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Abstract: 
In this paper,noise uncertainty and its effect on energy detector performance were studied in more depth. 

Further, we are motivated to decide the optimal threshold atlow SNR (signal-to-noise ratio) in such a way 

where we can jointly achieve both sensing matrices (PFA=0.1 and PD=0:9)and provided better sensing 

performance in comparison to that of the traditional constant false-alarm rate CFAR and constantdetection rate 

(CDR) threshold selection approaches. Further, we have illustrated that at low SNR, the proposed 

optimalthreshold selection approach has provided better throughput as compare to that of the threshold 

selected by traditional CDRapproach. 
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I. Introduction 
The key concern of next generation communication systems (NGCS) is to fulfill the demand of 

spectrum for various services such as high-speed internet, internet-of things (IoT) [1], and user-centric mobile 

applications [2]. The radio frequency spectrum is a scarce resource, which is already allocated to different 

services for example, the voice-telephony, military services, satellite and radar services etc. [3]. Therefore, this 

spectrum scarcity restricts the introduction of new services/devices that require the spectrum. However, a report 

of the Federal Communication Commission (FCC) reveals the fact that most of the allocated spectrum remains 

underutilized/unutilized at specific time and space [4]. This finding has motivated the concept of spectrum reuse 

by allowing the unlicensed/ cognitive users (CUs) to utilize the licensed/allocated spectrum of the primary users 

(PUs) when the spectrum is temporally unexploited/underutilized. In this context, the dynamic spectrum 
allocation (DSA) [5, 6] allows the CUs to utilize the spectrum in such a way that the licensed user/ PUs 

communication remains impervious [7–9]. The cognitive radio (CR) is a framework, which supports the DSA 

mechanism by exploiting the cognitive cycle that comprises four elements [10] namely, (1) spectrum sensing, 

(2) spectrum analysis and decision, (3) spectrum sharing/accessing, and (4) spectrum mobility. Initially, the CU 

senses its radio environment to perceive the state of channel being either active or idle by employing the 

spectrum sensing techniques [11]. Further, the idle sensed channels are analyzed, and the suitable idle channel is 

selected for essential application. Moreover, the selected channel is accessed for communication via the 

preferred spectrum accessing technique i.e. interweave, underlay, overlay and hybrid [12, 13]. The emergence of 

PU during the CU communication is a prospective event and at this instant, the CU need to stop or switch the 

communication on another idle channel. The process of switching the communication on another idle channel is 

known as spectrum mobility or handoff [14]. The spectrum sensing (SS) is a prime step of cognitive cycle which 
exploits the following major techniques to detect the channel states, namely, (1) energy detection spectrum 

sensing (EDSS) [15–18], (2) matched filter (MF) detection [19, 20], (3) cyclostationary feature detection (CFD) 

[21], (4) covariance absolute value detection(CAV) [22], and (5) eigen-values based detection (EVD) [23, 24]. 

Further, these techniques are classified as blind (EDSS, CAV, EVD) and non-blind (CFD, MF) spectrum 

sensing. 

 The non-blind spectrum sensing techniques entail the information about the PUs signal (such as the 

modulation type, carrier frequency, frame structure, pulse shaping etc.) at the CU terminal which is in general, 

difficult to yield however, in the blind spectrum sensing, there is no such prerequisite. Moreover, the 

comparison of different sensing approaches has been presented in [25, 26] and it is observed that the EDSS has 

significantly less computation and implementation complexity; therefore it is widely used spectrum sensing 

technique. In EDSS, the energy/test statistics (T) of the received signal is compared with the predefined 
threshold value (λ) and when the energy of received signal is greater than or equal/less than the threshold value, 
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the sensing result is in favor of channel being active/idle, respectively. The sensing decision in the EDSS relies 

on the threshold value, therefore, the computation and selection of threshold is a very prominent aspect.  

In addition, the key sensing performance metrics are the false-alarm probability and detection 
probability. The false-alarm probability (PFA ) is the probability of CR user decision in favor of channel being 

busy while in actual it is idle however, the detection probability (PD) is the probability of CR user decision in 

favor of channel being busy when the PU signal is actually there. The low numerical value of PFA           
      is required for maximum utilization of channel, while the high numerical value of PD                 is 
required to provide protection to PU. For example, in IEEE 802.22 (WRAN) standard, for TV signal detection, 

it is required to achieve 90% probability of detection and 10% probability of false-alarm at SNR level as low as 

- 20 dB with maximum sensing time of 25 ms required in order to achieve the sensing requirement [27].  

Energy detection method attracts the attention of the researchers worldwide for its low computational 

and implementation complexity, and it does not need any information about the primary signal, [28–29]. 

However, the sensing performance of the energy detector will be affected seriously by the change of noise 
variance or what called noise uncertainty phenomena. In fact, noise uncertainty increase the number of samples 

demanded to achieve sensing performance and in the certain value of SNR called SNRwall the number of 

sample become infinity. Therefore, for any value of SNR less than SNRwall the energy detector could not 

achieve the required sensing performance for any value of number of samples [30].  

Many researches have been purposed approaches to reduce noise uncertainty effect on the performance 

of ED [31-35].However, in [32], could not achieve the targeted detection probability. Whereas, in [32-35], have 

been concerned with improving the performance of the detector in terms of detection probabilities and false 

alarm without taking in their consideration that high computation complexity even if when the SNR has high 

value (greater than critical SNR). 

Within this paper, we proposed a more accurate model for energy detector with dynamic double 

threshold detector that work to detect PU signals over noise uncertainty channel. In our model, we considered 
difference noise expansion coefficients and found a new equation of number of sample and SNRwall. 

Afterwards, Distinct thresholds are computed for CFAR and CDR  approaches for a chosen number of samples 

(N) and received primary SNR at CU. Thereafter, the condition for a single optimal threshold is analyzed to 

achieve the desired values of Pf and Pd simultaneously at all SNRp. However at low SNR region, we have 

observed that the threshold with CFAR approach is greater than the CDR approach        , therefore the 

optimality condition for the selection of threshold has not been satisfied as discussed in detail in Sect. 2.4. 

Further, we used the optimal number of samples and dynamic double thresholds such that the same optimality 

condition is satisfied even at low SNR. 

Finally, The closed-form expressions of different spectrum sensing performance metrics such as the 

probability of detection, the probability of false-alarm, and the have been computed for the proposed approach 
and compared with the state-of-art work. Thereafter, throughput for the proposed approach has been computed 

and compared with reported literature. 

This paper is structured as follows. The related work is presented in Sect. II. A noise uncertainty model 

of the proposed framework is described in Sect. III. Section IV comprises a performance analysis of the 

proposed system model and The MATLAB simulation results are presented. Finally, Sect. V concludes 

 

II. Literature reviews: 
Energy Detector: 

The Energy Detector is a special case of the Estimator Correlator in the case of modeling the noise 
signal as a Multivariate Gaussian Distribution [36]. It is also considered as the optimal detector when detecting 

Independent and Identified Distributed IID signals, and it is one of the most popular detectors for its simplicity 

as well as not requiring prior information about the signal to be detected. 

The basic concept of Energy detection (ED) method in [15] is depicted in Fig. 1. It involves continuous 

monitoring of the received signal energy by the SUs and its comparison to a set threshold to make decision on 

the spectrum opportunity by the fusion center. 
 

 
Fig1 Spectrum sensing via ED 

 

The local decision of presence or absence of a vacant spectral space is confirmed by testing binary hypotheses 

(H0 and H1) by each cognitive radio user [37] as described in (1): 

  
           ױ       

              ױ                  
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Where:      represents the received signal at the secondary receiver at the  o ent n, s   (n) is 

the PU signal., ױ    represents an  additive white Gaussian  noise signal with zero mean and variance denoted 

by   
ױ

  . 

The binary hypothesis H0 and H1 are considered to identify the status of channel i.e. idle and active, 

respectively. The test statistics    for EDSS is given as [13]: 

      
 

 
      

   

   

                      

Where N represents the number of samples taken during the sensitivity period. 

The probability density function (PDF) of test statistics    under hypothesis H0 and H1 follows a Chi square 
distribution with N degree of freedom for real valued noise. For a sufficient high number of samples (N>256), 

the PDF of    under hypothesis H0 and H1 followed the Gaussian distribution [37]. In such a case, the 

probability of detection (  ) and the probability of false alarm (   ), respectively as follows [31]: 
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 is the Gaussian commentary cumulative distributive function and   represent the 

detector's threshold. 

 

Degrading Effects of Noise Uncertainty: 

In the previous discussion, we assumed that the receiver knows the value of the noise power perfectly. However, 

in practice, this is not possible, and there is uncertainty in the noise estimation and interference is one of the 

most important causes of this uncertainty. 
Noise uncertainty is modeled as a set of statistical distributions [39], that is, the values of noise power fall within 

the range  
 ױ

 ,   
 ױ
   . Therefore, the noise in the event of uncertainty can be modeled as Gaussian white noise of 

zero mean, and variance within the range  
 ױ
    

ױ

    
 ױ
  In this case, the test statistic is modeled as follows [40]: 
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. Similarly, we can write the relationships for    and    : 
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From the previous two equations, we can deduce the number of samples required to obtain the desired PD and 

PFA values: 

  
             

        
          

 

            
  

                 

Whereas    
   
 

   
 . 

Equation (8) shows that at a certain value of the signal-to-noise ratio called the signal-to-noise ratio wall, 

denoted by        ,               , the number of samples required for a detector seeks to infinity, that 
is, the detector will not able to detect the  Primary User signal whatever The number of samples was taken . 
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Threshold Selection Approaches: 

The function of CU in spectrum sensing is to detect the spectrum opportunities. One of the techniques 

for detecting the unused licensed bands is the energy detection spectrum sensing (EDSS) for which, the 
selection of threshold defines sensing detector performance. In general, the fixed threshold (FT) and the 

dynamic threshold (DT) methods are employed for the selection of threshold in EDSS technique. In the fixed 

threshold, the threshold remains constant even with the change in SNR, however in order to incorporate channel 

variations, the dynamic threshold method has been proposed which varies its threshold with the channel 

conditions in order to minimize the probability of error in sensing results. Various have illustrated it researchers 

[33, 41, 42] that the threshold selection with DT method provides better spectrum sensing result as compare to 

that of the FT method. 

In fixed threshold method, the threshold is mainly selected with constant false-alarm rate (CFAR) 

approach however, in dynamic threshold; it is selected by using either constant detection rate (CDR) approach 

or by minimizing error probability (MEP) approach. 

CFAR approach computes the value of threshold to maximize the detection probability. In this context, 
Gandhi and Kassam [43] have presented that the CFAR approach is used to identify the status of target 

frequency band when it shows the unknown/dynamic distributions and it has been observed that its performance 

is highly degraded in the presence of abrupt variation in noise and interfered signal. Thereafter, Kortun et al. 

[44] have also illustrated that the threshold selection using CFAR approach does not perform well in the 

presence of noise uncertainty, hence the eigen-values based detector is employed to decide the threshold in order 

to enhance the sensing performance. Moreover, the throughput has been maximized by keeping fixed sensing 

time in the presence of noise uncertainty. Further, Lehtomaki et al. [45] have achieved a significant 

improvement in the sensing performance by employing forward-detection methods with CFAR when multiple 

PUs are presented in the chosen environment. In addition, Mahdi et al. [46] have decided the threshold using 

CFAR and empirical mode decomposition (EMD) techniques to maximize the detection probability and have 

identified multiple channels in the given spectrum band. Recently, the authors in [47] employed CFAR and 

improved the throughput as compared to conventional ED by employing simultaneous sensing and transmission 
using a single antenna at CR terminal. 

Moreover, in [48], the authors have employed CDR approach to yield the detection threshold and 

computed the value of throughput. Further, Koley et al. in [49] have presented that CDR approach is suitable to 

provide sufficient protection to PU from CU however with reduced throughput in comparison to the CFAR 

approach. In this context, in order to provide sufficient protection to PU and high throughput to CU, Gaurav and 

Sahu [50] have employed the combination of CFAR and CDR approaches to decide the threshold. 

In order to minimize the overall sensing error, MEP approach has been employed in various literatures. 

In [51, 52], the dynamic value of threshold has been achieved by minimizing the error probability with respect 

to the threshold for Gaussian channel. Further, Choi et al. [53] have decided the transmit power of CU and then 

accordingly changed its sensing threshold dynamically so that the PU and CU can communicate on the same 

channel without interfering to each other. However, Joshi et al. [54, 55] have used the gradient descent 
algorithm to minimize the error function without employing the transmitted power of CU and have found the 

dynamic value of threshold. Moreover, in [56], the authors have discussed the maximum allowable power that 

can be transmitted by the CU and have decided the threshold value according to the relative position of CU 

towards the base station. In addition to this, Yu et al. [57] have observed that there is spectral leakage in vacant 

frequency band when the PU has used high transmit power and to resolve this problem, the authors considered 

variable sensing duration, dynamic selection of threshold and utilized multitap-windowed FFT processing 

technique for the targeted value of false-alarm and detection probability. Further, it is presented that dynamic 

threshold is a more suitable method instead of increasing the sensing duration to yield the desired value of 

detection. Moreover, Ling et al. [58] have selected the dynamic threshold according to a linear function of signal 

to- interference plus noise ratio (SINR) and maximized the CU throughput. Further, in [59], the sensing 

performance has been improved with the use of prior available PU spectrum utilization information. Moreover, 

the authors have assumed that the previous status of the spectrum is known and selected the threshold according 
to the previous state information. However, Ding et al. [60] have discussed the spectrum prediction techniques 

based on the models of spectrum usage, sources of spectrum data and the predictability of spectrum evolution 

for better utilization of spectrum and to make CR more intelligent. However, Kerdabadi et al. [61] have 

maximized the throughput by jointly optimizing the threshold value, sensing time and user selection for sensing 

and data transmission. Moreover, in [62], adaptive threshold is selected using covariance based channel 

selection with intelligent way to minimize the probability of error with required protection to PU. Further, in 

order to improve the detection probability and sensing time, Benedetto and Giunta [63] have employed constant 

energy (CE) technique considering the signals whose energy per data-block remains fixed and the variance of 

the received signal energy over M block is used to decide the status of channel. Moreover, the weighted 

covariance- based detection (WCD) [64] is used to enhance the performance of CAV. However, the demerit 
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with WCD befalls when a large number of low correlated receiving antennas are there and hence results in less 

primary user detection. Furthermore, to overcome the aforementioned problem of WCD, Chen et al. [65] have 

used Ljung-Box (LB) test to detect the presence of PU signal in the above-mentioned scenario and provided 
significantly better performance under noise uncertainty. furthermore , Xiong et al. [66] have presented adaptive 

spectrum sensing strategy (ASSS) which utilized the PU traffic pattern to find the channel to be sensed having 

more possibility of being idle. Further to improve the energy efficiency in full-duplex cognitive radio (FDCR), 

Bayat and Aı¨ssa  67  used the concept of contiguous sensing by inserting sleep period between sensing without 

any significant degradation in throughput parameter. Recently, Kumar et al [68], reveal an excellent algorithm 

for optimal threshold selection. However, their model did not take noise uncertainty phenomena in their 

consideration. whereas, Mahendru et al [69], proposed a mathematical model of ED working in noise 

uncertainty environment based the correlation between number of samples and signal to noise ratio but their 

model was only based increasing the number of samples and lacked of determining threshold that needed to 

successful performance. 

 

Optimal Threshold Condition for Threshold Selection: 

From Fig. 2, it is perceived that the false-alarm probability (    ) and miss-detection probability (  ) 

shows a direct and an inverse relation with the threshold (λ). In the CFAR and CDR approach, we have fixed the 

maximum permissible value of false-alarm and miss-detection probability and computed the corresponding 

value of the threshold    and   , respectively. In Fig. 2, it is clear that to minimize the false-alarm, the 

threshold    (threshold for CFAR approach) needs to be as high as possible while to minimize the miss-

detection, the threshold    (threshold for CDR approach) needs to be as low as possible. Therefore, it has been 

observed from the above discussion that the above two conditions will be satisfied only when       km 

(optimal threshold condition) which satisfy both the false alarm and miss-detection probabilities, simultaneously 

[70].  

 
Fig.2 Threshold selection in hypothesis model 

 

III. Our new model for noise uncertainty 
 Our New Model for Noise Uncertainty: 

In previous researches, the noise uncertainty was studied by setting limitations on the noise expansion 

coefficients by assuming that the lower noise expansion coefficients are equal to the reciprocal of the noise 

upper expansion coefficient [71]. However, under noise uncertainty conditions, the fluctuation of noise power 

leads to the deterioration of the detector's performance differently, and we can distinguish between two cases. 

The first case occurs when the noise power decreases, and this lead to a decrease in the received signal power 

below the threshold level, thus the decrease of the value of the probability of detection    will be below the 

nominal value. whereas , the second cases occurs when the noise power increased higher than detector's 

threshold ,and  this increase the power of received signal and may cause to detect  noise signals as primary user 

signals and which lead to an increase in the probability of false alarm      values. 
Therefore, within this paper, the noise uncertainty problem was analysed in more detail with assuming 

that noise uncertainty model had different noise expansion coefficients    and    , where    denotes to a the  

lower noise expansion coefficient , while the    denoted to the higher  noise expansion coefficient. Whereas, in 

detector side, we assumed a new dynamic double threshold detector with two different threshold coefficients, 

the lower coefficient denote by   
  , that used to  enhance the probability of     through decreasing the threshold 

value when the noise power decreased, whereas the upper coefficient   
  that used to enhance      through 

increasing the threshold value when the noise power increased. So that the limits of our proposed detector can 

be written as: 
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Probability of detection can be defined as considering both threshold values: 
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Now by using equation 11 to find the value of λ : 

  
    

 

  
 
  

 

 
                                  

For getting the equation that represent Receiver Operation Characteristic ROC, we substitute the value of      in 

equation:  

    

 

 
 

  

  
   
   

 

 
                 

 

  
 

 
 

 
     

 

  
 

 

 
 
                                              

From previous equation, we find the number of samples as follow: 

        
 

 
     

 

  
  

  
  
   
 
  

 

 
                 

 

  
  

        
 

 
     

 

  
  

  
  
   
 
 
 

 
         

  
  
   
       

 

  
  

        
 

 
     

 

  
  

  
  
   
 
 
 

 
         

  
  
   
       

 

  
  

 
 

 
 
  
  
  

         
         

     
  
 

  
    

  
  
     

     
  
 

  
  

      
  
  
  

         
         

     
  
 

  
  

 

    
     

  
 

  
  

  
  
 
 

  

          

The previous equation leads us to drive a new equation for the signal-to-noise ratio that makes the number of 

samples infinite or what is called the signal to ratio wall        : 

         
  
  
  

  
 

  
 
 

  
                         

The previous equation describes a general state of energy detector with a dynamic threshold in a noisy 

environment. Because, if we put   
    

    we get the same state was discussed in [39] where there is only 

traditional energy detector working on noise uncertainty environment, and if we put   
    

      and    
     that represent the case discussed in [72] where is traditional dynamic threshold energy detector working 

in noise uncertainty environment. 
3.1 Computation of different thresholds under noise uncertainty: 

In CFAR approach, the false-alarm probability is fixed (Pf fixed) and we have computed the threshold    with 

the help of (3) as follows: 
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In CDR approach, the miss-detection probability is fixed (Pm fixed) and the corresponding value of  threshold 

with the help of (10)  has been computed as follows: 
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The condition for critical SNR (SNRc) under noise uncertainty: 

Critical SNR is defined as the SNR below which       and optimality threshold condition will not be 

satisfied. For the fixed value of N, we have computed the minimum SNRp  at which the optimality condition is 

satisfying and is computed by equating Eqs. (16) and (17) as follows: 

     

    
   

 

 
           

  
 

 
          

 
 

  
                      

 

Optimal number of samples under noise uncertainty: 

As we mentioned, determining the optimal number of sample is very important because it is used to 

determine threshold when SNR less than     . 
The fig.3 depicted the number of samples curves as a function of received SNR for various values of 

noise uncertainty coefficient. These curves also show the contribution of both coefficient to the noise 

uncertainty. and that any change in any of these two factors cause a deterioration in the overall detector 

performance due to an increase in the signal-to-noise ratio wall, which makes it necessary for the energy 

detector to use a dynamic threshold and estimate each of the two coefficient separately.  

 

 
Fig.3 Curves of Number of sample as a function of SNR 

 

From the previous curves, we can see that we can find finite value of number of sample that achieve detector 

performance in case the SNR greater than SNRwall . Therefore, we proposed algorithm to find both N* and      

by selected          when SNR > SNRc and applying dynamic double threshold detector on other         

case as follow: 

The following pseudo code depict the algorithm that we have adopted to determine N*: 

Alogrithm1: Our proposed energy detector with adaptive double thresholds 

1. Input  PD ,PFA  ,  ,  ,SNR,  
    

  

2. Output N*,      

3. Compute      from equations (17) and (18) respectively 



Performance Analysis of Threshold Selection in Energy Detector Working Over Noise .. 

DOI: 10.9790/1676-1603010721                                  www.iosrjournals.org                                           14 | Page 

4. If       

5.         

6.   Else       

7.      is not possible 

8.      Compute Number of samples N* from equation 14  

9.      
10.     Compute       from equations 16 and 17 respectively for    

11.    Select    from range  
λ

  
     

 λ  correspond to the deviate value of  
  I n the range  

  
 

  
       

   

12.        

13. END   

 

System model and Throughput computation: 

The integration of CUs with lesser priority which should transmit their messages in a way that PU of 

the licensed channel would not be adversely affected is the key concern of CRN. The spectrum sensing is a 

critical aspect of CR systems that intent to identify the working state of PU before allowing the CU temporarily 

accesses the channel without causing harmful interference to the PU. In the proposed system model, we are 

considering single band spectrum sensing with a pair of PU and CU transceiver and assumed that the PU 

receiver is in the range of CU transmitter as shown in Fig. 4(a). In an anticipated band of interest, the probability 

of Fig.4 (b) The proposed a system model and b frame structure of cognitive user [73] Wireless Networks 
 

 
 

Fig.4 The proposed a system model and b frame structure of cognitive user [73] 

 

The throughput has been categorized into two cases as follows. In case-1, the PU is absent in the 

channel and no false-alarm is generated while in case-2, the PU is present in the channel and it is not detected by 

the CU. The throughput of first and second cases are denoted by        and       , correspondingly. In a 

chosen frequency band, we have considered that       and      are the probability of channel being active 

and idle, respectively and average throughput,      for CU has been computed as follows [73]: 

        
    
 

                         

        
    
 

              
    

      
      

Where the      is the SNR for the secondary link.  The total average throughput for CU is as: 

                                  
 

IV. Results and Discussion 
In this section, we have presented the numerically simulated results for sensing performance 

parameters i.e. the probability of detection, the probability of false alarm and throughputs. Further, the 

numerically simulated results for the threshold values and number of samples. 

The simulation environment is yielded using the MATLAB 2010 [74]. Moreover, the values of 

simulation parameters are selected based on IEEE 802.22 wireless regional area network (WRAN) standard 

where the minimum number of samples assumed is more than 256 . indeed , we considered four cases of noise 

variation; case1:when there is no noise uncertainty and this represented by (      ,     ), case2 when the 
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noise power is equal or higher than and this represent by (        ,       ) , case3 when the noise power is 

equal or less than and that represent as (      ,       ), ,case4 when the noise power fluctuated between  

   and      that represent as (        ,       ). 

The variations in threshold value for the CFAR when      and        , CDR when      and 

       ,with received primary SNRp  are presented in Fig.5. The threshold is constant with SNRp in CFAR 

approach. However, the value of threshold    in CFAR increased when         whereas the value of  

threshold     in CDR  decreased when       . 

According to noise uncertainty cases, we can distinguish between four different values of critical SNR 

(SNRc) unlike when there is no noise uncertainty where there is only one value of SNRc [50]. For the case1 

SNRc is denoted by  SNRc1 and it has the lowest value between other values of  SNRc. whereas, in the second 

cases  of noise uncertainty the  SNRc is denoted by SNRc2  and it  has the value less than SNRc3 in the case3 

and the highest value of SNRc is SNRc4 and it occurs in case4.    

 
Fig.5. The variation of threshold value with SNRp for CFAR and CDR approaches at N=15000 

 

We have defined the critical SNR (SNRc) as that SNRp value below which         .Further, it is 

depicted from the Fig. 5 that at higher value of SNR(SNRp > SNRc), the optimal threshold condition (    

     is verified. However, at low SNR (SNRp <SNRc), the optimal threshold condition is not satisfied as is 

illustrated in Fig. 5 . Further, the variations in sensing performance parameters (Pf , Pd) with SNRp for CFAR 

and CDR  approaches are presented in Fig. 6 

In CFAR approach, the Pf value is constant (0.1) at every value of SNRp, while the value of Pd in case1 

(no noise uncertainty) is less (0.9)  and approximately (0) for other cases when SNRp > SNRc. However, pd 

achieve detector's performance when  SNRp >= SNRc for all cases.  
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Fig .6 probability of Detection PD in CFAR approach with fixed Number of Samples N=15000. 

 

In CDR approach, the Pd value is constant (0.9) for all values of SNRp, while the value of Pf is higher than (0.1) 

in case1 and equal to (1) for all other cases when SNRp  < SNRc and it decreases and achieve detector's 

performances when  SNRp  > SNRc for all noise uncertainty cases. 

 
Fig.7 probability of Detection PFA in CDR approach with fixed Number of Samples N=15000. 

 

It is clear that when SNR< SNRc, CFAR and CDR does not meet detector performance for all any 

cases. Moreover, any changing in the value of noise power than nominal value could deteriorate the detector 

performance drastically.Further, the variation in the achievable throughputs of CU with SNRp, for CFAR and 

CDR approaches with fixed number of samples (N = 15,000) are presented in Fig. 7. It is clear from Fig. 7 that 

in CFAR approach, the throughput value decreases with SNRp from 7.539 to 4.674 bps/Hz and afterwards 
become constant in case1 whereas in case2,case3 and case4 the throughput value decreases with SNRp from 

7.916 to 4.674 bps/Hz and then become constant .  

While in CDR, as illustrated in fig , the throughput increases from 0.9256 bps/Hz to 5.319 bps/Hz and 

thereafter remains constant in case1 whereas the throughputs curves have lesser value when SNR < SNRc in 

other cases  where they start from 0.3252 bps/Hz to 5.319 bps/Hz and thereafter remains constant .  
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Fig.8 Throughput variation of CU with SNRp for CFAR at N=15000 

 
Fig .9 Throughput variation of CU with SNRp for CDR at N=15000 

 

We have proposed an approach in Sect. 3 to outcome the optimal number of samples (N*) to get desired value 

of PFA and PD, simultaneously. In this context, the performance of sensing parameters (PFA , PD) when    
   ,       with SNRp for the proposed approach is compared with [50] and presented in Fig. 8. In the 

proposed approach, we have achieved both targeted values of PFA = 0.1 and PD = 0.9, simultaneously when 

SNRp <SNRc. While in [50], authors have fixed one of the sensing parameter (either PFA or PD) and have tried 

to improve the other (PD or PFA), as is illustrated in Fig. 10. 

However, the required sensing performance improvement was not achieved in [50] when SNRp <SNRc besides 
authors did not take noise uncertainty in their consideration.  
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Fig.10. sensing parameters variation with SNRp for the proposed approach 

 

Moreover, the comparison of throughput variation with SNRp  are presented in Fig. 11.it is clear that 

CFAR approach has the highest throughputs when SNR < SNRc but the pd value is far less than 0.9 as shown in 

fig. 10. However, our proposed method achieve both of sensing performance and has better throughput than 

CDR approach when SNR< SNRc and when SNR>SNRc proposed approach has throughput performance equal 

to throughput in CDR approach that is the highest throughput when SNR > SNRc. 

 
Fig .11 Throughput variation with SNRp for the proposed approach  

 

V. Conclusion and future scope: 
In this paper, we have exploited the threshold computation using CFAR and CDR approaches in noise 

uncertainty environment. We have supposed the noise uncertainty model has two separate expansion 

coefficients and found the new equation to calculate the number of sample with reducing the effect of SNRwall. 

Thereafter, we have analyzed the optimality condition for threshold and selected the appropriate threshold that 

has been achieved with the anticipated values of PFA and PD, simultaneously. Further, the computation of SNRp 

as a critical SNR (SNRc) below which the optimality condition is not satisfied and increased based upon 

expansion coefficients  of noise uncertainty besides the highest value of SNRc occurs when the both coefficient 

have highest values. Moreover, we have proposed an approach in order to satisfy the optimality condition even 

though at low SNR (SNRp<SNRc) and have computed the throughput for the proposed approach. It has been 

perceived that at low SNR, the throughput for proposed approach is higher than CDR approach. However, less 
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than that of CFAR approach. Moreover, the throughputs achieved using CDR and CFAR approaches are not 

satisfying the desired PFA and PD values when compared with the proposed approach. 

Hence, in this proposed approach, we have achieved the maximum throughput while achieving the 
desired Pf and Pd simultaneously at all SNRpHowever, in this paper, our purposed approach does not fully 

blind, because the detector needs to know the values of noise expansion coefficients and the value of noise 

derivation form nominal values. However, we can overcome this issue by exploiting prosed detector in the terms 

of cooperative spectrum sensing. Moreover, the multiband spectrum sensing in the proposed approach can also 

be considered when PU changes its state during the sensing period. 
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