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ABSTRACT: We  present  a  semi-Markov  model  for  recognizing scene text that integrates character and 

word segmentation with recognition.  Using wavelet features, it requires  only  approximate  location  of  the  

text  baseline and  font  size;  no  binarization  or  prior  word  segmentation is necessary.  Our system is aided 

by a lexicon, yet it also allows non-lexicon words.   To facilitate inference  with  a  large  lexicon,  we  use  an  

approximate Viterbi beam search.  Our system performs robustly on low-resolution images of signs containing 
text in fonts atypical of documents. 

 

1.  INTRODUCTION 
        Noise, unusual fonts and typesetting, and low resolution are endemic in scene text captured by portable 

cameras so that few assumptions can be made about the input. This frequently makes scene text recognition 

more difficult than many document recognition problems. It is common in printed (document and scene) text 

recognition to assume characters can be binarized and word boundaries easily found.  However, in the 
handwriting recognition  problem,  characters  are  typically connected, so recognition must be combined with 

character  segmentation  [6].   Furthermore,  spaces  between handwritten words are not consistently larger than 

gaps between  characters.   Most  approaches  to  handwriting perform word segmentation prior to recognition 

[7, 5, 3], yet some combine candidate word segmentations to find  the  best  interpretation  [9].   This  is  

analogous  to speech recognition, where there is little to indicate word boundaries [4].  Both character and word 

segmentation are as difficult in scene text recognition as they are in speech and handwriting recognition due to 

the wide variety of formats. 

    When  recognizing  a  small  sample  of  text,  as         with signs, correctly segmenting words prior to        
recognition is nearly impossible. Signs are often less constrained by kerning conventions (Fig. 1). 

 

 

 

 

 

Figure 1. With few characters, signs make prior word segmentation difficult. Some (top) have 

larger inter-character gaps than others’ inter-word spaces (bottom). 

 

        Moreover, using the space between characters to determine word boundaries often assumes an error-free 
character binarization, which is highly unwarranted when noise or low resolution results in broken and/or 

touching characters. 

        Much  prior  work  in  handwritten and printed  text recognition  is  lexicon  driven,  but  words  from  

outside the lexicon must be allowed to handle input variety.    Previous work allowing out-of-lexicon 

recognition has   assumed word and character segmentations, or used back- off models, such as character 

bigrams [15]. While some scene-text readers use lexicons in post-processing [1], integrating a lexicon with 

recognition generally yields better results[14].  

       Our  goal  is  to  combine  the  strengths  of  these      approaches.   Because  the  two-step  approach  is  
prone  to error, we avoid committing to segmentations before per- forming recognition.  In this paper, we 

present a robust probabilistic  model  that  is  aided  by  a  lexicon  to  help bias  the  recognition  toward  known  

words.   However, since many words in the environment are not dictionary words,  our system can fall back on a 

simpler n-gram language  model  so  that  text  may  also  be  recognized as  non-lexicon  words.   We  combine  

not  only  character recognition and segmentation, but also word recognition and segmentation.  Our system 

provides greater flexibility by treating an inter-word space as yet another character to recognize, allowing the 

recognition process. to be guided by either an n-gram model or a lexicon. This avoids constraining the system 

by committing to a segmentation too early.    
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Fig 2. A segmentation of a string of text into 5 primary regions (indicated by the dashed lines) that can be 

scored for various labelings 

 

           Experimental results on scene text images are given, comparing both open (no lexicon) and closed-

vocabulary (lexicon words only) modes with our  proposed  hybrid  mode  against  commercial  OCR software. 

 

2.    RECOGNITION MODEL 

        We  use  a  discriminative  semi-Markov  field  to perform joint segmentation and recognition [10].It 

captures both the  dependencies  between  labels  in  a  sequence and the duration of a particular state along the 

sequence. By modeling state duration (i.e., the width of a region corresponding to some character), the semi- 

Markov model is richer than the typical Markov model. Specifically, the probability of a segmentation boundary 

depends on the width of the segment thus far. 

       Unlike generative hidden Markov and semi-Markov models, the discriminative semi-Markov model is 
directly trained to optimize the posterior distribution used for prediction, and it can use richer contextual 

features of the input image without violating the independence assumptions required of anHMMor introducing 

the additional model complexity required to handle them appropriately. 

   Dynamic programming is used to find the most likely character sequence. Here we briefly discuss how a 

segmentation and labeling is scored. Section 3 describes how to find the optimal segmentation and labeling.    A 

Segmentation induces a set of unknowns y and a corresponding set of discriminant functions    each 

unknown   takes on a label in  (where └┘is an inter-word space). 

The example in Figure 2 shows one segmentation, or parse, of a text string. In this parse, there are five regions 

corresponding to character hypotheses that must be given labels. Notice in particular that one of the parse 
regions, y4, corresponds to the “space” character. 

 

   Modeling spaces explicitly as a character allows us to seamlessly integrate word segmentation with character 

recognition and segmentation. Since different segmentations must compete with each other, two properties of 

the parse itself are also scored: overlaps of  character spans and gaps between them.  

         Given a segmentation and the set of induced unknowns, we may define the conditional probability 

  

 
 

Where x represents the observed image, and C is a set of learned discriminant functions. The exact set 

of functions summed over will depend on the segmentation being evaluated. As an example, for each unknown, 

there will be one function corresponding to a character recognition discriminant. The notation yC indicates the 

subset of the unknowns that are arguments to UC. We use five classes of UC in calculating the score of a parse: 

Appearance : 

       Each span scored by a linear discriminant 

   
for a character y and the span width from index r to t, learning not only appearance, but that “w”s are wide and 

“i”s narrow. 

Bigrams :  Each pair of neighboring character spans is given a bigram score, UB (y’, y). 
Lexicon : Parameter U

W
 can replace U

B
 to promote character sequences that compose a lexicon word. 

 

Overlap : If neighboring characters overlap, a simple term is added,  depending on how many 

pixels overlap, as indicated by n and r. 

 

Gap:  A gap between characters from n to r is scored by a learned, linear discriminant. 

    using the image features. 
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The model parameters are learned from data. We use decoupled piecewise training to learn the 

discriminant functions individually [12]. Finding the MAP estimate for the parameters involves solving a 
convex optimization problem. 

3.  MODEL INFERENCES 
Recognition in our model means finding the segmentation and corresponding labeling that maximizes a 

total (summed) score. The constituents of this score—the exponent of Eq. (1)—were described in the previous 

section. Here we describe how to find the best score. 

       Two-dimensional dynamic programming table is constructed to find the best parse. If word boundaries were 
assumed so that a text region contained a single word, we could simply constrain the dynamic program to find 

parses corresponding to lexicon words, as done by Jacobs et al. [5]. Rather than assume a prior word 

segmentation, we recognize word boundaries by treating a space as a character and then determine whether what 

precedes the space is a lexicon word. 

Let S (t, y) be the optimal score for a span ending at index t with character y. When , the 

table is built by adding a new span and labeling to the previous best 

parse via the recurrence 

               

    (2) 

    where P (n, r, t, y’, y, 0) represents the parse score for adding a segment that starts at r, ends at t, and 

is labeled y, while the previous character y’ ended at n. The last argument to P,  = 0, indicates that the 

additional character is not part of a lexicon word. The base case is S (0, y) = 0, with S (t, y) = −  for t < 0. The 

parse score is, 
 

                                     (3) 

 
Where m is the beginning of the previous span. The total score for a segmentation and labeling is the sum of all 

the P terms—the exponent of the Markov model (1). To avoid biasing the total score for parses with more 

characters, we add weights that assign the appearance and bigram scores to every index of their spans:  is 

the width of the character span, and  that of the bigram span. Gaps do not require this because each index 

of a gap is scored individually. To simplify calculation, we score only segments from r to t that correspond to a 

set of possible quantized character widths.  

 Another table W (t) corresponds to the best score When the new , it signals the end of a 

character string, which may be a lexicon word or not. The recurrence must determine whether the optimal parse 

is to accept the previous best lexicon word  or the non-lexicon parse  ending before the space:   

 

            

                                                            (4) 

     

                                                                             (5)  

 
                                                  (6) 

 

where  is the last character of the word ending at n.  

The lexicon-based table W is similar to S, but with an extra layer of complexity: 

 

 

                                                (7) 

This builds upon previous scores, but adds a term B (n, t) that is the optimal score for any lexicon word 

ending at t, with a preceding space ending at n. Unlike S, the character sequences of the lexicon word score B 
are constrained to be from lexicon words. Thus, for the kth lexicon word, we can define a score for a parse up to 

the ith character, , that ends at location t, with the beginning of the word preceded by a space that ends at n.  
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(8) 

As before, the term P is a score for a parse of a particular character including the appearance model and 
gap/overlap scores. However, the language model is altered since the character is now part of a (hypothesized) 

lexicon word. The score for adjacent characters that constitute a lexicon word thus replaces the bigram score 

entirely, as indicated by the argument . Now, the B (n, t) term of Eq. (7) is the highest-valued, complete 

parse of all lexicon words over the span from n to t, 
 

 

                                                                                                                 
(9) 
 

where    is the length of the kth word.  

     Although the complexity is linear in the number of lexicon words and the length of the text to be parsed, we 

have proposed a method that hypothesizes every word beginning at every location. This is impossibly slow in 

practice, so approximations must be introduced.  

     We eliminate words from consideration based on the relative score of all sub-word parses within a given 
span. The term C (n, t, i, k) represents optimal scores over the span from n to t, where the subword varies with 

the arguments i and k, most of which have extremely low scores. To more quickly find the optimal full word 

parse B (n, t) calculated from C, we eliminate these unlikely candidates. Such beam search is common in speech 

recognition [4]. A standard strategy is to sort the scores C for a given span (n, t), keeping the N best sub-words 

(i, k). We use N = 10 

 

4.  IMAGE FEATURES AND PRE-PROCESSING 
      Even- and odd-phased steerable pyramid filter responses [11] are each rectified into positive and 

negative components. These four feature images (times six orientations) form the feature vector F (x). See Fig. 

3. To normalize for brightness and contrast, all the rectified responses within a 32 pixel square window are - 

normalized, clipped to a threshold (0.2) and renormalized. A simple linear discriminant (see “Appearance” in 

Section 2) is used for recognition. 

 

 
    

Figure 3. An image is transformed by the steerable pyramid and rectified. For one orientation, 

the responses of even (0) and odd (1) filters for one orientation along with their positive (+) and negative 

(-) rectified components are shown. 

The features are calculated on the original grayscale image over the entire text region. Recognition of a 

character is done without explicit prior binarization, segmentation or deskewing. Thus, features from 

neighboring characters may be included in the feature vector. The discriminate used for recognition must be 

robust to these neighboring distracter features and some perspective distortion. 

Classifiers may be used to detect approximate scene text baselines [2, 13]. At each pixel in all of the 

detected regions, our function  outputs a score for a combined character identity and approximate width. 

       We assume a one-dimensional string of text, but not that it is perfectly horizontal or linear. Because the 

detections are text regions, we must transform the set of character scores (residing at each detected pixel) into a 

one-dimensional representation, as follows 
   The set of unique columns in each detected region become indices of a 1-D array. For each column, 

we assign the score for each hypothesis (character, width, space, gap, etc.) to be its maximum over the detected 

rows in that column. The resulting array has a score for labeling each array segment, or span, as a particular 

character or an intra-word/inter-character gap. 

 Within each text region (detection) connected component, we perform a course binarization of the image  using 

Niblack’s algorithm [8]; this is not required, but it speeds recognition by limiting the number of segmentations. 
We assume this is an over-segmentation, so that components may be combined, but not split. 

 
5.  CONCLUSION 

We  have  presented  a  model  that  can  correctly  and flexibly  recognize  scene  text  under  a  variety  of  
conditions  including  unusual  fonts,  low  resolution,  and non-lexicon  words.   It  performs  better  than  

commercial  document  recognition  software,  which  has  been used in previous scene text readers.  Integrating 

a lexicon improves performance while also allowing non- lexicon words when warranted by the data. Unlike 

earlier work [14], we need not perform prior word segmentation, because word recognition is integrated with 
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segmentation, just like character segmentation and recognition. Because no binarization is required, we can 

recognize characters at lower resolution. Our robust prob- abilistic model can be learned from data with no 
hand- tuning of parameters. 
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