Error Reduction of Modified Booth Multipliers in Mac Unit

K.Santhana Lakshmi¹, G. Brindha², A.Andamuthu³

Assistant Professor¹, Assistant Professor², Assistant Professor³ Department of Electronics and Communication Engineering, Muthavammal Engineering College.

Abstract: The fixed-width multiplier is well attractive to many multimedia and digital signal processing systems. It proposes a reduction of truncation error from 16-bit to 8-bit MSB bits (Truncated output) using simple error reduction circuit. The Fixed width modified booth multiplier is used to minimize the partial product matrix of Booth multiplication. Multiplication is binary mathematical operation scaling one number by another. Lead the design of high accuracy, low power and area in MAC unit and compare with the Wallace tree multiplier. The system will be designed using VHDL coding (Very High speed Integrated Circuit Hardware Descriptive Language).

Index Terms: Multiplier and Accumulator, Most significant bits, Modified booth multiplier, error reduction circuit, fixed width multiplier.

Introdution

A multiplier is a factor of proportionality that measures how much an endogenous variable changes in response to a change in some exogenous variable. Multipliers are the basic and important building blocks of VLSI systems. The technology considers the power consumption, area and accuracy.

I.

Accuracy is one of the backbones of the multipliers. To achieve the high performance of modified booth encoding which reduces the partial products. N*N fixed width multipliers that generate only the N most significant bits (MSB) and to maintain a fixed word size. Truncation error will be high in this type of multiplier.

This truncation error can be reduced by using error reduction circuit; it can be added estimated carry value of the reversed adder cells. For reducing the partial product output means, the truncation error will be occurring. The final output of partial product is used in MAC unit, DSP applications, and multimedia.

To get better error performance with a simple error reduction circuit, Booth encoded outputs are to generate the error reduction value.

By modified booth encoding, which groups the bits of the multiplier into triplets. Output of MBE (Modified Booth Encoder) is given to the input of Partial Product. Used to reduce the partial product steps, using truncation method to reduce the partial product from 16 bit to 8bit, that is truncating the LSB (Least Significant Bits) bits only.

II. Modified Booth Encoder

Fig.1. Circuit diagram of modified booth encoder

Cond	litions:	
000	\longrightarrow	All Zero's
001	\longrightarrow	Input Value (+M)
010	\rightarrow	Input Value (+M)

- $\begin{array}{c} 011 \\ 100 \\ 101 \end{array}$ Shift + Input Value (+2M)
- Two's Complement + shift (-2M)
- Two's Complement + Input (-M)
- Two's Complement + Input (-M) 110 --►
- 111 ____ All Zero's

The above diagram has Y inputs and produces the output as Onei, Twoi, Zeroi, and Cori. Using 8*8 means take only the output as 8 (Instead of 16) that are called fixed width. The output of modified booth encoder is given to the input of partial product.

101 and 110, the output becomes two's complement and input value. In partial product the output comes only the One's complement, need two's complement means adding carry value1,get two's complement output.

Y 2 i+1	Y 21	Y 21-1	Function	N egi	O nei	Twoi	Zeroi	Cori
0	0	0	0	0	1	0	0	0
0	0	1	+M	0	0	1	0	0
0	1	0	+ M	0	0	1	0	0
0	1	1	+2 M	0	0	0	1	0
1	0	0	-2 M	1	0	0	1	1
1	0	1	- M	1	0	1	0	1
1	1	0	- M	1	0	1	0	1
1	1	1	0	1	1	0	0	0

Table1: Modified Booth Encoder

A. Function of Modified Booth Multiplier An example of Modified Booth Multiplier is in below: X → 11010010 (Multiplicand) Y → 11010011 (Multiplier) Take Y, f = 3Y \rightarrow f = 3i=1 ص1 م 0 1 1 0i=2 Condition: i = 0 to β ; j = 0 to 7? For i=0→ 1 1 0 Y2(0)+1=1 → Neg(0)=1Y2(0) = 1; $Y2(0)-1=0 \longrightarrow One(0)=1$ Y2(0) = 1; $Y2(0) + 1 = 1 \longrightarrow Two(0) = 0$ $Y_{2(0)+1=1}; Y_{2(0)-1=0} \longrightarrow Z_{ero(0)=0}$ $Y_{2}(0)-1=0$; $Y_{2}(0)=1$; $Y_{2}(0)+1=1 \longrightarrow Cor(0)=1$ For i=1-> 0 0 1 Y2(1)+1=1 → Neg(1)=0 $Y_2(1) = 1$; $Y_2(1) - 1 = 0 \longrightarrow One(1) = 1$ $Y_{2(1)} = 1$; $Y_{2(1)} + 1 = 1 \longrightarrow T_{wo(1)} = 0$ $Y_{2(1)+1=1}$; $Y_{2(1)-1=0} \rightarrow Z_{ero(1)=0}$ $Y_{2(1)-1=0}$; $Y_{2(1)=1}$; $Y_{2(0)+1=1} \rightarrow Cor(1)=0$ For i=2 0 1 0 Y2(2)+1=1 Neg(0)=0Y2(2) = 1; Y2(2) - 1 = 0 \longrightarrow One(2)=0 Y2(2) = 1; $Y2(2) + 1 = 1 \longrightarrow Two(2) = 1$ Y2(2)+1=1; $Y2(2)-1=0 \longrightarrow Zero(2)=0$ $Y_{2(2)-1=0}; Y_{2(2)=1}; Y_{2(2)+1=1} \longrightarrow Cor(2)=0$ For $i=3 \rightarrow 110$ Y2(3)+1=1 → Neg(0)=1Y2(3) = 1; Y2(3) - 1 = 0 \longrightarrow One(3)=1 $Y_2(3) = 1$; $Y_2(3) + 1 = 1$ \longrightarrow Two(3)=0 $Y_2(3) + 1 = 1$; $Y_2(3) - 1 = 0$ \longrightarrow Zero(3)=0 $Y_{2(3)-1=0}$; $Y_{2(3)=1}$; $Y_{2(3)+1=1} \longrightarrow Cor(3)=1$

Partial Product III.

The values of partial product bits are heavily dependent on the outputs of booth encoder. It explores the relation between the outputs of booth encoders and the carry value propagated from LPminor to LPmajor.

Fig.2. Circuit diagram of Partial Product

Multiplexer have Y inputs, P output, selection inputs (0 or 1) P will be equal to one of the inputs, depending upon the selection inputs. Minimum number of sign extension. The output is checked by using VHDL programming technique.

A. Function of Partial product X→ 11010010 (Multiplicand) Y→ 11010011 (Multiplier) Take Y, i=3 i=1 0 0 Υ· 1 1 For i=0; j=0 to 7; PP0 → 0 0 1 0 1 1 0 1(1's Complement) For i=1; j=0 to 7; PP1 1 1 0 1 0 0 1 0 For i=2; j=0 to 7; PP2 - 11010010 For i=3; j=0 to 7; $PP3 \rightarrow 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1(1's Complement)$ For i=0 00101101 (+)1 00101110(2's Complement) For i=3 00101101 (+)1

<u>00101110(2's Complement)</u>

<u>In the above calculation, only getting the ones complement output.</u> 1 1 0 is the two's complement type, but the partial product output is ones complement, so need to add correction bit 1.Finally getting the twos complement output.

B. Partial Product Outputs

	15	14	13	12	11	10 9 8 7 6 5 4 3 2 1 0
PP0						$1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$
PP1					1	0 1 1 0 1 0 0 1 0 1
PP2			1	0	1	1010010 b or
PP3	1	1	0	0	1	0 1 1 0 1
						1(Cor) LPminor
_	0	0	0	0	1	00000010110
E - 2 (7.1.a.1	ation	ofD	ortici	Dec	du at

Fig.3. Calculation of Partial Product

To truncate the LPminor parts ,adding carry value 1 or 0 in LP(Least Product)major parts ,if carry is 0 means the output of 1 0 0 (PP0 of 10,9,8th digit) is same or carry is 1 means ,the output of 1 0 0 becomes 1 0 1.

In above figure, LSB (Lest Significant Bits) bits are split into LP(Lest Product) major and LP(Least Product) minor parts. LP minor star9ts from digit 0 to 6 and LP minor parts starts 7th digit only. From 8th to 15th bit is the MSB(Most Significant Bits) bits Adding carry value in below diagram,

Fig.4. Adding Carry value in Partial Product

In fig4, the output is same there is no error output so move to next example, to reducing the bits from 16 to 8. The example becomes,

X=00011000'0'	(Multiplicand)
Y=00110010'0'	(Multiplier)
1 0 0 → i=0	
0 0 1 → i=1	
1 1 0 → i=2	
0 0 1 → i=3	
The Output becomes,	
$1 \ 0 \ 0 = \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$	
$0\ 0\ 1 = \ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0$	
$1 \ 1 \ 0 = \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1$	
$0\ 0\ 1 = \ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1$	

 $1\ 0\ 0$ becomes the two's complement output. There is no change in adding carry value in few types of partial product inputs. In above calculations have some changes in adding carry value of partial product that is trucation error will occur.

To overcome the truncation, using simple error reduction circuit, truncation means eliminating the least significant bits.

	15	14	- 13	12	11	1() 9	8	37	6	5 4	13	32	1	0
PP0						1	0	0	0	0	1 0) 1	1	0	1
PP1					1	0	1	1	0	1 0	0	1	0		1
PP2			1	0	1	1	0	1	0	0	1 0)			cor
PP3	1	1	0	0	1	0	1	1	0	1					•
										1(Cor)			
	0	0	0	0	0	1	0	(0	1	1	0	0	0	0 0
Fig.5.	Exam	ple of	Parti	ial Pı	rodu	ct									
Addi	ng ca	arry v	valu	e in	bel	ow	dia	agı	ran	ı is,					
	15	14	13	12	11	10	9	8	7	65	4	3	2	1	0
PP0						0	1	1	1	10	0	1	1	1	1
PP1					1	1	0	0	0	11	0	0	0		1
PP2			1 ()	1	1	1	0	0	11	1				1
PP0	1	1	0	0	0	1	1	0	0	0					•
_	(A	ddin	g Ca	rry	Val	ue)	, 		0	1(Coi	r)			
	0	0	0	0	0	0	1	1	(Errc	or o	utp	out))	
MSB bits															

Fig.6. Example of Adding carry Value

C. Truncation Error

Truncation is the term for limiting the number of digits, discarding the LSB bits. It occurs, when a number cannot be fully represented due to memory limitations. Truncating would yield the same result as rounding, but truncation does not round up or round down the digits; it merely cuts off at the specified digit.

Multiplication is required in Digital signal processing. A substantial hardware savings is realized by summing only the n+k most significant columns of the matrix. This method of multiplication is called truncated multiplication. Truncated multiplication leads to two sources of error: reduction error and rounding error. Reduction error occurs because the n-k least significant columns of the multiplication matrix is not used to compute the product. Rounding error occurs because the product is rounded to n bits.

IV. Summary And Results

The output of modified booth encoder is given to the input of partial product for reducing the partial product steps and to produce the uniformity of the modified booth encoder. Using truncation method (Adding carry value), for reducing from 16 bit output to 8 bit output. In the future, I have to design an error reduction circuit and apply the MAC (Multiplier and Accumulator) unit and finally compare the Wallace tree Multiplier. A. Modified booth Encoder Output

The modified booth encoder has two inputs X and Y. Only take Y as input and the output becomes Negation,Zero,One,Correction,Two.

By modified booth encoding, which groups the bits of the multiplier into triplets. The output of Modified booth encoder is given to the input of Partial Product.

B. product, sum and carry of PP Output

The inputs are X and Y .Take Y as an input, these inputs are splitting into PP0, PP1, PP2, PP3.Depending on the input value the output becomes changed. The output has Sum, Carry and Product.

Nork		Ni:
Pessages		
🛯 🔷 (percel juzzki le	LICENCE	
🕵 🎝 (heres] navið	1001001	£0(1)
🕽 📢 ()ereal jn ærs/p	001C EMICEN.CEDIC	000 000000000
🛯 🔶 (preal_nicitals	000000000000000000000000000000000000000	0000011 (* 11110) KOF 11101
🛯 🚽 (peresl_nizrick	0000000000000	
av)dan jeresi 🔶 🛛	1111	
edistan Jiandi 🎸 🖥)000	
🛯 🚽 (gereal_nizrix/reg	100	α
🕵 🔶 (pereal jn activitae)	1000	#00
🛛 🎝 (pereil juoisia	100	.α.
🕵 🛟 (jeres)_nærs/p)	10000000	00001.0
🕵 🖓 (presi, nark);	101101000	0.00010
🖶 🍫 (pereol_mark/p)	1.000400000	.CI1000 (
🖬 🛟 (þeresljnærs/þ	1 000.0010:	

C. Adding carry value Output

The splitting of the (Partial Product) PP0, PP1, PP2, PP3 and adding this partial products using half adder, full adder.

The reduction of 16 bit into 8 bit by using LSB bits and MSB bits .the LSB bits are split into LP major and LP minor parts. To eliminate the LP minor parts means some error occur in output ,so adding carry value 1 or 0 based on input values.

Fig.7 Area for modified booth encoder

www.iosrjournals.org

File Edit Wew Tools Window He	p T 1 . L. 102						
	E-PROJECTS/CHV0161-BOOTH	DE 1115 (10120)					
Voltage Current Power I Vccint 2.5 Dunam 12.63 31.58	TRY_APPLICATION/PROPOSED/dddmac_main.ned	BE-1112-CSV0	024				
Quiesc 1.90 4.75 Vcco33 3.3	Preferences: mac_main.pcf Part: 2s100tq144-5						
Dynam 0.00 0.00 Quiesc 2.00 6.60	000 000 200 650 version: PRELIMINARY,v1.0,07-31-02						
Startup 0 500.00 Battery Capacity (mA Hours) 2850.00							
Battery Life (Hours) 172.39							
Sum Pow Cur The							
	XPower and Datasheet may have some Quiescent Current differences. This is due t numbers in XPower are based on measurements of real designs with active function	o the fact that t al elements refl	he quiescer ecting real				
Data Views Report Views Prover Report (HTML)	design scenarios.						
Power Report	Power summary:	I(mA)	P(mW				
	Total estimated power consumption:		43				
	Vecint 2.50V:	15	36				
	Vcco33 3:30V:	2	7				
	Clocks: Inputs:	11	27				
	T andres	0	0				
Xilinx - ISE - E:\PROJECTS\CHV0161	Fig.8 Power for modified booth encoder	ton/wallace tru	INFATED\ED.				
File Edit View Project Source Proc	ess Window Help						
	春代就就就 入図 みな 人 A C A C A C A A A A A A A A A A A A A	800 9	6				
Sources for: Synthesis/Implementation	Target Device : xc2s100 Target Package : tg144						
- @FD ⊟ @ xc2s1005tq144	Target Speed : -5 Mapper Version : spartan2 \$Revision: 1.34 \$						
⊕ Mathemac_main - ar [/FINAL_MA	Exht Mapped Date : Thu Jan 19 11:02:04 2012						
	Design Summary						
	Number of errors: 0 Number of warnings: 4						
	Logic utilization: Total Number Slice Registers: 107 out of 2,400 4%						
Sources 👩 Snapsnots 🚺 🛛	Number used as Latches: 99 Number of 4 input LITA: 98 out of 2.400 4t						
Processes:	Logic Distribution: Number of occupied Slices: 55 out of	1,200 4%					
⊕- [*] User Constraints ⊕- [*] ↓ Synthesize -XST	Number of Slices containing only related logic: 55 out of Number of Slices containing unrelated logic: 0 out of	55 100% 55 0%					
⊕-?@Implement Design ⊕-?@Translate	*See NOTES below for an explanation of the effects of unr Total Number of 4 input LUTs: 98 out of 2,400 4%	elated logic					
📄 🧭 Translation Report 🎯 Floorplan Design	Number of honded IOBs: 24 out of 92 26% IOB Flip Flops: 8						
Generale Post-Translate Assign Package Pins Po	S Number of GCLKs: 2 out of 4 50% Number of GCLKIOBs: 2 out of 4 50%						
⊕ ₹200 Map ⊕ ₹200 Place & Route	Total equivalent gate count for design: 1,211						
Generate Programming File	Peak Newory Usage: 117 MB						
Processes	Kesian Summav Map Report						
	Fig 9 Area for Wallace tree multiplier						
Xilinx XPower - [mac_main] File Edit Wew Tools Window He							
j 🖬 n + α → ∰ 8 (1 + 18						
Voltage Current Power (E:PROJECTS/CHV0161-BOOTH Design: MULTIPLIER/CODINGS/APPLICATION/CODING/PROPOSED	CBE-1112-CSV	/0024				
ccint 2.5 Dynami 17.33 43.33	TRY_APPLICATION WALLACE_TRUNCATED FD mac_main:	ned					
Quiesce 1.90 4.75 cco33 3.3	Part: 2s100tq144-5						
Division 0.00 0.00 Duiesce 2.00 6.60 Dial Po 54.68	Data version: PRELIMINARY,v1.0,07-31-02						
artup C 500.00 attery Capacity (mA Hours) 2850.00							
attery Life (Hours) 134.24							
Sum Power Cure The	XPower and Datasheet may have some Quiescent Current differences. This is du	e to the fact tha	t the quies effecting re				
Data Views	world design scenarios.						
Here I ypes Report Views A Power Report NIT NI 1							
Power Report	Power summary: Total estimated power consumption:	I(mA)	P(mW 55				
	Vecint 2 50V-	19	48				
	recall a ov r.	2	7				
	Veco33 3.30V:	2					
	Veco33 3.30V: Clocks:	15	38				
	Vcco3 3.30V: Clocks: Inputs: Losic	15 2 0	38 5 0				

Table 1 Comparison of Wallace tree multiplier and Modified booth encoder with MAC unit

Parameters	Modified booth	Wallace tree
	multiplier	multiplier
Power Consumption	43(mw)	55(mw)
Gate Counts	1,138	1,211
Number of slices	79 out of 1,200	55 out of 1,200
Number of 4input LUT's	151 out of 2,400	98 out of 2,400
Number of bonded DOB's	25 out of 92	24 out of 92

References

- [1] Jiun-Pi Wang, Shiann-Rong Kuang , Shish-Chiang Liang IEEE Trans on VLSI "High accuracy fixed width modified booth multipliers", vol 19, No.1, PP.52-60, January 2011.
- [2] Kyung-Ju Cho, Kwang-Chul Lee, Jin-Gyun Chung, Member, IEEE, and Keshab K. Parhi, Fellow, IEEE, "Design of Low-Error Fixed-Width Modified Booth Multiplier", IEEE Transactions on Very Large scale Integration (VLSI) Systems, Vol. 12, No. 5, PP.522-531, May 2004.
- [3] Wen-Chang Yeh and Chein-Wei Jen, "High-Speed Booth Encoded Parallel Multiplier Design", IEEE Transactions on Computers, Vol. 49, No. 7, PP.692-700, July 2000.
- [4] L. D. Van and C. C. Yang, "Generalized low-error area-efficient fixed width multiplier," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, No.8, PP.1608–1619, August. 2005.
- [5] F.Elguibaly, "A fastparallel multiplier-accumulator using the modified Booth algorithm," IEEE Trans. Circuits Syst. II, vol. 47, No. 9, PP.902-908, September 2000.
- [6] Oscal T.-C. Chen, Sandy Wang, and Yi-Wen Wu, "Minimization of Switching Activities of Partial Products for Designing Low-Power Multipliers", IEEE Transactions on very Large Scale Integration (VLSI) Systems, Vol. 11, No. 3, PP.418-432, June 2003.
- [7] C. N.Marimuthu, P. Thangaraj, "Low Power High Performance Multiplier", ICGST-PDCS, Vol.2, No.3, PP.12-22, December 2008.
- [8] J. M. Jou, S. R. Kuang, and R. D. Chen, "Design of low-error fixed widthmultiplier for DSP applications," IEEE Trans. Circuits Syst. I,Exp. Briefs, vol. 46, no. 6, PP. 836–842, June 1999