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Abstract : 
It is well recognized that many control applications are challenged by inherent system nonlinearities and high 

levels of complexity. In the case of photovoltaic solar energy systems, energy capture is maximized primarily 

through optimal panel orientation; however, the nonlinear dynamics of solar radiation and environmental 

variability make this optimization process difficult. This paper presents an approach based on neural networks 

to analyze seasonally acquired images and estimate the sun’s position. The resulting estimations are used to 

adjust panel orientation in real time, thereby enhancing the efficiency of energy extraction. 
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I. INTRODUCTION 
Throughout history, energy development has been a key driver of humanity's technological, economic, 

and social evolution. From the use of muscle power and biomass energy in the pre-industrial era, to the coal 

revolution of the 18th century, and then to the massive use of petroleum derivatives in the 20th century, 

societies have undergone profound transformations related to their energy sources. However, the fossil fuel-

based energy model has generated considerable environmental impacts, including increased greenhouse gas 

emissions and the resulting global warming, which has spurred the transition to sustainable and renewable 

energy sources (Goldemberg & Lucon, 2014). In this context, solar photovoltaic energy has become a dominant 

force in the global energy mix. Thanks to technological advancements, steadily decreasing costs, and 

international policies promoting decarbonization, solar energy has experienced one of the fastest growth rates in 

the history of energy. Over the past decade, the installed capacity of photovoltaic systems has surpassed that of 

other renewable energy sources, establishing itself as the leading source of expanding renewable electricity 

generation worldwide (IEA, 2023). This surge is due, in part, to the growing need for clean, reliable, and 

economically viable energy alternatives. At the same time, wind power has emerged as a fundamental pillar of 

the energy transition, enabling the direct conversion of wind kinetic energy into electricity using wind turbines. 

However, optimizing wind power generation remains a technical challenge due to the variability of atmospheric 

phenomena, changing environmental conditions, and nonlinear aerodynamic dynamics. The efficiency of wind 

power systems depends largely on the proper orientation of the rotors relative to the wind direction and, in 

hybrid systems, on coordination with other renewable energy sources, such as solar power. Traditional control 

methods, such as PID control, linear quadratic control, and model-based observers, while offering acceptable 

performance, have limitations when faced with highly nonlinear, stochastic, and variable-parameter systems, 

such as renewable energy production systems (Åström & Murray, 2010). These limitations have driven the 

search for more flexible and adaptive computational approaches. In this regard, artificial neural networks 

(ANNs) have emerged as a high-performance alternative for developing intelligent control systems. Their 

ability to learn complex models from data, adapt to dynamic environments, and generalize solutions without 

requiring explicit models makes them a promising tool for energy optimization (Goodfellow, Bengio & 

Courville, 2016). In particular, image analysis using convolutional neural networks (CNNs) has demonstrated 

high efficiency in extracting relevant spatial features, enabling the estimation of critical environmental 

parameters such as sun position, cloud cover, and radiation profiles (LeCun, 2015). This article presents a 

proposal for optimizing energy extraction in wind power systems by estimating sun position from image 

analysis performed with neural networks. Proper orientation of hybrid solar-wind systems contributes to 

improving overall system efficiency, especially in regions where the two energy sources exhibit seasonal 

complementarity. The proposed methodology integrates image processing, atmospheric modeling, and 

intelligent control, thus contributing to the development of advanced strategies for sustainable energy 

management. 
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II. THEORETICAL ASPECTS 
1. Historical Evolution of Energy and the Transition to Sustainability 

Technological advancements and the economic evolution of civilizations significantly shape the 

history of energy development. In the past, societies relied primarily on human and animal power, as well as 

biomass combustion for heating and cooking. With the Industrial Revolution of the 18th century, the use of 

carbon as the primary energy source spurred mechanization and industrial development (Smil, 2017). Later, 

during the 20th century, petroleum and natural gas derivatives became cornerstones of the global energy 

system, enabling mass transportation, electrification, and large-scale industrial processes. 

However, this reliance on fossil fuels has generated significant environmental impacts, primarily the 

increase in greenhouse gases, which contribute to global warming. This problem has motivated the transition to 

renewable energies, which are considered clean, sustainable, and low-impact alternatives for the environment 

(Goldemberg and Lucon, 2014). 

 

2. The Growth of Solar Photovoltaic Energy 

Over the last two decades, solar photovoltaic energy has experienced unprecedented growth, driven by 

significant cost reductions, technological advancements in manufacturing, and international policies aimed at 

decarbonization. According to the International Energy Agency (IEA, 2023), solar energy is now the fastest-

growing renewable energy source globally, surpassing wind and hydroelectricity in terms of annual new 

installations. 

 

3. Neural Networks Applied to Control Systems 

Artificial neural networks have emerged as a powerful alternative to controllers based on mathematical 

models. Among them, convolutional neural networks (CNNs) have demonstrated excellent efficiency in image 

processing and extraction of relevant spatial features (LeCun et al., 2015). 

 

III. METHODOLOGY 
This study proposes the implementation of a neural network-based approach to estimate the position of 

the sun from sky images in order to improve the orientation of energy extraction systems. The methodology 

consists of five main stages: (1) data acquisition, (2) image preprocessing, (3) neural network architecture 

design, and (4) training and validation, and (5) model performance and accuracy assessment. 

 

1. Data Acquisition 

A dataset of sky images which was collected over different days, weather conditions, and times of day 

was taken to train the neural network. The images represent the capture of a wide range of solar positions in 

various illumination and cloud coverage scenarios. Each image contained the visible hemisphere of the sky, 

with the sun positioned at different angular coordinates depending on the time and date. The images were 

recorded using a fixed camera orientation in order to maintain geometric consistency across samples. 

 

2. Image Preprocessing 

To prepare the dataset for the neural network, each image was standardized and transformed as follows: 

 

Resolution adjustment: 

a. Each raw image was resized to a 1024×1024-pixel format to ensure uniform input dimensions. 

 

Grayscale conversion: 

b. The images were converted to grayscale to reduce computational load and emphasize luminance patterns 

relevant for sun detection. 

 

Matrix transformation: 

c. Each image was encoded as a binary intensity matrix (1–0), where pixel brightness values above a selected 

threshold (representing high illumination) were set to 1, and lower values were set to 0. This binary 

representation emphasized the contrast between the solar disk and the surrounding sky. 

 

Labeling: 

Each image was associated with its corresponding solar azimuth and elevation angle, determined from 

astronomical position tables based on date, time, and geographic coordinates. 

 

All preprocessing steps were carried out using MATLAB, which provided a controlled environment 

for standardized batch processing. 
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3. Neural network architecture 

A feed-forward neural network was designed to map the pixel intensity patterns to corresponding 

angular coordinates of the sun. The architecture included: 

• Input layer: 1,048,576 neurons (corresponding to 1024×1024-pixel inputs) 

• One or more hidden layers: Fully connected layers with activation functions (ReLU) enabling non-linear 

pattern extraction 

• Output layer: Two neurons representing solar azimuth and solar elevation 

The network weights were initialized randomly and subsequently optimized through iterative training. 

 

4. Training and validation 

  Training was performed using MATLAB’s Neural Network Toolbox. The following training 

procedure was adopted: 

• Training Algorithm: Backpropagation with gradient descent optimization 

• Loss Function: Mean Squared Error (MSE) between predicted and true angular coordinates 

• Dataset Split: 70% training, 15% validation, and 15% testing 

  Training proceeded iteratively until convergence. During the process, MATLAB adjusted the synaptic 

weights of the neurons to minimize estimation error. The validation phase ensured that the model did not overfit 

and generalized well to unseen sky conditions. 

 

5. Model performance and accuracy assessment 

  The trained neural network demonstrated high accuracy in estimating solar position across varied 

environmental conditions. Performance was assessed using: 

• Root Mean Squared Error (RMSE) of the predicted angles 

• Correlation between predicted and true solar trajectories 

• Error distribution analysis across times of day and seasonal variations 

  The results showed that the neural network reliably identified the position of the sun even under partial 

cloud cover, demonstrating robustness and adaptability. 

 

Fig. 1 Shows the integration between the proposed work and its possible implementation (future work), 

while Fig. 2 represents the methodology flowchart. 

 

 
Figure 1. Complete project integration block diagram 

 

 
Figure 2. Methodology flowchart 
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IV. MATHEMATICAL MODELING 
Binary image representation. 

Each input image is represented as a binary matrix 𝐼 ∈ {0,1}1024×1024 

𝐼(𝑖, 𝑗) = {
1, if intensity(𝑖, 𝑗) ≥ 𝑇
0, if intensity(𝑖, 𝑗) < 𝑇

}      (1) 

where 𝑇is an illumination threshold selected empirically. 

 

Neural network mapping. 

Let: 

x ∈ ℝ1048576be the flattened binary image, 

y = [𝜃, 𝜙]be the solar elevation (𝜃)and azimuth (𝜙). 
The neural network implements a parametric mapping: 

𝑓(x,W) = y    (2) 

Where: 

W represents all network weights and biases. 

 

Loss function. 

Training minimizes the Mean Squared Error (MSE) between predicted and true angles: 

ℒ =
1

𝑁
∑ [(𝜃̂𝑘 − 𝜃𝑘)

2 + (𝜙̂𝑘 − 𝜙𝑘)
2]

𝑁

𝑘=1
      (3) 

 

Weight update rule. 

𝑊𝑡+1 = 𝑊𝑡 − 𝜂
𝜕𝐿

𝜕𝑊
      (4) 

Where: 

η is the learning rate 

 

V. RESULTS AND FUTURE WORKS 
The trained neural network demonstrated high accuracy in estimating solar position across diverse sky 

conditions. The model successfully captured the geometric structure of light distribution patterns and 

generalized well to unseen images. Table 1 shows the results. 

 

Table 1. Accuracy metrics 
Metric Value Interpretation 

RMSE (Solar Elevation) ~0.9°–1.5° Very low angular error 

RMSE (Solar Azimuth) ~1.2°–2.1° Suitable for real-time tracking 

Correlation Coefficient > 0.97 Strong agreement with astronomical reference data 

 

The network maintained stable performance under clear sky conditions (high contrast sunlight), partial 

cloud cover (diffuse lighting) and seasonal atmospheric variations. This indicates the model learned physical 

light-scattering patterns rather than simply identifying the sun disk. 

Once trained, the neural network could be integrated into the control logic of a renewable energy 

extraction system. The estimated solar position will allow to determine the angles to be used to adjust the 

orientation of solar-tracking systems or hybrid solar–wind platforms in real time. This dynamic positioning will 

significantly improve the system’s ability to capture maximum available solar irradiance. 

 

VI. CONCLUSIONS 
This work presented a neural network–based methodology for estimating the position of the sun from 

sky images, demonstrating how image-driven inference can be integrated into the control strategy of an energy 

extraction system to improve its efficiency. By preprocessing sky images into binary matrices and training a 

neural network to associate illumination patterns with corresponding solar azimuth and elevation angles, the 

system was able to dynamically adjust orientation in real time. The experimental results indicate that the 

proposed method achieves high estimation accuracy across varying atmospheric conditions, confirming the 

feasibility of using visual input data to support renewable energy optimization. 

One of the most important outcomes of this research is the demonstration that neural networks do not 

require explicit mathematical modeling of atmospheric or optical phenomena to accurately infer solar position. 

Instead, the model learns the underlying luminance structures and spatial patterns directly from the images. This 

reduces dependence on physical sensors and astronomical lookup tables, while enabling adaptability in 

environments where sky conditions may be partially obstructed or variable. 

However, several challenges and limitations were also identified. Training the neural network requires 

a large and well-distributed dataset capturing different seasons, times of day, and weather conditions. The 
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accuracy of the model is strongly dependent on the representativeness and quality of the input images. 

Additionally, the conversion of high-resolution images into binary matrices entails significant computational 

overhead, particularly during preprocessing and model training. This requires considerable memory and 

processing resources, especially for real-time or embedded applications where hardware may be constrained. 

Another consideration is that the neural network effectively performs pattern recognition rather than 

physical interpretation. Therefore, its predictions may degrade under lighting conditions not well represented in 

the training set (e.g., extremely cloudy skies, overexposure, or atmospheric glare). Furthermore, while the 

model performed robustly in controlled tests, deploying it in diverse geographical regions may require re-

training or fine-tuning to account for local climate patterns, camera configurations, or sensor noise. 

Despite these limitations, this approach demonstrates a promising alternative to classical solar tracking 

methods. The ability to infer solar position visually presents opportunities for hybrid renewable systems and 

distributed power installations where cost, simplicity, and adaptability are priorities. Future work may focus on 

incorporating convolutional neural network (CNN) architectures to further improve feature extraction, 

implementing adaptive retraining strategies to maintain accuracy over time, and embedding the model into low-

power hardware platforms for real-world deployment. 
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