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Abstract : Radar Emitter Signal recognition is one of the key procedures of signal processing in Electronic 

Warfare (EW) Receiver. As there is an intense growth in the activities of modern Electronic Warfare, advanced 

radars are increasing and becoming main component of radars gradually. These modern radars called Low 

Probability of Intercept (LPI), use different complex waveforms to mask their presence from the enemy while 
accomplishing their mission. These waveforms cannot be detected by the use of traditional recognition 

algorithms and methods thus posing a major challenge to the Electronic Warfare designer. This paper presents 

simulation of different types of LPI signals, generation of those signals and development of Time Frequency 

Algorithm to analyze those signals. 

Keywords: Cross terms, ELINT (Electronic Intelligence), EW (Electronic Warfare), Intercept Receiver, LPI 

(Low Probability of Intercept). 

 

I. Introduction 
On the modern battlefield, radar system face serious threats from passive intercept receivers such as 

Electronic Attack (EA) and Anti Radiation Missiles (ARMs). To perform necessary target detection and 

tracking and simultaneously hide themselves from enemy attack, radar systems should be Low Probability of 

Intercept (LPI). Low Probability of Intercept (LPI) radars have the property of low power, wide bandwidth, 

frequency variability, or other design attributes to make them difficult to be detected or identified by passive 

intercept receiver devices such as Electronic Support (ES) or Electronic Intelligence (ELINT) receivers [1]. LPI 

radars attempt to provide the detection of targets at longer ranges than intercept receivers can accomplish 

detection of the radar. The success of LPI radar is measured by how hard it is for them to be detected. 

The Electronics Warfare (EW) scenario has become so complex today and many users of Radar today 

are specifying a Low Probability of Intercept (LPI) as an important tactical requirement. The LPI radar 

transmitter makes use of sophisticated frequency and phase modulation to spread the signal bandwidth making 

the signal hard to intercept [2]. The receiver makes use of the appropriate matched filter so that the radar 

performance is similar to that of traditional pulsed radar radiating the same amount of average power. 
 

II. LPI Radar Signal Generation 
There are several LPI radar techniques available to the modern radar designer in various combinations, 

depending on the application. Reducing the radar’s peak effective radiated power (ERP) by using some form of 

pulse compression technique is the most common LPI radar technique [1]. The objective is to spread the radar’s 

signal over a wide bandwidth and a period of time. 

The most common modulation techniques available to provide LPI features are Barker codes and Polyphase 

Codes (Frank, P1-P4). 

 

2.1 Barker Codes 

The binary Barker sequences are finite length, discrete time sequences with constant magnitude and a 

phase of either υk = 0 or υk = π. It is a finite length sequence A = [a0, a1. . .an] of +1’s and −1’s of length n ≥ 2 

such that the aperiodic autocorrelation coefficients (or side lobes) [1] 

 

             --------- (1) 

satisfies |rk| ≤ 1    for k≠0 and similarly rk=r-k; 

A binary Barker sequence has elements ai Є {−1, +1}, which are only known for lengths Nc= 2, 3, 4, 5, 

7, 11, and 13. The Barker codes are the most frequently used binary code since they result in an ambiguity 

function with side lobe levels at zero Doppler, not higher than 1/Nc relative to a main lobe of level 1. In fact, due 

to this property, Barker codes are often called perfect codes. 

The sequences where a +1 i.e. a 00 phase is represented by a + and a −1 i.e. 1800 phase is represented 

by a −. Binary Barker sequences with lengths greater than 13, with Nc odd, do not exist. 

This radar has unique collection of properties such as good auto correlation properties, low side lobes, 

offer covertness to the radar signal making its detection difficult with conventional intercept receivers. 
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      An LPI Radar signal modulated using seven bit Barker sequence is shown in Fig 1.  From the figure we   

can observe there are three phase changes one after three cycles, the second one after five cycles and third one 

after six cycles, since the seven bit barker sequence i.e. +++--+- has three phase changes  at those locations.  

 

 
Figure 1: Seven bit Barker Code 

 

The phase versus time graph for seven bit barker code is shown in Fig 2 below: 

 

 
Figure 2: Seven bit barker code at 1GHz Frequency 

 

2.2. Poly Phase Codes 

Poly phase sequences are finite length, discrete time complex sequences with constant magnitude but 

with a variable phase k
[1]. Polyphase coding refers to phase modulation of   the CW carrier, with a poly phase 

sequence consisting of number of distinct phases. Frank, P1, P2, P3, P4 Codes comes under Polyphase codes. 

 

2.2.1. Frank Code 

The Frank Code is derived from a step approximation to a linear frequency modulation waveform using 

M frequency steps and M samples per frequency .The frank code has a length or processing gain of Nc=M*M .If 

i  is the number of the sample in a given frequency and j is the number of the frequency, the phase of the 
thi  

sample of the 
thj  frequency is: 

 , 2 / [( 1)( 1)]i j M i j        ------ (2) 

where i =1,2,3,….,M  and j=1,2,3….,M. 

The Simulation results for the Frank Code are shown in Fig 3. 
 

 
Figure 3: Frank Code phase values for M=8 
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Figure 4: Frank Code values for M=8 showing signal phase modulo 2π 

 

2.2.2. P1 Code 

  The P1 code is also generated using a step approximation to a linear frequency modulation waveform. 

In this code, M frequency steps and M samples per frequency are obtained from the waveform using double 

sideband detection with the local oscillator at band center. The length of the resulting code or compression ratio 

is Nc=M XM .If i  is the number of the sample in a given frequency and j is the number of the frequency, the 

phase of the 
thi  sample of the 

thj  frequency is: 

, / [ (2 1)][( 1) ( 1)]i j M M j j M i         ------ (3)             

where i =1,2,3..,M, j=1,2,3….,M and M=1,2,3…  

The Simulation results for the Frank Code are shown in Fig 5: 

 

 
Figure 5: P1 code phase values for M=8 

 

2.2.3. P2 Code 

For the P2 code M even, the phase increments within each phase group is the same as the P1 code, 

except that the starting phases are different. The P2 code also has a length or compression ratio of NC=M*M 

.The P2 code is given by:  

, / 2 [2 1 ][2 1 ]i j M i M j M        ----- (4)      

Where i=1,2,3,….,M  and j=1,2,3….,M and where M=2,4,6… 

The Simulation results for the Frank Code are shown in Fig 6: 
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Figure 6: P2 code phase values for M=8 

 

2.2.4. P3 Code 

The P3 code is conceptually derived by converting a linear frequency modulation waveform to base 

band, by synchronous oscillator on one end of the frequency sweep (single side band detection) and sampling 

the I and Q video at Nyquist rate.  The phase of the 
thi sample of the P3 code is given by:  

2/ ( 1)i cN i   
                           -------- (5)

 

where i=1, 2… Nc and Nc is the compression ratio. 

The Simulation results for the Frank Code are shown in Fig 7: 

 

 
Figure 7: P3 code phase values for M=8 

 

2.2.5. P4 code 

The P4 code is conceptually derived from the same linear frequency modulation waveform as the P3 

code with a different phase equation given by, 

The phase sequence of a P4 signal is described by: 

           
2( 1) / ( 1)i ci N i           ------ (6)                 

For i =1 to Nc where Nc is the pulse compression ratio.  

The Simulation results for the Frank Code are shown in Fig 8: 
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Figure 8: P4 code phase values for M=8 

 

III. Design Approach for Analysis of LPI Waveforms 
To analyze the LPI signal Joint Time Frequency analysis (JFTA) technique will be used. One method 

of visualizing a signal is in the time domain. This representation often plots the signal amplitude as a function of 

time. Then represent signal in frequency domain based on a variation of the Fourier Transform to get the 

spectral components. The Fourier Transform is a very useful concept for stationary signals. Many signals 

encountered in real world situations have frequency content that changes over time. To represent signals of this 

nature, Joint time frequency transforms were developed which characterized the exact behavior of the time 

varying frequency content of the signal. Joint Time Frequency Analysis (JFTA) is a very powerful tool for 

removing noise and interference from a signal. Time Frequency methods are used for determining range of 

target, which is a function of time, and the target speed, which is the function of frequency. For the above 

reasons, we can apply a type of Joint Time Frequency Analysis (JFTA).  

 

3.1. Wigner Ville Distribution (WVD) 

The Wigner Ville Distribution (WVD) is a two-dimension function describing the frequency content of 

a signal as a function of time. Using the WVD, frequency and time changes in most of the LPI radar signals can 

be identified. The WVD of discrete input signal x (t) is defined as: 

                                                    
1 2
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      -------- (7) 

where x(n) is an input signal 

             l    is the time variable,  

             ω   is the angular frequency variable, 

             *    indicates the complex conjugate 

            w(n)   is a length of 2N-1 real window        

                        function with w(0) =1. 

 

3.2. Choi-Williams Distribution (CWD) 
The Choi-Williams Distribution (CWD) is given by: 




  dddAetC tj

f ),(),(
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
                                    --- (8) 

Where υ (ξ, τ) is a kernel function and  
A (μ, τ) = x (μ + τ/2) x*(μ- τ/2)           -------- (9) 

And x (μ) is time signal and x*(μ) is its complex conjugate. This equation represents a generalized class 

of bilinear transformation that satisfies the marginal conditions and has good resolution in both the time and 

frequency spaces. The Wigner-Ville time-frequency distribution, is based on (7) where the kernel function is υ 

(ξ, τ) = 1. For multi component signals the cross terms (Oscillatory positive and negative peaks, due to 

interference between spectral components) are present in the Wigner-Ville distribution. The cross terms cause 

interference that can obscure physically relevant components of the LPI signal’s modulation [4]. 

The Choi-Williams distribution uses an exponential weighting kernel in order to reduce the cross-term 

components of the distribution. The kernel function that gives the Choi-Williams distribution is: 

      e

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

                          ------ (10) 
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Where σ (σ>0) is a scaling factor. By substituting the above kernel equation (10) into (7), the equation 

for the discrete Choi- Williams distribution of the input signal x (n) with a discrete time index and windowed for 

large data sample sets shown below: 


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 Here l is the time variable, ω is the angular frequency variable, σ is a positive-valued scaling factor, 

and * indicates the complex conjugate. and W(n) is a symmetrical window (such as Hamming) which has 

nonzero values on the interval -N / 2 to N / 2 and W(μ) is a uniform rectangular window that has a value of one 

for the range of -M / 2 and M / 2 . The choices of N and M on these windows respectively determine the 

frequency resolution of the CWD and the range at which the function will be defined [4-5]. 

The discrete CWD can be modified to fit the standard discrete Fourier Transform (DFT) by setting 

ω=πk/2N.The final equation can be written as: 
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Where   the kernel function S’ (l, n) is defined as: 
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3.2.1 Reasons for choosing CWD 

1. The CWD of multi component signal achieves the cross term reduction. 
2. The selection of appropriate window size, which depends on the kind of analyzed information, is not required 

for computation of CWD. 

 3. CWD satisfies the time marginal & frequency marginal condition i.e. by summing the time frequency 

distributions over all frequencies one can obtain the instantaneous energy of the signal at a particular instance 

and by summing the time-frequency distributions over all time, one can obtain the power spectrum of the signal 

at a particular frequency. 

 4. Energy of the CWD is the same as the energy content in the signal [6]. 

 

In the present paper, a four bit Frank Coded signal having 16 phases is considered. A carrier frequency 

fc =1 GHz and the sampling frequency fs =2700 MHz is used. Choi-Williams Distribution algorithm is applied 

on the given Frank coded signal sample and results of the CWD output are plotted against the time and 
frequency using the three dimensional mesh plot. Application of Choi-Williams Distribution algorithm on the 

multi component signal results in the time frequency graph as shown below. 

 

 
Figure 9: CWD output with no cross terms. 

 



Modeling and Analysis of LPI Radar Signal 

www.iosrjournals.org                                                             25 | Page 

Fig 9 shows the output of the CWD mesh plot when two frequency components 750MHz and 

1250MHz are present in the signal. Due to the exponential kernel the cross terms are absent in the CWD. 

The same signal when analyzed using Wigner-Ville distribution has one more frequency in plot at 

1GHz which is a cross term as shown in the WVD contour plot in fig 10. Due to the exponential kernel the cross 

term is absent in the CWD. 

 

 
Figure 10: WVD output with cross term at 1GHz. 

 

The following plot shows the output of the CWD for a 4 bit Frank coded signal having a carrier 
frequency of 1GHz and Sampled at 2.7GSPS, with 16 phases over total Code duration of 32nsec. 

 

 
Figure 11: CWD mesh plot for extraction of Frequency. 

 

 
Figure 12: CWD mesh plot for extraction of Time Period and Bandwidth 

 

The frequency of the signal can be found out from the peak of the mesh plot at view angle of   00 

elevation and 900 in azimuth. From fig 10 we can observe that the frequency corresponding to the peak occurs at 

999.3MHz. The horizontal distance between the successive strips on the mesh plot gives the total code duration 
(T) of the signal. From the fig 11, it can be observed as 75.19-44.07=31.12 ns. The bandwidth of the signal can 

be found out from the vertical distance between successive spectrogram strips. From the fig 11 the bandwidth is 

calculated as 1277-784=493MHz. Once these parameters are known, the sub code duration (tb) can be calculated 

as the inverse of Bandwidth. The number of cycles of the carrier per phase (cpp) i.e. within each code duration, 

is given by the sub code duration (tb) multiplied by the frequency of the signal (fc) and converting the result to 

nearest integer. The no of phase changes are determined by dividing the total code duration (T) by the sub code 

duration (tb) and converting to nearest integer [5]. 
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The comparison of critical parameters obtained by CWD with the actual values of the parameters is 

shown in the below table. 

 

TABLE 1 
Parameter Actual Value Extracted 

Value 

Accuracy (%) 

Frequency       1GHz     999.3MHz       99.93 

Total Code Duration      32nsec     31.12nsec       97.25 

Sub Code Duration       2nsec    2.0284nsec         1.42 

No of Phases         16         16         100 

No of Cycles of the 

Carrier 

         2          2         100 

 
In the above results achieved the parameter detection accuracy of the algorithm depends on the number 

of input sample points (N) used to calculate the CWD. If the N is increased, the more accuracy can be achieved 

at the cost of computational speed [6]. As a result of this property, the CWD is often thought as a signal’s energy 

distribution in the time-frequency domain. 

 

IV. Conclusion 
Six types of Low Probability of Intercept (LPI) signals were considered in this paper. They are Barker 

code, Frank code, and P1-P4 code signals. There are some of the signals generated for Choi-Williams 

Distribution analysis in this paper. The Choi-Williams Distribution is a two-dimension function describing the 
frequency content of a signal as a function of time. The Choi-Williams Distribution has been noted as one of the 

more useful time-frequency analysis techniques for signal processing. Using the Choi-Williams Distribution one 

can identify the frequency and time changes in most of the LPI signals. 
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