DESIGN OF 4 BIT BINARY ARITHMETIC CIRCUIT USING 2'S COMPLEMENT METHOD

DhrubojyotiGhosh, Suchandana Roy Saha
AssistantProfessor,ECEDept.,Abacus Institute of Engineering \& Management,JISGroup,West Bengal,India Assistant Professor,ECEDept.,Abacus Institute of Engineering \& Management JISGroup, West Bengal,India

Abstract

This paper presents a technique to design a 4bit binary arithmetic circuit capable of doing addition and subtraction operation using 2 's complement method. As the 2 's complement method is more advantageous than I's complement method, the explored method of the circuit of 2's complement method along with the conventional 4 bit adder-subtractor composite unit achieves the design to get perfect result. By this circuit we can add or subtract any two numbers with any sign in an efficient way without employing the human brain.

Keywords: Control inverter, Control sign input, Composite unit, Sign magnitude bit output, Full adders.

I. Introduction:

The adder-subtractor composite unit has a vast application in binary arithmetic operations in digital technology. The addition of multiple bit numbers can be accomplished using several full adders [3]. Composite unit simplifies the complexity by adding two circuits in a single one. This circuit is capable of adding and/or subtracting two 4 bit numbers resulting in a 5 bit result with an additional bit representing the sign of the output. The subtraction of two binary numbers may be accomplished by taking the 2 's complement of the subtrahend and adding to the minuend [1]. Control sign input in the present study controls the sign of the inputs as per requirement and thus can control the addition and subtraction using 2's complement method in parallel binary full adder circuit. This circuit have inputs i.e. $\mathrm{X}\left(\mathrm{X}_{3}, \mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}\right) \& \mathrm{Y}\left(\mathrm{Y}_{3}, \mathrm{Y}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{0}\right)$ and capable of performing arithmetic operation like $\mathrm{X}+\mathrm{Y},-\mathrm{X}+\mathrm{Y}, \mathrm{X}-\mathrm{Y}, \&-\mathrm{X}-\mathrm{Y}$.

II. Theory:

This circuit(Fugure-1) have total ten inputs i.e. $\mathrm{X}_{3}, \mathrm{X}_{2}, \mathrm{X}_{1}, \mathrm{X}_{0}$ as to represent 1 st 4 bit input $\mathrm{A} ; \mathrm{Y}_{3}, \mathrm{Y}_{2}, \mathrm{Y}_{1}, \mathrm{Y}_{0}$ as to represent 2 nd 4 bit input B, C_{A} (Control sign input of A) and C_{B} (Control sign input of Y). Control sign input is 0 when number is positive and 1 when number is negative. We are using parallel 4 bit adder circuit by cascading 4 full adders, xor gates as control inverter and other simple logic gates [5, 6]. Here $T\left(\mathrm{C}_{\mathrm{A}}\right.$ XOR $\left.\mathrm{C}_{\mathrm{B}}\right)$ is 1 st parallel adder's complement controller factor. In 1st parallel adder two 4 stage xor gate are used to complement the binary values of X and Y according to the requirement [4]. T is connected with 1st parallel adder's carry input to implement the 2 's complement method. $\mathrm{C}_{\mathrm{A}}{ }^{*}$ is the complement controller of X and $\mathrm{C}_{\mathrm{B}}{ }^{*}$ is the complement controller of Y. Cout1 is the final carry output from the 1 st parallel adder. The sum outputs of 1 st parallel adder are connected with another 4 stage xor gates as controlled inverter [3]. K is the 2nd parallel adder's complement controller factor. The output of xor gates are connected with the $B_{3}, B_{2}, B_{1}, \& B_{0}$ of the 2 nd parallel adder [2]. In 2nd parallel adder $\mathrm{A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}$ are connected with ground and A_{0} is connected with K to implement the 2 's complement of the output when required. From 2 nd parallel adder we get the outputs S_{3}, S_{2}, $\mathrm{S}_{1} \& \mathrm{~S}_{0}$. The 5 th output Cout (T XOR $\mathrm{C}_{\text {out }}$ XOR K) shows the extra output to represent the high ranges data. The 6th output bit (MSB) SM ($\left.\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}+\mathrm{TC}_{\text {out }} \wedge\right)$ is the sign magnitude bit to represent the sign of the outputs. For $\mathrm{SM}, \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}=1$ when $\mathrm{C}_{\mathrm{A}} \neq \mathrm{C}_{\mathrm{B}}, \mathrm{TC}_{\text {out } 1} \wedge=1$ when $\mathrm{T}=1$ as well as $\mathrm{C}_{\text {out }} \wedge=1 . \mathrm{C}_{\text {out }} \wedge=1$ when $\mathrm{C}_{\text {out }}=1$ and $\mathrm{T}=1$ when $C_{A}=C_{B}$. Examples are shown below in the tables.

This circuit has three very important indicators named as $\mathrm{T}, \mathrm{K}, \& \mathrm{C}_{\text {outl }}$. T controls the $\mathrm{C}_{\mathrm{A}}{ }^{*}$ and $\mathrm{C}_{\mathrm{B}}{ }^{*}$ to complement the values of X and Y when needed. K controls the 2nd parallel adder to implement the complement of the output when needed and thus controls the total operation.

Table-1

C_{A}	X_{3}	X_{2}	X_{1}	X_{0}	C_{B}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	$\mathrm{~S}_{\mathrm{m}}$	$\mathrm{C}_{\text {out }}$	S_{3}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$
0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0

Table-2

C_{A}	X_{3}	X_{2}	X_{1}	X_{0}	C_{B}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	$\mathrm{~S}_{\mathrm{m}}$	$\mathrm{C}_{\text {out }}$	S_{3}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$
1	1	0	0	0	1	1	0	0	0	1	1	0	0	0	0

Table-3

C_{A}	X_{3}	X_{2}	X_{1}	X_{0}	C_{B}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	$\mathrm{~S}_{\mathrm{m}}$	$\mathrm{C}_{\text {out }}$	S_{3}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$
0	0	1	1	1	0	0	1	0	1	0	0	1	1	0	0

Table-4

C_{A}	X_{3}	X_{2}	X_{1}	X_{0}	C_{B}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	$\mathrm{~S}_{\mathrm{m}}$	$\mathrm{C}_{\text {out }}$	S_{3}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$
1	0	1	1	1	1	0	1	0	1	1	0	1	1	0	0

Table-5

C_{A}	X 3	X 2	X 1	X 0	C_{B}	Y 3	Y 2	Y 1	Y 0	Sm	Cout	S 3	S 2	S 1	S 0
1	1	0	0	0	0	0	0	1	1	1	0	0	1	0	1

Table-6

C_{A}	X 3	X 2	X 1	X 0	C_{B}	Y 3	Y 2	Y 1	Y 0	Sm	Cout	S3	S2	S1	S0
0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1

III. Result and analysis:

By using logisim software I am constructing the circuit diagram used in Fig-1. The simulation results are showing in Table-1, Table-2, Table-3, Table-4, Table-5 and Table-6. The results are explained below.
Table- 1 shows the result when $\mathrm{X}=+8(\mathrm{X} 3=1, \mathrm{X} 2=0, \mathrm{X} 1=0, \quad \mathrm{X} 0=0), \mathrm{Y}=+8(\mathrm{Y} 3=1, \mathrm{Y} 2=0, \mathrm{Y} 1=0, \mathrm{Y} 0=0)$, So $\mathrm{CA}=0$ (representing X as positive), $\mathrm{CB}=0$ (representing Y as positive). At the output port $\mathrm{Sm}=0$ (representing output as positive), $\&$ Cout $=1, \mathrm{~S} 3=0, \mathrm{~S} 2=0, \mathrm{~S} 1=0, \mathrm{~S} 0=0$ represent the output as +16 .
Table-2 shows the result when $\mathrm{X}=-8(\mathrm{X} 3=1, \mathrm{X} 2=0, \mathrm{X} 1=0, \quad \mathrm{X} 0=0), \mathrm{Y}=-8(\mathrm{Y} 3=1, \mathrm{Y} 2=0, \mathrm{Y} 1=0, \mathrm{Y} 0=0)$, So $\mathrm{CA}=1$ (representing X as negative), $\mathrm{CB}=1$ (representing Y as negative). At the output port $\mathrm{Sm}=1$ (representing output as negative), $\&$ Cout $=1, \mathrm{~S} 3=0, \mathrm{~S} 2=0, \mathrm{~S} 1=0, \mathrm{~S} 0=0$ represent the output as -16 .
Table-3 shows the result when $\mathrm{X}=+7(\mathrm{X} 3=0, \mathrm{X} 2=1, \mathrm{X} 1=1, \quad \mathrm{X} 0=1), \mathrm{Y}=+5(\mathrm{Y} 3=0, \mathrm{Y} 2=1, \mathrm{Y} 1=0, \mathrm{Y} 0=1)$, So $\mathrm{CA}=0$ (representing X as positive), $\mathrm{CB}=0$ (representing Y as positive). At the output port $\mathrm{Sm}=0$ (representing output as positive), \& Cout $=0, \mathrm{~S} 3=1, \mathrm{~S} 2=1, \mathrm{~S} 1=0, \mathrm{~S} 0=0$ represent the output as +12 .
Table-4 shows the result when $\mathrm{X}=-7(\mathrm{X} 3=0, \mathrm{X} 2=1, \mathrm{X} 1=1, \quad \mathrm{X} 0=1), \mathrm{Y}=-5(\mathrm{Y} 3=0, \mathrm{Y} 2=1, \mathrm{Y} 1=0, \mathrm{Y} 0=1)$, So $\mathrm{CA}=0$ (representing X as positive), $\mathrm{CB}=0$ (representing Y as positive). At the output port $\mathrm{Sm}=1$ (representing output as negative), $\&$ Cout $=0, \mathrm{~S} 3=1, \mathrm{~S} 2=1, \mathrm{~S} 1=0, \mathrm{~S} 0=0$ represent the output as -12 .
Table-5 shows the result when $\mathrm{X}=-8(\mathrm{X} 3=1, \mathrm{X} 2=0, \mathrm{X} 1=0, \quad \mathrm{X} 0=0), \mathrm{Y}=+3(\mathrm{Y} 3=0, \mathrm{Y} 2=0, \mathrm{Y} 1=1, \mathrm{Y} 0=1)$, So $\mathrm{CA}=1$ (representing X as negative), $\mathrm{CB}=0$ (representing Y as positive). At the output port $\mathrm{Sm}=1$ (representing output as negative), \& Cout $=0, \mathrm{~S} 3=0, \mathrm{~S} 2=1, \mathrm{~S} 1=0, \mathrm{~S} 0=1$ represent the output as -5 .
Table-6 shows the result when $\mathrm{X}=+8(\mathrm{X} 3=1, \mathrm{X} 2=0, \mathrm{X} 1=0, \quad \mathrm{X} 0=0), \mathrm{Y}=-3(\mathrm{Y} 3=0, \mathrm{Y} 2=0, \mathrm{Y} 1=1, \mathrm{Y} 0=1)$, So $\mathrm{CA}=0$ (representing X as positive), $\mathrm{CB}=1$ (representing Y as negative). At the output port $\mathrm{Sm}=0$ (representing output as positive), \& Cout $=0, \mathrm{~S} 3=0, \mathrm{~S} 2=1, \mathrm{~S} 1=0, \mathrm{~S} 0=1$ represent the output as +5 .

IV. Conclusion:

The present circuit represents 6 output bit. $6^{\text {th }}(\mathrm{MSB})$ output bit is the sign magnitude bit to represent the sign of the output. $5^{\text {th }}$ output, $\mathrm{C}_{\text {out }}$, is the extra output representing as $\mathrm{C}_{\text {out }}=0$, when the result lies in between 0 to 15 and as $C_{\text {out }}=1$ when the result exceed the range. The last four outputs $S_{3}, S_{2}, S_{1} \& S_{0}$ are the normal output to represent the data. By this Process desired and accurate result may be obtained depending on the value and sign of the inputs. Moreover, the present endeavour encompasses the use of the simple logic gates and costing to a minimum range enable to use in an economic manner in practical applicable field. By using this circuit we can perform 4 bit operation only, but we can implement the same logic over higher number of bits also. In future I want to design an arithmetic circuit which is capable of using BCD and Excess-3 codes.

Acknowledgements:

We have been fortunate to get all support and cooperation from the management of Abacus Institute of Engineering \& Management. Our respected principal Prof. (Dr.) L.K. Samanta always encourage me to do the same. Our respected Administrative Officer always provides me the circumstances which is suitable for my career. Many thanks to both of you sir.

Many thanks to the faculties of my department for giving all kinds of help when needed. And lastly many thanks to my co-partner for this work.

References:

[1] D. Sangwan and M. K. Yadav, "Design and Implementation of Adder/Subtractor and Multiplication Units for Floating-Point Arithmetic", International journal of ElectronicsEngneeing,2(1), 2010,pp.197-203.(8)
[2] D. Ghosh,"Design of 4-Bit Adder Subtractor Composite Unit Using 2's Complement Method" h ttp://www.academia.edu/4020322/DESIGN OF 4BIT ADDER SUBTRACTOR COMPOSITE UNIT USING_2S_C OMPLEMENT METHOD
[3] Goggle search, Digital adder circuit,http://mindcraft.gamepedia.com/Tutorials/Advanced redstone_circuit
[4] Google search, digital logic circuit design, http://ozark.hendrix.edu/~burch/logisim/
[5] U. Kulisch, "Advanced Arithmetic for the Digital
[6] Wikipedia,adder-subtractor composite unit, http://en.wikipedia.org/wiki/Adder $\%$ E2 $\% 80 \% 93$ subtractor

Biographies

DHRUBOJYOTI GHOSH received the B.Tech\&M.Tech Degree in Electronics and Communication Engineering from the University of W.B.U.T,Kolkata,West Bengal, in 2007 \& 2009 respectively. Currently, He is an Assistant Professor of Electronics and Communication Engineering of Abacus Institute of Engineering \& Management, West Bengal, India. His teaching and research areas include Digital Electronic circuits, Digital Communication Engineering. DhrubojyotiGhosh (Assistant Professor) may be reached at

SUCHANDANA ROY SAHA received the B.Tech\&M.Tech Degree in Electronics and Communication Engineering from the University of W.B.U.T,Kolkata,West Bengal, in 2007 \& 2011 respectively. Currently, She is an Assistant Professor of Electronics and Communication Engineering of Abacus Institute of Engineering \& Management, West Bengal, India. Her teaching and research areas include Digital Electronic circuits, Digital Communication Engineering. Suchandana Roy Saha (Assistant Professor) may be reached at suchandana.

