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Abstract. Most of the reported work in the literature on energy resource allocation planning for rural areas 

uses optimisation algorithms, of which the most widely used is the Linear Programming (LP) approach. 

However, it is felt that improved results can be obtained when the linear form used in LP is solved using 

nonlinear algorithms. This paper has attempted to investigate three nonlinear algorithms to solve the energy 

allocation problem for a rural microgrid concerning the LP algorithm solution. The proposed nonlinear 
algorithms are the Simulated Annealing algorithm (SA), the popularly used Genetic Algorithm (GA) and a new 

approach that is being currently promoted in the literature as the Differential Evolution (DE) algorithm. Taking 

the case of reported data of a hilly rural village from Uttarakhand State in Northern India, the nonlinear 

algorithms are compared with the results obtained using linear programming. The result obtained in this 

analysis propound DE algorithms followed by GA and SA for best results. In general, it is seen that these 

nonlinear algorithms can give better-optimised results compared with LP. 

Index Terms— Comparative evaluation, Linear Programming, Nonlinear programming algorithms, 

Optimisation methods, Rural energy allocation 
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I. INTRODUCTION 
Remote communities electrification with renewable energy integration has attracted performance 

analysis planners [1] – [5] with the utilisation and development of numerous statistical tools. These studies 

suggest that renewable energy systems can be used profitably for designing dependable energy providing 

systems. Two significant types of energy studies are popular, namely sizing and control of integrated rural 

energy systems for specified load demand [6] – [10]. 
The energy planning studies generally involve the use of optimisation structured objectives. Linear 

programming (LP) has been a much-used tool for planning in several studies. Of late, a few studies [11] – [15] 

explore the use of nonlinear programming algorithms [16] – [19] However, there are virtually no studies that 

contrast the performance of such algorithms with LP. This paper is an attempt in this direction. 

In this paper we investigate with respect to the LP algorithm, three non linear algorithms to solve the 

energy allocation problem for a rural microgrid. While there are several varieties of nonlinear programming 

algorithms, we limit the analysis to only three kinds, namely, the Simulated Annealing algorithm (SA), the 

popularly used Genetic Algorithm (GA) and a new approach that is being currently introduced in the literature 

as the Differential Evolution (DE) algorithm. Taking the case of reported data of a rural hilly village from 

Uttarakhand State in Northern India, the three algorithms are tested for comparison of best optimised outputs. 

 

II. DATA OF THE STUDY AREA 
Data for the investigation is referred from reference [20]. This data pertains to a rural hilly area located in 

Uttarakhand state in India. Table I shows the general data related to the study area. 

Figure 1 shows the projected average hourly load profiles for two seasons of the study area, i.e., summer and 

winter seasons. 
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Fig 1. Hourly load profile of two seasons 

 

Table I 

Basic information of study area 

Source: Akella, Sharma and Saini, (2007) [20] 

 

Table II. 

Potential of Available energy resources in the area 
S. no. Available type of generation Maximum capacity (kWh/m

2
/yr.) 

1. Micro-hydro power 128166.00 

2. Solar photovoltaic power 22363.00 

3. Wind energy 15251.00 

4. Biomass energy 641385.00 

Source: Akella, Sharma and Saini, (2007) [20] 

 

Table III. 

Efficiency of the various energy conversion systems 
S.no. Energy conversion 

system 

Efficiency 

1. 

 

 

Micro hydro power (MHP) 

 

 

 

 

0.90 

 
2. Solar photovoltaic power (SHP) 0.90 

3. Wind Energy System (WES) 0.80 

4. Biomass Energy System (BES) 0.85 

Source: Akella, Sharma and Saini, (2007) [20] 

S. No. Item Total 

1. Country India 

2. State Uttarakhand 

3. District Tehri Garhwal 

4. Boundary districts Rudraprayag district - East 

Dehradun - West, 

Uttarkashi - North 

Pauri Garhwal - South. 

5. Population (as per 2011 census) 618,913 

6. Total Area of district 36242 square kilometers 

7. Name of block (study area) Jaunpur 

8. No. of Villages in study area 259-total 

202- electrified 

57- un-electrified 

24- electrified by renewable energy by Uttaranchal 

Renewable Development Agency (UREDA) 

9. Total number of panchayats (local administrative 

units) 

111 

10. Number of available water springs 33 

11. Number of available waterfalls 09 

12. Number of reserve forests 23 

13. Number of installed water mills (Gharat’s) 

 

53 
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Table IV. 
Total energy demand for different activities 

S.no Type of energy activity Average Energy demand (MWh/year) 

1 Domestic 664 

2 Motive power/Local industries 23 

3 Agriculture 0.114 

4 Local transport 0 

Total (approx.) 687 

Source: Akella, Sharma and Saini, (2007) [20] 

 

Table V. 
Effective considered cost of operation for various generation options 

S.No. Energy conversion system Cost (Rs/kWh) 

1. Micro hydro power (MHP) 1.50 

2 Solar photovoltaic power (SHP) 15.27 

3 Wind Energy System (WES) 3.50 

4 Biomass Energy System (BES) 

 

 

 

 

 

(BES) 

 

3.10 

Source: Akella, Sharma and Saini, (2007) [20] 

 

Table VI. 

Results of Optimisation using LP 
S. NO. EPDF Objective Function / Optimal Cost 

(Rs) 

MHP (kWh) SPV (kWh) WES (kWh) BES (kWh) 

1 1.00 2134710 115465 15588 12201 543546 

2 0.75 4176533 86599 183391 9151 407660 

3 0.5 1613229 398853 10073 6100 271773 

4 0.35 1438320 485237 7051 4270 190241 

5 0.25 1321715 542826 5037 3050 135886 

Source: Akella, Sharma and Saini, (2007) [20] 

 

III. THE LINEAR MODEL 
Formulation of objective function “Z” [20] for cost minimisation is developed using the data available in Table 

II-V to arrive at the output, which will lead to system operation at least cost. Objective function Z is as shown: 

 

M inimize Z = 1:50 M HP + 15:27  SPV + 3:50 W ES + 3:10  BES  (1) 

 

which is Subject to : M HP + SPV +W ES + B ES = D  (2) 

2
1 2 8,1 6 6

0 .9 0 .

kW h

m yr

M H P
  (3) 

2
2 2 , 3 6 3

0 .9 0 .

S P V k W h

m y r
  (4) 

2
1 5, 2 5 1

0 .8 0 .

W E S kW h

m y r
  (5) 

2
6 4 1, 3 8 5

0 .9 0 .

B E S kW h

m yr
  (6) 

W ES, SPV, BES, and M HP   0  (7) 

where, D  =  6 8 6 ,8 0 0  6 8 7
kW h M W h

o r
yr y r

 

MHP=Micreo-hydropower plant power supply 

SPV=Solar power plant power supply, 
BES=Biogas gasifier electricity generation, 

WES=Wind Energy System Power supply 

 

Considering the intermittent nature of renewable energy leading to non-regular availability literature, 

[20] introduced a factor called Effective Power Delivery Factor (EDPF) to estimate the reduced power available 

concerning the designed output capacity. EPDF is described as the power extracted per season to the maximum 

power extracted per season ‘theoretically’ as represented in equation (8). 
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p o w er o b ta in ed  p e r seaso n

m ax im u m  p o w er p o ss ib le  p e r seaso n
E P D F   (8) 

 

Making use of EPDF factor creates different sub-models, which an optimisation algorithm may 

investigate. The solution of the model given above using LP shows the following results (Table VI). 

There may be a possibility of obtaining improved optimisation results with the linear form used in the 

case of LP by using nonlinear algorithms. To test this hypothesis, we optimise the objective function for LP 

using nonlinear optimisation algorithms. 

In the literature a variety of nonlinear algorithms are available. These include a vast category of meta-

heuristic approaches [16] – [19] As the main objective of this paper is to explore the effectiveness of alternative 

forms i.e., nonlinear algorithms vis'-a-vis the LP approach, the work was narrowed down to a comparative study 

using certain selected nonlinear optimisation algorithms with the results obtained using LP. To test the 
hypothesis that nonlinear algorithms can yield better results than LP, we have analysed the outputs of three 

meta-heuristic nonlinear algorithms. It is felt that three nonlinear algorithms may provide general trends. 

However, more nonlinear optimisation algorithms may be tried to obtain more conclusive evidence. 

The three nonlinear algorithms selected for investigations are the SA, GA, and a new approach called 

the Differential Evolution (DE) algorithm. Thus, this paper implements a linearised form of an objective 

function to the mentioned optimisation algorithm in MATLAB. The algorithms are as follows – 

1)Simulated Annealing Algorithm (SA) 

2)Genetic Algorithm (GA) 

3)Differential Evolution (DE) 

The following section presents a brief overview of these optimisation algorithms. 

 

IV. NONLINEAR OPTIMISATION USING SA, GA AND DE 
A.  Simulated Annealing (SA) 

The Simulated Annealing algorithm has been explained in the literature as a nonlinear optimisation tool 

[21] – [24]. In 1963, SA method was proposed by Kirkpatrick, Gelatt, and Vecchi. SA utilises the nature of 

cooling of heated metal with a path-based arbitrary search algorithm to reach the global optimised value. SA 

transforms the objective function into a metal annealing process. With the advantage of its applicability to 

numerous problems that may involve a highly nonlinear system with noisy data and several other constraints 

[22], the method is considered a robust and flexible technique. Initially, SA was applied for a nonlinear problem 

solution which involves several exponential steps to find an exact answer. The key advantages of the SA 

technique vis-a vis’ the conventional local search-based heuristic methods are that the SA can avoid being 
trapped in a locally optimal solution during its execution [23]. The major disadvantage with SA is the long 

computational time. Various reports in the literature use SA in cost optimisation problems [21], [24]. 

Generally, optimisation algorithms work upon comparing its current iterative outputs of the objective 

function by its neighbouring points in the domain. Every next iteration considers its neighbour point and is 

validated to give a better solution than the present point. If the current iteration provides a better result, then the 

solution is updated to the current point; otherwise, the previous point is retained as the best value. This 

optimising algorithms generally involves searching results into a limited domain, making the algorithm prone to 

local minima or maxima trapping. Unlike the general optimisation technique, the SA algorithm uses an 

annealing process loop and a second loop for the metropolis process to reach the optimum global value. 

Let us consider an objective function ( )
i

f x  for minimisation problem for argument set of 
1 2
, , ,

i n
x x x x  

with n   . The solution will be searched through the defined algorithm, and if 
1

( ( ))
i i

f x f x

 , then 

1i
x


will be 

considered for the next iteration. Else, 
1

( ( ) ( ) )

 =  

i i

C

f x f x

T
e


 

 is determined where 
c

T  is the current temperature 

parameter and generates a random number s, such that 0 < s < 1. Further if  s   is true then 
1i

x


 will also be 

accepted as new candidate; else if the case does not match the criterion, 
1i

X


 will be rejected, and another s will 

be generated through the previous step. Even though the path of the objective function is getting convergent, the 

metropolis criterion allows for the motion of the current stage to a certain extent through the potential minimum 

points. 

At the beginning of the SA algorithm, an enormous temperature value is considered, implemented in 

the inner loop to determine the best candidate solution from objective function computation. Whereas in the 

outer loop, the temperature is incremented and updated until it reaches the minimum temperature or maximum 
iteration count. 

SA algorithm considers an immense value of temperature at the beginning stage to execute the inner 

loop iteration. The value resulting in the best objective function in the inner loop is immediately taken as a new 

candidate solution. For the output loop, the temperature is incremented and updated at starting point. This 

process continues until it reaches the lowest temperature limit or if the iteration count limit is reached. 
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Fig. 2. Basic Algorithm of Simulated Annealing 

 

B. Genetic Algorithm (GA) 
GA is a dedicated search algorithm that imitates the growth of the genetic species. Holland proposed 

GA as a simplified and effective optimisation algorithm. The advantage of the GA is that the objective function 

can be treated as a black box problem to optimise the given situation. GA begins with the preliminary arbitrarily 

search and gradually improves the solution of the defined problem in successive steps. The method may 

converge speedily to reach a global optimum. The critical advantage of GA is that it performs a similar global 

search, which diminishes the risks related to stagnation at local optima. The disadvantage of the Genetic 

Algorithm procedure is that the programmer is not exactly clear whether the best global optimum has been 

attained. Literature is available on the use of GA to optimise renewable energy problems [25] – [29]. 

Figure 3 shows the basic flow chart for the GA. An initial population of possible solutions is randomly 

generated and subject to test suitability with a fitness function screens the unlikely solution choices. The 

remainder is then magnified as a new population and tested. Processes like crossover and mutation are also 

introduced to ensure that the optimal solutions obtained are not trapped in local optima. Finally, the best solution 
values are selected based on the convergence limits set. The essential steps of the algorithm are explained as 

follows: 

 
Fig. 3 Flow Chart of Genetic Algorithm 
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Step 1: Generate the initial population strings of possible solutions. 

Step 2: Evolve a fitness function and test the initial population of possible solutions. 

Step 3: Filter out the favourable possible solutions. 

Step 4: Magnify the possible feasible solutions as a new population to be further tested. 

Step 5: Subject the new population to processes like mutation and cross over to avoid the local minima trap. 

Step 6: Test the proposed solution again with the fitness function. 

Step 7: If an acceptable solution is obtained based on the convergence limits set, print solution and end. 

Step 8: If not, redo steps 3-7. 

Step 9: Select the best solution based on the convergence limits set. 

 
C. Differential Evolution (DE) 

Differential evolution (DE) is a meta-heuristics method that converges to the potential solution 

regarding a set measure of quality through iterative optimisation. Storn and Price originally conceived DE. Such 

practices make few assumptions about the problem being optimised and can search vast spaces of candidate 

solutions. However, they do not necessarily guarantee an optimal solution. DE has been discussed in several 

reports and studies [30] – [35]. 

Unlike Gradient Descent and Quasi-Newton methods, DE does not utilise the gradient of the problem, 

implying that DE does not impose on the problem to be differential. It gives DE an advantage over other 

optimisation techniques and can be applied to a noisy, discontinuous problem or a problem that changes over 

time. The Basic DE algorithm is illustrated in Figure 4. 

DE algorithm optimises a problem by considering the population of the candidate solution and creating 

a new population by regrouping according to simple formulae. It retains the candidate which provides the best 
solution. The algorithm is considered a black box that offers a measure of quality given a candidate solution, 

and therefore the gradient is not needed. The DE algorithm is described as follows: [35] 

 

 
Fig. 4 Basic DE Algorithm 

 

Step 1: Initialisation 

p
N  vectors within the boundary of 0 m in m ax

~ ( , )
ij j j

X R a n d X X  is generated randomly for all the variables to generate 

set of initial population. Where, 1, ,
p

i N  and 1, ,j D . m in m a x

j j
X a n d X are the lower and upper bound of the th

j

decision variable. m in m ax
( , )

j j
R a n d X X  represents a uniform random variable ranging over m in m ax

[ , ] .
j j

X X  0

i j
X  represents 

initial variable which is randomly generated at j  in th
i  population and all of the initial population values must 

satisfy the defined constraints. 
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Step 2: Fitness function-based evaluation 

Fitness function 0
( )

i
f X  or objective function values for all generated vectors are calculated. 

 

Table VII. 

Total cost of energy by different algorithms in INR (Indian Rupees) 
S. 

No 

EPDF Linear Programming (LP) (Akella, 

Sharma and 

Saini, 2007) 

Simulated 

Annealing (SA) 

Genetic Algorithm 

(GA) 

Differential Evolution 

(DE) 

1 1.00 2134710 2166213 2121733 2120700 

2 0.75 4176533 1992230 1601264 1590500 

3 0.50 1613229 1726643 1061798 1060300 

4 0.35 1438320 974043 743045 742230 

5 0.25 1321715 628658 530881 530170 

 

Step 3: Mutation 

DE generates a new parameter or target vector by random selection of three different members from the 

population. The mutant vector m g

i
X  is obtained by 

 

( ), ~
m g g g g

i a b c p
X X F X X i N         (9) 

 

Where , ,
g g g

a b c
X X and X  defines members selected randomly from population vectors at th

g generation and 

a b c i   . Scaling Factor (F) in the range of 0 < F < 1.2 controls the perturbation value that can be added to the 

parent vector to form a mutant vector. Also, the mutant vector generated should be within the defined 

constraints. 

 

Step 4: Crossover 

Crossover is a process where the initial vector and mutant vector m g

i
X  are swapped together to form another 

vector called “trial vector” - tg

i
X . The trial vector tg

i
X  can be defined as – 

 

,
{

tg

i R

m g

i

X if p Ctg

i X o th erw ise
X


  (10) 

 

Where 
R

C  = crossover constant and ranges from 0-1, which controls population diversity and supplements the 

algorithm to converge in the global optimum solution instead of getting settled with local optima.   is a 

uniformly distributed random number between [0-1]. 

 

Step 5: Selection 

The fitness values of the initial vectors 
0

( )
i

X  and the trial vector ( )
tg

i
X  are compared for selecting each 

parameter of the target vector. The vector that has lesser fitness of the two would survive for the next 

generation. 

 

( )

,
{

tg tg g

i i t

g

i

X if X f Xtg

i X o th e rw ise
X


  (11) 

 

The process will repeat until it reaches the maximum iteration number or there is no significant improvement in 

the fitness values for many iterations. 

 

V. RESULTS AND DISCUSSION 
As discussed earlier, the objective of the present work is to examine if nonlinear optimisation 

algorithms can yield a better optimal solution than LP for the linear objective function. This has been reviewed 

here with respect to three nonlinear metaheuristic algorithms, namely, SA, GA, and DE. Reduced inputs have 

also been considered (EPDF), which consider the non-continuous availability of renewable energy input 

resources. The EPDF varies from 1.0 to 0.25. For the value of EPDF 1.0 indicated, the plant delivers maximum 

energy to the load. 

Similarly, 0.75 indicates a 25% reduction in the energy delivery capability of the plant. The present 

model also considers the possible loss or non-functioning of any one of the energy resources, which will then 

affect overall energy delivery. Table VII gives the results of the simulations using the different algorithms. 
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Fig. 5 Relative Cost of Energy at Different EPD 

 

 
Fig. 6 Resource Allocation of SPV for different EPDF value 

 

 
Fig. 7 Resource allocation of WES for different EPDF 

 

Diversity is observed in the final solution for each algorithm when implemented for the resource 

allocation problem. Every algorithm provides a different solution for energy supply through different distributed 

energy resources. It may be seen from Table VII that LP shows the maximum cost of the three algorithms for 

most cases of EPDF. With SA, specific values of EPDF show worse results as compared with LP. However, GA 
and DE both show consistent lesser values than the corresponding values for LP for a given EPDF. Of the two 

(i.e., GA and DE), DE shows better results. Thus, nonlinear algorithms, when used with linear objective 

functions, can yield better solutions than LP. Further, of the considered nonlinear algorithms, DE appears to 

provide better results than GA and SA. 

 

 
Fig. 8 Resource allocation of MHP for different EPDF 
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Fig. 9 Resource allocation of BES for different EPDF 

 

Figures 5-9 show the overall cost and allocations of the energy resources for the optimised values given 

in 7 in an understandable form to highlight the relative differences in the optimised values for different 

optimisation algorithms. 

Figures 5-9 represents the variation of resource allocation of different sources with different algorithm 

applied. We follow each method for various resources; source allocation does not follow a fixed pattern. The 

outcome depends upon the process algorithm follows to arrive at its potential solution. 

However, the rural planner will emphasise total cost expense for energy generation and operation rather 
than on energy allocation for different resources with the same operating constraints. With this evidence, a 

conclusion can be drawn that as compared to the SA technique, DE is a more effective algorithm for 

implementation. However, further exploration of the DE optimisation technique may be required as this paper 

considers a single case. Further, if it provides a better result, it can be set as a trend for distribution system 

optimisation. Also, other nonlinear algorithms like PSO, Ant colony optimisation etc., maybe try to see if the 

trends observed here can be safely generalised. 

 

VI.  CONCLUSION 
This paper presents the relative effectiveness of different optimisation techniques applied for the rural 

sector’s energy resource planning. Using the data available for Indian rural villages, planning for the least cost is 

evaluated with LP, SA, GA, and DE optimisation techniques. Results show that DE is the best among LP, SA 

and GA algorithms while LP is the least effective. Through different sub-models effectiveness of the algorithm 

are tested with the intermittent nature of renewable energy sources. In each case, it is found that DE provides the 

best results. In general, it is observed here that nonlinear algorithms used for linearised objective functions 

produce better optimised objective function values than LP. However, further investigations with other 

nonlinear optimisation algorithms are called for utilisation and application for the energy resource allocation 

problem to generalise this statement. 
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