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Abstract: This project proposes a robust single-image super-resolution method for enlarging low quality web 

image/video degraded by down sampling and compression. To improve the resolution and perceptual quality of 

such web image/video, we bring forward a practical solution which combines adaptive regularization and 

learning-based super-resolution. The contribution of this work is twofold. First, we propose to analyze the 

image energy change characteristics during the iterative regularization process, i.e., the energy change ratio 

between primitive (e.g., edges, ridges and corners) and nonprimitive fields. Based on the revealed convergence 

property of the energy change ratio, appropriate regularization strength can then be determined to well balance 

compression artifacts removal and primitive components preservation. Second, we verify that this adaptive 

regularization can steadily and greatly improve the pair matching accuracy in learning based super resolution. 

The suggested approach has to be developed using matlab tool. 

Index Terms: Adaptive regularization, learning-based super-resolution (SR), artifacts, down sampling. 

 

I. Introduction 
With the Internet flourishing and the rapid progress inhand-held photographic devices, image and video 

arebecoming more and more popular on the web, due to their richcontent and easy perception. Consequently, 

image search enginesand online video websites have experienced an explosionof visits during the past few 

years. However, limited by thenetwork bandwidth and server storage, most web image/videoexists in a low 

quality version degraded from the source. Themost common degradations are down sampling and 

compression.Downsampling exploits the correlation in the spatial domainwhile compression further exploits the 

correlation in thefrequency and temporal (for video) domains. Quality degradationgreatly lowers the required 

bandwidth and storage, makingthe access to web image/video practical and convenient. Butthese benefits are 
obtained at the expense of impairing the perceptualexperience of users, as degradation inevitably leads 

toinformation loss, which behaves as various artifacts in the resultingimage/video, e.g., blurring, blocking and 

ringing. There is a large demand for improving the perceptual qualityof web image/video, among which the 

resolution enhancement, also known as super-resolution (SR), is an especially importantissue and attracts a lot 

of attention. SR refers to the techniquesachieving high-resolution (HR) enlargements of pixelbasedlow-

resolution (LR) image/video. Basically, there are twokinds of SR, according to the amount of LR images 

utilized:multi-image SR, which requires several LR images of the samescene to be aligned in subpixel accuracy, 

and single-image SR,which generates a HR image from a unique source.SR has many applications in the real 

world. Take imagesearch engines for example: once a query is entered, a large number of images need to be 

returned simultaneously, andthe results are first displayed in their LR forms (often called―thumbnails‖). Users 

then need to click on the thumbnailto get its original HR version. Nevertheless, sometimes it isfrustrating that 
the source image is removed or the server istemporarily unavailable. Single-image SR, at this moment, cansave 

users from the bother of linking to every source if only anenlarged preview is desired.Previous work on single-

image SR can be roughly dividedinto four categories: interpolation-based [1]–[4], reconstruction-based [5], [6], 

classification-based [7] and learning-based[8]–[17]. Despite great diversity in implementation, thesemethods 

have a common premise that the LR image is onlydegraded by down sampling. This is not always true in the 

webenvironment, where compression is widely adopted. For imagesearch engines, compression helps reduce the 

thumbnail sizeby up to 50% without obvious perceptual quality loss whenpresented in the LR form. But now if 

SR (any of the above) isdirectly performed, compression artifacts will be magnified outand the perceptual 

quality of resulting HR images will be poor.On the other hand, multi-image SR has been used to enlargevideo 

for a long time [5], [18]–[22], and corresponding techniquesfor compressed video SR have also been reported 

inliterature [23]–[25]. These methods generally assume a priordistribution of the quantization noise and then 

integrate thisknowledge into a Bayesian SR framework, or use the quantizationbounds to determine convex sets 
which constrain the SRproblem. In practical applications, however, the compression artifactscaused by the 

quantization noise are largely dependenton the video content and difficult to be modeled with an 

explicitdistribution. Moreover, since the performance of Bayesian SRheavily depends on the accuracy of frame 
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registration and motionestimation, these methods are not capable of reconstructinghigh frequency details of 

dynamic videos that contain fast andcomplex object motions. 

In this paper, we present a practical solution which combinesadaptive regularization with learning-

based SR to simulta-neouslyimprove the resolution and perceptual quality of compressed image/video. A 

straightforward implementation of this idea has been reported in our previous work [26], where the 

regularization strength is determined by the JPEG compression quality parameter (QP), followed by learning-
based pair matching to further enhance the high-frequency details in the interpolated image. This simple yet 

effective combination gives perceptually high quality SR results for compressed thumbnail images. To further 

improve the robustness of such an approach, we propose a more solid criterion for the adaptive regularization 

control in this work, based on the convergence property of the image energy change ratio between primitive and 

nonprimitive fields during iterative regularization. 

 
 By appropriately locating the turning point where regularization loses its efficacy in distinguishing 

primitive components from compression artifacts, the pair matching accuracy in learning-based SR can be 
steadily and greatly improved. In this way, the quantization noise is effectively eliminated while the missing 

high-frequency details are faithfully compensated. Moreover,the proposed single-image SR method can be 

directly applied into compressed video SR, by introducing certain interframeinteractions on the regularization 

strength and simple spatial-temporal consistency optimization, as reported in our latestwork [37]. Different from 

conventional methods, our solutiondoes not require any specific assumption on the quantizationnoise or the 

object motion, which greatly extends its scope of 

application in the web environment. 

The rest of this paper is organized as follows. Section II formulates the single-image SR problem in the 

compression scenario and briefly introduces the regularization and learning-based SR techniques used in our 

scheme. The adaptive regularization control is elaborated on in Section III. Section IV extends the proposed 

method into compressed video SR. Experimental results are presented in Section V, and Section VI concludes 

the paper. 
 

II. Compressed Image Super-Resolution 

A. Problem Formulation 

An overview of our single-image SR scheme in the compression scenario is shown in Fig. 1. Suppose 

𝑋0is an original HR image, it is first down sampled with a low-pass filter𝑔(mostly isotropic Gaussian) to form 

an LR measurement𝑌0 

𝑌0 = (𝑔 ∗ 𝑋0) ↓ 𝛼                                   (1) 

Where↓ 𝛼  is a decimation operator with scaling factor 𝑌 0isthen compressed, resulting in a degraded LR 

measurement𝑌 

𝑌 = 𝑌0 + 𝐸Q                                                    (2) 

where𝐸Qwhere represents the quantization error introduced by compression in the spatial domain.𝑌is 

the actual input of our SR system. This system consistsof three modules: PDE regularization, bicubic 

interpolation and learning-based pair matching. Regularization is first performed on𝑌 to get an artifacts-relieved 

LR image 𝑌* 

𝑌 ∗= 𝑓N(Y)(3) 

where f(.) denotes the PDE regularization functional and the superscript N represents the total iteration 

number of regularization, which determines the regularization strength. is thenupsampled with scaling factor𝛽 to 

get an intermediate HR result𝑋* 

𝑋 ∗= ( ∗ 𝑌*)↑ 𝛽                                          (4) 

where stands for the bicubic interpolation filter. The final HRimage 𝑋 is obtained after learning-based pair 

matching from𝑋*  and a prepared database𝐷 . The maximum a posterior probability(MAP) estimate of 𝑋can be 
expressed as 
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B. Learning-Based Pair Matching 

Single-image SR aims to obtain a HR reconstruction 𝑋 froma LR measurement Y . For learning-based 

approaches, a set of examples organized in a database𝐷 are utilized in the onlinereconstruction process. These 

examples usually exist as co-occurring patch pairs {xk,yk}=1extracted from training imagesat two different 

resolution levels. The basic idea of using examplesin SR is that natural images are special signals occupyingonly 
a vanishingly small fraction of the high dimensional imagespace. Therefore, high-frequency details that do not 

exist 𝑌incan be ―stolen‖ from𝐷 through pair matching, i.e., given anLR patch from the input measurement, seek 

in the database forsimilar LR examples, and their corresponding HR counterpartscan then be used for the 

reconstruction as they provide high-frequencydetails that fit the input measurement.In our scheme, the 

primitive-based hallucination method proposedin [12] is adopted for pair matching, for which imageprimitives 

(edges, ridges and corners) are represented by examplesand pair matching is only applied to the primitive 

componentsin images. The superiority of this method is twofold. First,human observations are especially 

sensitive to image primitiveswhen going from LR to HR. Second, the primitive manifold is ofintrinsic lower 

dimensionality compared with raw image patchmanifolds as used in [10], [13], [14] and can be more 

effectivelyrepresented by examples. (Please refer to [12] for detailed proceduresof primitive example 
generation.)Generally speaking, learning-based pair matching exploitsthe correspondence between image 

signals at two different resolutionlevels, whereas another kind of degradation—compression—is seldom 

considered in previous works. One may suggest directly involving compression in preparing the examples. 

Unfortunately, this implementation will heavily lower the pair matching accuracy as the quantization noise, 

unlike the high frequency components lost in down sampling, is difficult to be effectivelyrepresented by 

examples. The underlying reason is thatcompression corrupts the primitive pattern (or other feature 

patterns)contained in examples, and thus the correspondence betweenthem. As an alternative, we propose to 

keep the databaseaway from compression while introducing regularization on thecompressed LR measurement. 

 

C. PDE Regularization 

Among various available regularization techniques, anisotropic PDE’s [27]–[30] are considered to be 

one ofthe best, due to their ability to smooth data while preservingVisually salient features in images. A brief 
restatement of PDE regularization is given below. Suppose is a 2D scalar image, the PDE regularization can be 

formulated as the juxtaposition of two oriented 1D heat flows along the gradient direction  and its orthogonal, 

named the isophote direction (as is everywhere tangent to the isophote lines in the image), with corresponding 

weights and C 

 

Where denotes the image gradient magnitude.The choice of C and is not determinate; 

only certainproperties need to be satisfied. In this paper, we use the following weights as suggested in [30] 

 
This is one possible choice inspired from the hyper-surface formulation of the scalar case [31]. The PDE in (6) 

can be equivalentlywritten as 

 
WhereH  is the Hessian matrixof 𝐼and 𝜃is an anisotropic 2X2 tensor defined as 

 
𝜃gives the exact smoothing geometry performed by the PDE, which can be viewed as a thin ellipsoid with the 

major axis perpendicular to the gradient direction, as shown in Fig. 2. 

In a numerical scheme, the input measurement is regularized iteratively. In the th iteration, there is 

 
where  is a positive constant controlling the updating step,Nis the total iteration number, and the image 

intensity change velocity∆𝐼ncan be calculated from (8) based on the spatial discretization of the gradients and 

the Hessians. 
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As pointed out in [30], regularization PDE’s generally do notconverge toward a very interesting 

solution. Most of the time,the image obtained at 𝑛 → ∞ is constant, corresponding toan image without any 

variations. Therefore, the total iterationnumber of regularization is𝑁 often manually determined accordingto the 

image degradation level. In the scenario of compressedimage SR, one question arising here is that how to 

adaptivelycontrol this regularization strength𝑁 to maximize theposterior in (5), given prefixed pair matching 

database𝐷andPDE regularization functional. Inother words, can we find theturning point where compression 

artifacts are effectively eliminatedwhile primitive components are still well preserved? 

 

III. Adaptive Regularization Control 
A. Energy Change during Regularization 

To obtain appropriate regularization strength that well balances artifacts removal and primitive 

preservation, we propose to investigate the image energy change characteristics during the iterative 

regularization process. For this purpose, an image is first divided into primitive field and nonprimitive field. 

This partition can be determined by the orientation energy edge detection [32]. Suppose𝑇is a bitmap storing 

detected edge pixel locations in𝐼 

 
The primitive field (PF) is defined as 

 
where𝑁𝑝(𝑢, 𝑣)  refers to a 𝜌th order neighborhood of(𝑢,𝑣) 
 

 
Correspondingly, the nonprimitive field (NPF) is defined as 

 
Fig. 3 illustrates the PF and NPF partition with = 1 . 

After the 𝑛th iteration of regularization, the image energy 

change in PF and NPF can be calculated as 
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where∆𝐼𝑛is the image intensity change in (10).We denote theenergy change ratio between PF and NPF as 

 
Fig. 4(a) gives several practical results of the 𝑟~𝑛curve onthe test images shown in Fig. 4(b). The test images 

are first 1/3downsampled from the original and then compressed by JPEGwith QP set to 60. It can be seen all 

those𝑟~𝑛  curves convergeafter a few iterations. To obtain a general distribution pattern tern of the𝑟~𝑛 

convergence speed, we use several video sequences(each containing 1500 frames) randomly downloadedfrom 

Youtube [35] for test, instead of gathering a large numberof images. As shown in Fig. 5, most frames require 

less than15 iterations, which validates the convergence property of the𝑟~𝑛curve in the web environment. 

 

 
The convergence property of the  𝑟~𝑛 curve can be figuredout intuitively from the edge-preserving 

nature of PDE regularization.In the earlier stage, the energy change in NPF is moreintensive than that in PF, so 

increases with .When regularizationis performed to a certain stage, PDE loses its efficacy indistinguishing 

salient features from images, and then remainsat a stable level. Further, when is small, there is a large 

probabilitythat compression artifacts such as ringing and blockingappear in NPF. So PDE regularization 

removes compression artifactsfirst. 
          According to the energy change characteristics during PDE regularization, we can nowdetermine 

appropriate regularization strength to maximize the posterior in (5), by locating the turning point where the 𝑟~𝑛 

curve tends to converge. At this time, artifacts removal and primitive preservation in a compressed image are 

best balanced. In practice, we stop the regularization at the Nth iteration when 

 
where 𝜇is a constant and 𝑅represents the fastest increasingspeed of 𝑟. 

 

B. Pair Matching Accuracy 

To demonstrate the necessity and effectiveness of adaptiveregularization in compressed image SR with 

learning-basedmethods, we then investigate the pair matching accuracy under three different circumstances,i.e., 

without compression, withcompression but no regularization and with both compressionand adaptive 

regularization. We denote them as ,and .To compare the pair matching accuracy, we use a Receiver Operating 

Characteristic (ROC)curve to demonstrate thetradeoff between match error and hit rate. We define the 

matcherror as 

 
where𝑥 denotes the real missing HR primitive patch and 𝑥′ isthe HR example found through pair 

matching from the existent LR primitive patch . For a given match error , the hit rate is the percentage of test 

data whose match error is less than 𝑒.Fig. 6 presents three ROC curves based on the pair matching results of 

50,000 primitive patches over 100,000 pairs of trained 
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examples. The test data is sampled from images in Fig. 4(b),whereas the training images are shown in Fig. 11. 

As can beobserved from 𝜌0and 𝜌1, when compression is involved, the pairmatching accuracy degrades heavily. 

On the other hand, withadaptive regularization,𝜌2is higher than𝜌1at any match errornand quickly approaches𝜌0 , 

which indicates that the proposedadaptive regularization steadily and greatly improves the pairmatching 

accuracy in compressed image SR.To further verify the adaptivity criterion in our scheme, inFig. 7 we plot two 

PSNR curves against the iteration numberof regularization, with and without pair matching. It can be 

observedthat, though PDE regularization removes artifacts (andthus improves the perceptual quality), it 

gradually lowers thePSNR, as we don’t enforce any fidelity constraints. However,after pair matching, the PSNR 

curve pattern changes. The peakvalue appears near the iteration number when the corresponding𝑟~𝑛curve 

converges, if compared with Fig. 4(a). 

 

C. Revisit of Training Set 

In the above discussion, we assume a prefixed pair matchingdatabase, mainly to verify the adaptivity 

criterion in the regularizationstep.Nevertheless,forlearning-based approaches, thechoice of training set is still an 

important issue. Therefore, wealso analyze how the choice of training set influences the performanceof our 

method.Since the primitive pair matching mainly exploits the correspondencebetween LR and HR primitive 

components, thetraining images are generally required to have rich and diverseprimitive patterns. However, we 

would like to point out that, as 

 
the primitive pattern is a low-level vision feature, the SR performance only depends on the number of distinct 

primitive patterns in the trained database, instead of the structural similarity between training images and test 

images. Moreover, once the number of primitive patterns increases to a certain value, the SR performance will 

remain stable. 

 To observe the effect on the size of database, we conduct another experiment. During the experiment, 

we gradually increase the size of database from 0 (no pair matching) to 100,000 pairs of distinct primitive 

patterns (extracted from a training set of 16 Kodak images [36] shown in Fig.11), and then measure the average 

PSNR improvement between directly interpolatedcompressed images and those with our proposed SR. The 

resultis shown in Fig. 8, where the PSNR improvement tendsto be saturated when the database exceeds a certain 

size. Notethat the minimum database size required for a stable SR performancewithout compression can be 
larger than that indicated in Fig.8, because compression, as well as regularization, reducesthe number of distinct 

primitive patterns in the input images. 
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D. Discussion and Summarization 

Compressed image SR is a practical problem in the web applicationof single-image SR, but has rarely 

been investigatedbefore. In this subsection, we would like to supplement someintuition on why learning-based 

pair matching and PDE regularizationare combined to solve this problem. 

It is a natural idea to conceive a two-step strategy to addressthis problem, first relieving compression artifacts 

and then performingcommon SR. However, choosing an effective combinationis nontrivial. Since there is 
actually no way to eliminatequantization noise without impairing high-frequency image details,it requires the 

subsequent SR to have a strong ability to recoverthe weakened information. As mentioned in the 

introduction,there are several categories of single-image SR methods,among which learning-based pair 

matching shows its superioritywhen the integration of subclass priors, i.e., trained examples,is more powerful 

than a generic smoothness prior asused in other approaches. Besides the impressive results obtainedin domain-

specific applications(e.g.,face,text[8],[9]),primitive-based hallucination [12] further shows appealing 

performancefor generic image SR, which has been validated in thefollowing works [15]–[17]. Therefore, we 

choose the primitivepair matching as our SR method. 

 
 

 
 

As learning-based SR is usually performed at patch level andrelatively noise-sensitive, we then prefer a 

global algorithm for compression artifacts removal to avoid local inconsistency (i.e., adjacent regions should be 

stably smoothed). This is the first reason we use PDE regularization, due to its global smoothing property. On 

the other hand, a new challenge emerges from the combinative method. That is, as stated all along this section, 

how to adaptively control the regularization strength to best exploit the capability of these two somewhat 

contradictive techniques(one tends to smooth and the other tends to enhance). This is the second reason we 

choose PDE regularization, due to its progressive smoothing property. 

 To summarize this section, we give a more informative description of our algorithm for compressed 

image SR as follows: 

Input: compressed low resolution image 𝑌 

Output: enhanced high resolution image 𝑋 

Begin 

1. Upsample𝑌 to 𝑋0*through bicubic interpolation. 

2. Find a PF/NPF partition (𝑃,𝑄)of𝑋0through the 

orientation energy edge detection [32]. 

3. Perform iterative PDE regularization on : 

a) After each iteration, upsample the regularizedimage 𝑌𝑛* to𝑋𝑛*,𝑛 = 1,2,…. through bicubicinterpolation; 

b) Calculate the image energy change( ∆𝐸𝑛 p ,∆𝐸𝑛 Q)between 𝑋𝑛 * and 𝑋𝑛 − 1 *based on the 

PF/NPFpartition(𝑃,𝑄) ; 
c) Calculate the energy change ratio between PF andNPF as 𝑟𝑛 =(∆𝐸𝑛p/∆𝐸𝑛Q) and also record themaximum 

slope of 𝑟n as𝑅 = max(𝑟𝑛 − 𝑟n-1), 𝑛 ≥ 2; 

d) If  𝑟𝑛 − 𝑟n-1 < 𝜇𝑅,stop reguralisation and keep theiteration number N. 

4. Extract LR primitive patches from   𝑋𝑛 ∗ and findcorresponding HR primitive patches from a 

prepareddatabase𝐷 through pair matching speeded up by theapproximate nearest neighbor (ANN) tree searching 
[33]. 

5. Add the HR primitive patches back to 𝑋𝑛 ∗ to form thefinal HR image𝑋 ,where the compatibility of 

neighboringHR primitive patches is enforced by averaging the pixelvalues in overlapped regions. 

End 
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IV. Compressed Video Super-Resolution 

A. Framework 

Since the above introduced single-image SR method doesnot require frame registration or motion 

estimation, it can bedirectly applied into the compressed video SR in a frame-byframe style. By integrating 
certain interframe interactions on the regularization strength and simple spatio-temporal coherency constraints, 

our scheme is competent for the SR task of web videos with dynamic content and different degradation levels. 

The framework of our solution is shown in Fig. 9. Similar to that of image SR, it consists of three steps. 

First,aKth frame𝐹L,Kfrom an LR video is divided into PF and NPF and iterativePDE regularization is performed 

on 𝐹L,Kduring which the energychange velocities in both PF and NPF are recorded. Whenthe ratio of these two 

velocities converges (judged by a parameter𝑅K, which is also influenced by that of the previous frame𝑅K-1), 

regularization stops and the accumulated noise image𝐼N,Kis subtracted from𝐹L,K resulting in an artifacts-relieved 

frame𝐹R,K.Then,𝐹 R,K is upsampled to the desired resolutionthrough bicubicinterpolation.Last, the primitive 

componentsin the interpolated frame, 𝐹 U,Kare enhanced with learning-basedpair matching. Meanwhile, the 

temporal consistency is enforcedby referring to the previous interpolated frame, 𝐹U,K-1 and itspair matching 

indices{𝐼𝑑k-1}. Adding the primitive enhancing 

 

 
image I P,K back to FU,K, the final HR frame  FH,Kis generated. A practical example is given in Fig. 9 to visualize 

thisframework. 

 

B. Interframe Interaction 

The regularization strength control elaborated in Section III can adapt to different degradation levels 

due to quantization within a single image/frame. However, in a video sequence with fast motion or scene switch, 
compression artifacts in consecutive frames could greatly vary due to inaccurate interframe prediction, even 

when the quantization levels are set to be the same. The adaptive regularization should also take these 

circumstances into consideration. 

             For two frames with similar content, the one with heavier degradation requires higher regularization 

strength, and this adaptivity is mainly reflected by the parameter R . One can easily find in Fig. 10 that frames 

with heavier degradation have smaller R(refer to Fig. 15 for the test frames), which means the convergence 

speed 𝑟~𝑛of the curve is inversely proportional to the degradation level in consecutive frames. 

To further improve the adaptivity of regularization, we record Rk-1of the kth frame,Rk and for the th 

frame, is calculated as 

 
Where Rk,0is the initial quantity measured from the currentframe. If Rk,0< Rk-1,it suggests the degradation in 

thecurrent frame is more severe than that in the previous frame.Then Rk0is further diminished to increase the 

regularizationstrength of the current frame (according to (17), reducing Rwill increase N),and vice versa.In this 

way, the regularizationstrength can also adapt to the variable degradation betweenconsecutive frames caused by 

fast motion or scene switch,making the quality improvement on the whole video sequencemore stable. 

 

C. Spatio-Temporal Coherency Optimization 

After the adaptive regularization, compression artifacts ineach frame are effectively reduced while 

primitive components are still well preserved. Primitives in the interpolated frame are then enhanced with 

learning-based pair matching. The mainproblem when applying this step to video is how to make the enhanced 

primitives 
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temporally consistent to avoid flicker, especially for sequences with slight motion. To solve this problem, 

we propose to optimize the spatio-temporal coherency with a 

simple yet effective constraint. 
          We first define two terms for the convenience of narration. Let yik denote an LR primitive patch extracted 

from the location iof the kth interpolated framexik, and represent the enhancing HR primitive patch 

corresponding toyik.In the temporal domain,we record the pair matching indices in the (k-1)th frame.Then, for 

the th frame, each yikis compared with yik-1inthe same position of the previous interpolated frame (in case yik-1 

exists). If yikis judged the same as yik-1,i.e.,the sum ofabsolute difference (SAD) is smaller than a given 

threshold, thepair matching index of  yik-1 is directly assigned toyik;or elsea new pair matching foryikis conducted 

in the database. 

In the spatial domain, since some pair matching resultsare derived from the previous frame and others 

are generatedfrom the current frame, the compatibility of learned enhancingpatches should be optimized. 

Specifically, for each yik thatcannot use the index from the previous frame and a new pairmatching is required, 

we take the first M pair matching results { xik,1,xik,2,….,xik,M}as candidates for xik, and theoptimum one is 

found by 

 
wherexjk is the previous selected enhancing patch in the current frame in raster-scan order, and function 

d measures the SAD in the overlapped region of two patches. In summary, the enhancing patch  

xikcorresponding to yik can be denoted as 

 
where  xik-1 is the selected enhancing patch in the location I of the (k-1)th frame, and is a small 

threshold. Finally, the primitive enhancing image is generated by assembling all enhancing patches,where pixel 

values in the overlapped regions are averaged. 
 

 
 

 
 

V. Experimental Results 
A. Image Results 

We test our SR scheme on both offline images degraded by designated downsampling and compression 

from the sources, as well as compressed thumbnail images on the web. For the offline test images, we use 

Gaussian filter for downsampling with decimation factor 𝛼 = 3  , and JPEG for compression with QP=60. For 

the test images on the web, the downsampling process is totally unknown while the compression format is still 
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JPEG,but with unknown QP’s. The PDE updating step =5.0,the neighborhood order of primitive field 𝜌 = 1, the 

regularization strength control parameter 𝜇 = 0.2 , and the upsampling factor𝛽 = 3. A 16M record database 

consisting of 100,000 pairs of9x9 sized primitive patches is used in pair matching. These examplesare trained 

from 16 representative natural images shownin Fig. 11. For color images, regularization is performed on boththe 

luminance and chrominance components, for which compressionis applied. Learning-based pair matching, 
however, isonly performed on the luminance component, as human observersare more sensitive to the 

luminance change in imageswhen going through LR to HR. 

Fig. 12 gives the SR results of two offline images obtainedthrough several methods, including bicubic 

interpolation, 

 

 

 
 

learning-based pair matching, PDE regularization and ourproposed approach. Compared with bicubic 

interpolation, regularization effectively reduces the compression artifacts while pair matching well compensates 

the high frequency details, as demonstrated in the eliminated noise image and the primitive enhancing image. 

However, neither single regularization nor single pair matching generates satisfactory SR results. Taking the 

advantages of the two techniques, our combinative approach restores visually pleasing HR images from the 
compressed LR measurements.Note that this combination is nontrivial, but with adaptive regularization control 

as an essential coupling, which guarantees the pair matching accuracy in the learning process. 

To further verify that the close coupling between regularization and SR, especially learning-based pair 

matching, is truly required, we also combine our adaptive regularization with nonlearning- based SR techniques, 

e.g., directional interpolation[4] and backprojection [5]. Experimental results are presented in Fig. 13 and Table 

I. It can be seen that, firstly, the perceptual quality of all SR results is improved after adaptive 

regularization.Forbackprojection and pair matching, the PSNR is also improved.(Single interpolation doesn’t 

see a PSNR gain as PDE 

 
 

Table I 

Psnr (Db) Corresponding To Fig. 13 

IMAGE (a) (b) © (d) (e) (f) 

lily 27.44 27.55 28.06 27.23 27.96 28.2 

peppers 27.21 27.28 27.82 27.05 27.7 27.96 

 

regularization lowers the PSNR).Therefore, in the compressed image SR scenario, the integration of adaptive 

regularization is necessary.Secondly,learning-based pair matching, among the tested SR techniques, achieves 

both the best perceptual qualityand objective quality results, which in turn indicates the effectivenessof our 

proposed combination. 
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In Fig. 14 we present some SR results of thumbnail web images from Bing Image Search [34]. One can 

easily observe a distinct perceptual quality improvement with our method over bicubic interpolation, PDE 

regularization and learning-based pair matching. 

The computational complexity of our solution is not high. Although the pair matching step is relatively 

time-consuming, it can be greatly speeded up by the ANN tree searching algorithm [33]. On the other hand, the 

database size we used is small compared with that generally required in learning-based SR without compression, 
and it can be even smaller for real-time application according to Fig. 8. The run time of our algorithm is tested 

on a Pentium IV 3.0G PC, and it is able to upscale a thumbnail image sized 160X160 in less than 1 second on 

average. Therefore, this technique can serve as a useful online enlarge-previewtool for image search engines. 

 

B. Video Results 

Our solution for compressed video SR is tested on a variety of web videos downloaded from YouTube 

[35]. They are generally in a 320X240 resolution but with different degradation levels. We perform a uniform 

3XSR on them, still using the above database. In the pair matching stage, the candidate number of the enhancing 

patch M=16, and the SAD thresholdɛ = 0.05.Fig. 15 shows three frames extracted from a super-resolved web 

cartoon video. This result demonstrates the effectiveness of our solution in three aspects. First, the total iteration 

number of regularization, as enclosed in the caption, is appropriately dependent on the degradation level of each 
frame. Second, the primitive enhancing images preserve both temporal and spatial 

 

 
 

 
consistency due to coherency optimization. Last, the combination of adaptive regularization and learning-based 

pair matching steadily improve the perceptual quality of directly interpolated videos, even when severe 

compression artifacts and fast motions are presented.(Please see the electronic version for better visualization.) 

 

C. Applicability Discussion 

In general, our method is able to restore HR images/videosfrom compressed LR measurements with 

different content anddegradation levels. However, it still has certain limitations in application.For images with 

rich texture regions, neither PDE regularizationnor learning-based primitive enhancing works well.In this case, 

our method may not give significant perceptualquality improvement. Fig.16 shows an example. 

In addition, the upsampling factor in implementation needs not to be exactly the same as that in the 

database. The performance will not be impacted much if these two factors are close to each other. Only the case 

when the upsampling factor in implementation is much smaller than that in the database should be avoided (too 
many high-frequency details may be added and the resulting image may look noisy).We suggest a database with 

upsampling factor of 3 can deal with most cases. 

 

VI. Conclusion 
In this paper, we present a robust single-image SR methodin the compression scenario, which is 

competent for simultaneously increasing the resolution and perceptual quality of web image/video with different 

content and degradation levels. Our method combines adaptive PDE regularization with learning-based pair 

matching to eliminate the compression artifacts and meanwhile best preserve and enhance the high-frequency 

details. This method can be naturally extended to video with certain interframe interaction and simple spatio-
temporal coherency optimization. Experimental results, including both offline and online tests, validate the 

effectiveness of our method. 

Due to its robust performance and low complexity, our solutionprovides a practical enlarge-preview 

tool for thumbnail webimages, especially those provided by image search engines; itmay also be applied to 
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video resizing for online video websites,in case more powerful computational resources (e.g., GPU) 

areavailable. 
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