

Therefore, no error handling method is applied. When 1 error occurs, there are two cases. If the error occurs in 

either the data word or the check fields, the syndrome value is nonzero and the parity is incorrectly set to odd. 

The error correction technique used is the 1-bit correction strategy for a Zero-Sum code presented in Section 

2.4.4; toggle the bit indicated by the nonzero syndrome value. If a 1-bit error occurs in the parity bit, the 

syndrome value is zero. Correction is performed by toggling the parity bit. 

 

Table 2:zero_sum⁺ error correction classification 
of errors Parity Error handling 

0 Even None 

1 Odd 1-bit correction method 

1 Odd Toggle parity bit 

 

3.2. Zero-Sum* Code:  

3.2.1 Overview: The Zero-Sum* codes support heuristic multi-bit correction by strategically varying the index 

weight assignment. The structure of the code is similar to a Zero-Sum+ code.The data word field is assigned 

non-power-of-two values {3, 7, 11, 5}. The check field indices are assigned the ordered values of power-of-two 

weights {16, 8, 4, 2, 1}.The fig.7 shows the 4-bit zero-sum* code. 

 

Table 3:zero_sum* error correction classification 
#of 

errors 

Parity Syndrome 

value 

Error handling 

0 Even Zero None 

1 Odd Nonzero 1-bitcorrection method 

1 Odd Zero Toggle parity bit 

2 even nonzero 2-bitcorrection method 

 

 

3.2.2.Method for 2-Bit Correction:  

   The Zero-Sum* code can correct all 1-bit errors and some instances of 2-bit errors,as shown in Table 

3. Errors are corrected in a two-step procedure. First, the error type is classified according to the syndrome and 

parity of the received codeword. Next, the appropriate method for correcting the error is selected. When 0 errors 

occur, the parity is even and syndrome is zero. Therefore, no error handling method is applied. A 1-bit error is 

corrected by either toggling the parity bit or using the 1-bit correction method as discussed in Section 2.4.4. For 

the 2-bit error correction,the unoptimized method is proposed. 



Implementation of error correcting methods to the asynchronous Delay Insensitive codes with 

reduced delay and area 

www.iosrjournals.org                                                             83 | Page 

       The unoptimized approach performs 2-bit correction by generating and pruning the syndromes of 

all possible candidate code words which are at distance 2 from the received codeword. Each candidate that has 

nonzero syndromes is discarded, as it could not have been the original codeword. If there exists exactly one 

valid candidate codeword with syndrome zero. then correction can be performed in 2-bit flips. This single 

remaining codeword is the original sent codeword. When multiple Code words remain, there is ambiguity in 

how the received codeword was reached, since any one could have been the originally sent codeword. 

 

Data Word Check bits parity 

i₈ i₇ i₆ i ₅ i₄ i₃ i₂ i₁ i₀ i₀ 

3 7 11 5 16 8 4 2 1 0 

0000 10101 1 

0001 

0010 

0100 

1000 

10010 

10000 

01111 

01110 

1 

0 

1 

0 

0011 

0101 

1001 

0110 

1010 

1100 

01101 

01100 

01011 

01010 

01001 

01000 

1 

0 

1 

0 

0 

1 

0111 

1011 

1101 

1110 

00111 

00110 

00101 

00011 

0 

1 

1 

1 

1111 00000 0 

 
Fig 7: 4-bit Zero_sum* code 

 

3.2.3. Strategies for Assigning the Dataword Index Weights: 

   The choice of weight set directly impacts the coverage of 2-bit correction that can be obtained. When 

selecting the weight set, there are two points to consider. The first is to consider the possible combinations (i.e., 

sum and difference)between pairs of index values in the weight set Second, a careful balance must be 

maintained between the selected weights and the length of the check field. Taking these points into 

consideration,the dataword index weight set is generated such that each pairwise combination (i.e., sum or 

difference) of dataword index weights in the weight set is unique. Hence, each distinct 2-bit error occurring 

solely within the dataword field and check field has a unique syndrome. This approach ensures no aliasing of 

any distinct 2-bit errors lying entirely within the data word field or check field, but does not eliminate aliasing 

for some 2-bit errors that span the two fields. 

 

IV. Hardware Support: 
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       Fig. 8 shows the architectural block diagram for a zero-sum code. The system mainly contains an 

encoder, an error correction unit, and a completion detector. An encoder generates the check field, which is 

appended to the data word and transmitted on the four-phase asynchronous communication channel between 

sender and receiver. At receiver the corresponding data word and check bits are given to the error correction 

unit, it generates the corrected data word and the check bits. Then, the CD generates the Ack which again given 

back to the sender.  

   An encoder design for a 4-bit dataword is shown in Fig. 9. It consists of a row of selectors (i.e., 

multiplexors) followed by adders. There is one selector for each data bit, for the data bit”0” hardcoded index 

weight is selected and for”1” zero is selected.Finally,they are added to get the check bits, which is the binary 

representation of obtained value. 

                                             
    Fig 9:Basic Encoder                                                                               fig 10: 4-phase  encoder bit slice 

 

                The fig.10 shows the simple four phase encoder block, having a row of AND gates. Each bit contains 

two wires with a common enable signal. When enable is high, one and only one of each pair of data rails will 

then go high; when enable is low, the encode block will reset all of the data rails to zero. 

 The 4-bit error corrector unit, shown in Fig. 11 is divided into a syndrome generator and corrector. The 
syndrome generator produces the syndrome by performing the operations of comparison and subtraction. First, 

given the received dataword, an encoder generates a new check field. Next, the syndrome is generated by 

finding the mathematical difference between the received and newly generated check fields. A magnitude 

comparator is used to perform the absolute value function. The top-most multiplexor selects the larger of the 

two values, while the lower multiplexor selects the smaller of the two. The second part performs the correction 

operation. A C-element and 2-input XOR gate are allocated for each bit of a codeword. The input to the C-

element is the syndrome, and for each bit, a nonzero syndrome which uniquely identifies when an error occurs 

in that particular bit. The corresponding XOR gate corrects the faulty bit by performing bit-inversion. Given an 

error, exactly one C-element and XOR gate will be enabled. A bank of latches are included to ensure a glitch-

free transaction. 

 
Fig.11. Microarchitecture of 4-bit zero-sum error-corrector unit design 

   

  The output of the Error Correcting Unit is given to the CD, which contains a single multi input OR gate 

which combines the results to produce the final Ack. Given CD replace the usage of 16 C-elements as in [1] 
with a single multi input OR gate. This reduces the area with less requirement of hardware components.       

     By the removal of timer block we are reducing the execution time i.e., reducing the delay with 1-bit 

detection and correction for the zero-sum code, when compared to [1] . 
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  The hardware overhead of Zero-sum code was reduced by eliminating the timer-out unit in terms of 

both delay and area. Interestingly, as shown in fig 12& fig 13 the trend shows a strong and consistent reduction 

in execution time (6160ns to 400ns) from zero-sum-old system to the modified zero-sum system. 

          

 

 
Fig 12: zero_ sum _old system with out modified diagram. 

 

 

 
Fig 13:zero_sum system of modified block diagram 

 

V. Conclusion: 
  A novel Zero-sum family was introduced, which supports the design of asynchronous global 

communication which simultaneously provides timing robustness and fault tolerance. Two enhancements has 

been proposed, Zero-sum+ code extends error detection to 3-bit errors and zero-sum* code provides 2-bit 

detection and correction .The correction coverage of 2-bit errors are upto 50% to 70%. We identified the 

simulation results for zero-sum code and reduction of delay and area with a modification to the block level 

architecture. 
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