
Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676, p-ISSN: 2320-3331, Volume 20, Issue 3 Ser. 1 (May. – June. 2025), PP 15-22

www.iosrjournals.org

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 15 | Page

FFT Structure Implementation With Varying Radices In

Verilog

Dr. Dasari Yugandhar

Korada Vishalakshi

Konchada Rakshita

Battula Hrushikesh

Andavarapu Yaswanth
Dept. Of Ece

Aditya Institute Of Technology And Management (Affiliated To Jntugv) Srikakulam, India

Abstract :
The Fast Fourier Transform (FFT)is a basic algorithm in digital signal processing (DSP) and communication

systems, and it is a computationally very efficient algorithm for calculating the Discrete Fourier Transform

(DFT). A DFT has a time complexity of O (N2) while an FFT has time complexity O (N log N). DFT is an integral

part of FFT. The Very Large Scale Integration (VLSI) implementation of the FFT is extremely computationally

efficient by optimizing parameters like power, speed and area. Different FFT architectures employ different radix

methods, such as Radix-2, Radix-4, and Split-Radix, to enhance performance. So in this paper it is mainly focused

to implement a Decimation in Frequency Fast Fourier Transform (DIF-FFT) algorithm in Verilog HDL on AMD

Vivado. The Verilog implementation of FFT which includes complex numbers addition and multiplication due to

twiddle factor. FFT Verilog model outputs further validated with outputs obtained using Matlab. The findings are

helpful in the design of optimized FFT structures that are suitable for high-speed and low-power DSP

applications.

Keywords: DFT, FFT, Radix 2, Radix 4, Split Radix, VLSI, Verilog.

Date of Submission: 25-04-2025 Date of Acceptance: 05-05-2025

I. Introduction
The Fast Fourier Transform (FFT) is a technique that is classically used to calculate the Discrete Fourier

Transform (DFT). Despite being useful in calculating Fourier transforms, the DFT has certain problems during

computing. As a solution to DFT’s problems, Cooley-Tukey [8] proposed a new algorithm called Fast Fourier

Transform (FFT), which is faster than DFT. If the samples in the signal is a power of two, the FFT algorithm can

be adopted. The computation of FFT takes (N/2) × log2 N multiplications and N × log2 N additions. When

comparing DFT, FFT takes fewer numbers of computations.

The technique of computing DFT using FFT algorithm is an implementation of a divide and conquer

strategy. There are two main methods that the FFT algorithm can be implemented; the first is Decimation in Time

(DIT) and the second one is Decimation in Frequency (DIF). Both DIT and DIF use the butterfly structure to

compute FFT. FFT can accelerate calculations of DFT and decreases the time the DFT takes to be computed. A

FFT is an algorithm to compute the discrete Fourier transform (DFT) and it’s inverse. A Fourier transform

converts time domain to frequency and inverse FFT (IFFT) converts frequency domain to time domain. Different

radix structures, including Radix-2 [1], Radix-4 [3], and Split Radix [2], offer unique benefits in VLSI

implementations of the DIF-FFT structure. While Radix-2 is simple and widely used, Radix-4 provides improved

speed by reducing the number of computational stages. Split-Radix FFT combines the advantages of both Radix-

2 and Radix-4, achieving a balance between computational efficiency and hardware complexity.

Fig.1 Butterfly Unit

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 16 | Page

FFT divides the data into smaller sets. The decimation in time takes inputs in bit reversed order and

produces output in natural order while decimation is frequency takes normal input order and generates bit reversed

output .This paper uses the decimation in frequency method. Each stages, the results of previous stage are

combined. The Fig. 1 shows the butterfly diagram of FFT. The name butterfly implies that the shape of the flow

of data. In every stage first inputs are add or subtract to other input and then multiplied by twiddle factor. In FFT

calculation in DIF there is concept of taking the inputs in normal order to produce the outputs bits in the bit reversal

order. The main contribution of this paper is to design FFT algorithm using radix-2 using AMD Vivado 2024.1tool

with the help of Verilog code.

II. Literature Survey
The FFT algorithms using radix-2, radix-4, and radix-8, break the DFT into smaller sub problems in

different ways. These algorithms can be implemented efficiently using VLSI technology, which allows for real-

time signal processing [3-5]. When implemented using VLSI (Very Large Scale Integration), FFT benefits from

low power consumption, making it ideal for mobile and battery-powered systems. Additionally, VLSI enables

compact and efficient hardware designs, well-suited for embedded systems. Radix based FFT algorithms naturally

exhibit parallelism, enhancing throughput and overall performance. Furthermore, VLSI-based FFT

implementations offer scalability, allowing them to handle large datasets efficiently, making them valuable for

big data processing applications [6].

FFT plays a crucial role in various applications across multiple domains. In telecommunications, it is

used for modulation, demodulation, and error correction, particularly in systems like OFDM (Orthogonal

Frequency Division Multiplexing). In radar and sonar, FFT aids in object detection and measuring distance and

speed. It is also essential in audio and speech processing, enabling real-time speech recognition and audio

compression formats like MP3 and AAC. In image processing, FFT is employed for transformations, filtering,

and compression, as seen in JPEG. Medical imaging technologies such as MRI and CT scans rely on FFT for

image reconstruction. Additionally, FFT is widely used in scientific simulations, including wave propagation,

fluid dynamics, and quantum mechanics, making it a fundamental tool in computational science [7].

The leveraged a processor capable of performing one billion radix-2 butterfly operations per second,

utilizing current VLSI technologies and components to optimize performance. The architecture was designed to

demonstrate feasibility and efficiency for complex DSP tasks. A structured design approach combining state-of-

the-art integrated circuits and advanced signal processing techniques. The design was guided by practical

experience and requirements for high-performance DSP systems highlights the potential of modern integrated

circuits in realizing high-performance DSP systems. It emphasizes the need for future VLSI research to be

informed by insights from such designs to meet growing computational demands. They incorporated a modified

Booth’s algorithm to optimize Add/Subtract operations and eliminated carry propagation chains for parallel

multiplication. The design uses a regular array structure for efficient VLSI implementation. They utilized signed

digital number systems and optimized multiplication by breaking carry chains and leveraging a modified Booth’s

algorithm. A regular array structure was employed to enhance computational efficiency and simplify VLSI

implementation. The proposed multiplier achieved nearly double the speed of Wallace tree multipliers, with

computing time proportional to log(N).The number of computing cells was proportional to N⋅log2(N/2), fewer

than conventional multipliers.[9],[10].

They employed a low-level parallel filter structure with changes to device configurations and operations

to reduce complexity while maintaining performance. Hybrid programming enabled effective simulation and

analysis of the proposed algorithm. The new FIR filter [11] design reduced computational complexity and device

usage while achieving efficient implementation. The design requirements of fixed algorithms in communication

systems and demonstrated methods to tailor VLSI implementations to specific applications. The approach was

illustrated using examples that optimize at the algorithm, word, and bit levels. The three level design methodology

effectively reduces the complexity of VLSI implementation by tailoring it to specific DSP algorithms. This

approach bridges the algorithm-architecture gap, enabling efficient and optimized solutions. The proposed three-

level design approach is well suited for the VLSI implementation of DSP tasks in communication systems,

ensuring efficient and application-specific solutions. It provides a structured framework to overcome

implementation challenges in VLSI design [12]. The proposed FFT scheme achieves fewer computation

operations compared to state-of-the-art methods. The multi-stage image encryption algorithm demonstrated strong

encryption performance and robustness through experimental results and security analysis.

III. Methodology And Methods
In DIF-FFT, the butterfly operations are performed by taking input sequence in natural order, making it

different from DIT, where input ordering happens before computations. A structured design approach combining

state-of-the-art integrated circuits and advanced signal processing techniques. The design was guided by practical

experience and requirements for high-performance DSP systems highlights the potential of modern integrated

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 17 | Page

circuits in realizing high-performance DSP systems. It emphasizes the need for future VLSI research to be

informed by insights from such designs to meet growing computational demands. Defining and solving the

problem by implementing the Radix-2, Radix-4 and Split-Radix FFT algorithms in Verilog as shown in Fig.2.

The simulation results are analyzed to verify correctness and efficiency of different radices.

Fig.2 Methodology- Flow Chart

The Radix-2 approach divides the given input sequence recursively into smaller Discrete Fourier

Transforms (DFTs) in order to efficiently compute the DFT for data lengths that are powers of two. This

algorithm's core function, known as the "butterfly", uses certain complex exponential multipliers known as "twiddle

factors" to merge the output of two smaller DFTs. The data flow via these butterfly operations' stages is graphically

depicted in the butterfly diagram. The Butterfly Structure has N=2n, where, n is the number of Stages. Radix-2

butterfly structure shown in Fig. 3 to Fig. 5 for an input sequence of length 4, 8 and 16 respectively.

Fig.3 A 4 Point input sequence Radix-2 Butterfly Structure

Fig.4 A 8-Point input sequence radix-2 Butterfly Structure

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 18 | Page

Fig.5 A 16 Point input sequence Radix-2 Butterfly Structure

The Radix-4 FFT algorithm is an extension of the Radix-2 FFT that processes four data points at a time

instead of two shown in Fig.6 and Fig. 7 for an input sequence of 4 and 16 respectively. It used to further reduce

the computational complexity of the DFT when the input sequence length N is a power of 4. By grouping the

input data into blocks of four, the Radix-4 algorithm reduces the number of required arithmetic operations

compared to Radix-2, making it more efficient for large inputs. This algorithm is particularly advantageous for

high-speed FFT implementations in hardware and software when the input size is highly composite and divisible

by 4.

Fig.6 A 4-Point input sequence Radix-4 Butterfly Structure

Fig.7 A 16 Point input sequence Radix-4 Butterfly Structure

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 19 | Page

The Split-Radix [13] FFT algorithm is an advanced and highly efficient method for computing the DFT

of a sequence, especially when the sequence length N is a power of 2. It cleverly combines the strengths of both

the Radix-2 and Radix-4 algorithms by splitting the DFT into a mix of smaller DFTs—specifically, one DFT of

size N/2 and two DFTs of size N/4. This unique structure allows it to use fewer arithmetic operations than standard

Radix-2 and even Radix-4 FFT algorithms, making it one of the most efficient algorithms in terms of number of

multiplications and additions. Despite the increased complexity in programming due to its irregular structure, the

Split-Radix FFT is widely appreciated for its lower computational cost and is commonly used in high-

performance DSP applications. Split radix algorithm for an input sequence 4 and 8 is shown in Fig.8 and Fig. 9

respectively.

Fig.8 A 4-Point sequence Split Radix Butterfly Structure

Fig.9 A 8-Point sequence Split Radix Butterfly Structure

Table 1 Comparison of different Radices
Radix Type Computational Stages Complexity

Radix-2 log2(N) O (N log N)

Radix-4 log4(N) O (N log N)

Split Radix log2(N) and log4(N) O (N log N)

IV. Results And Discussions
FFT algorithm successfully implemented in Verilog HDL on AMD Vivado and validated by comparing

its output with MATLAB results, ensuring accuracy. The design efficiently handled complex number operations,

including twiddle factor multiplications and additions, leading to improved computational efficiency. Performance

metrics such as power consumption, speed, and area were analyzed, demonstrating reduced hardware complexity

while maintaining precision.

The implementation of the varying radices in Verilog results the corresponding simulation results. The

below Fig.10 shows the simulation input for the 4-point sequence for the Split Radix and the output is shown in

Fig.11. The implementation of the varying radices in Verilog results the simulation results. The below Fig.12

shows the simulation input for the 8-point sequence for the Radix-2 and the output is shown in Fig.13. The

implementation of the varying radices in Verilog results the simulation results. The below Fig.14 shows the

simulation input for the 16-point sequence for the Radix-4 and the output is shown in Fig.15.

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 20 | Page

Fig.10 Simulation input for the 4-Point split radix for the input sequence

Fig.11 FFT Output for 4-point split radix

Fig.12 Simulation input for the 8-point Radix-2 for the input sequence

Fig.13 FFT Output for 8-point radix-2

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 21 | Page

Fig.14 Simulation input for the 16-point Radix-4 for the input sequence

Fig.15 FFT Output for 16-point radix-4

As we know that the output for the different radices of the same number of bits are same even if the

structure is DIT-FFT or DIF-FFT. So here, the we can say that the output for the radix-2,radix-4 and split radix

for 4-point,8-point and16-point respectively are same . So here only one input and corresponding output values

simulation result is attached.

Table 2 Comparison of different radices for a 4-point input sequence
Radix LUTs (63400) Registers (126800) IOBs (210)

Radix-2 91 39 74

Radix-4 86 36 74

SplitRadix 31 32 74

Table 3: Comparison of different radices for a 8-point input sequence
Radix LUTs (63400) Registers (126800) IOBs (210)

Radix-2 468 525 258

SplitRadix 296 525 258

Table 4 Comparison of different radices for a 16 point input sequence
Radix LUTs (63400) Registers (126800) IOBs (210)

Radix-2 1709 2446 1026

Radix-4 1725 1599 994

V. Conclusions
This paper presented a comparative analysis of FFT implementations using different radix structures

such as Radix 2, Radix 4, Split Radix in Verilog. While Radix-2 provides simplicity and low power consumption,

Radix-4 improves speed by reducing computational stages. Split-Radix FFT offers a hybrid approach that optimizes

computational efficiency and hardware complexity. The study highlights the importance of selecting the

appropriate radix for FFT implementations based on application requirements. And here, the hardware utilization

for different radices for different points are observed.

References
[1] L. Santhosh And A. Thomas, “Implementation Of Radix 2 And Radix 22 Fft Algorithms On Spartan6 Fpga,” In 2013 Fourth

International Conference On Computing, Communications And Networking Technologies (Icccnt), Tiruchengode: Ieee, Jul. 2013,

Pp. 1–4. Doi: 10.1109/Icccnt.2013.6726840.

FFT Structure Implementation With Varying Radices In Verilog

DOI: 10.9790/0853-2003011522 www.iosrjournals.org 22 | Page

[2] P. Duhamel, “Implementation Of ‘Split-Radix’ Fft Algorithms For Complex, Real, And Real-Symmetric Data,” Ieee Trans. A Coust.

Speech Signal Process., Vol. 34, No. 2, Pp. 285–295, Apr. 1986, Doi: 10.1109/Tassp.1986.1164811.
[3] R. Barma Venkata And N. Fazal, “Fpga Implementation Of Optimized Radix 4 And Radix 8 Booth Algorithm,” Int. J. Perform. Eng.,

Vol. 17, No. 6, P. 552, 2021, Doi: 10.23940/Ijpe.21.06.P8.552558.

[4] M. Butorac And M. Vucic, “Fpga Implementation Of Simple Digital Signal Processor,” In 2012 19th Ieee International Conference
On Electronics, Circuits, And Systems (Icecs 2012), Seville, Seville, Spain: Ieee, Dec. 2012, Pp. 137–140.

Doi: 10.1109/Icecs.2012.6463781.

[5] F. D. Nunes And J. M. N. Leitao, “Signal Processing Aspects Of Fusion Plasma Broadband Reflectometry,” Ieee Trans. Signal
Process., Vol. 47, No. 2, Pp. 378–388, Feb. 1999, Doi: 10.1109/78.740123.

[6] D. Goyal, C. Mongia, And S. Sehgal, “Applications Of Digital Signal Processing In Monitoring Machining Processes And Rotary

Components: A Review,” Ieee Sens. J., Vol. 21, No. 7, Pp. 8780–8804, Apr. 2021, Doi: 10.1109/Jsen.2021.3050718.
[7] A. Rai And S. H. Upadhyay, “A Review On Signal Processing Techniques Utilized In The Fault Diagnosis Of Rolling Element

Bearings,” Tribol. Int., Vol. 96, Pp. 289–306, Apr. 2016, Doi: 10.1016/J.Triboint.2015.12.037.

[8] Cooley, J. W., & Tukey, J. W. (1965). An Algorithm For The Machine Calculation Of Complex Fourier Series. Mathematics Of
Computation, 19(90), 297-301.

[9] Singleton, R. C. (1969). On Computing The Fast Fourier Transform. Communications Of The Acm, 12(10), 527-531.

[10] Duhamel, P., & Hollmann, H. (1984). Split-Radix Fft Algorithm. Electronics Letters, 20(14), 586-588. 51
[11] Sorensen, H. V., Jones, D. L., Heideman, M. T., & Burrus, C. S. (1990). Real-Valued Fast Fourier Transform Algorithms. Ieee

Transactions On Acoustics, Speech, And Signal Processing, 38(10), 1681-1691.

[12] Chen, Y., Li, W., & Li, J. (2013). A New Split-Radix Fft Algorithm For Length-N Dft. Ieee Transactions On Signal Processing,
61(10), 2643-2653.

[13] Li, J., Chen, Y., & Li, W. (2020). A High-Performance Split-Radix Fft Algorithm On Gpus. Ieee Transactions On Parallel And

Distributed Systems, 31(10), 2331-2344.

