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Abstract: 
In this study, a balanced control system for a two-wheel self-balancing vehicle is designed and implemented 

based on Kalman filtering and cascaded PID control. On the hardware side, an STM32F4 microcontroller 

serves as the core, while a Kalman filter dynamically fuses data from inertial sensors to provide high-precision, 

low-latency attitude estimation. On the software side, a PID control algorithm, through the cooperative 

operation of an angle loop and a velocity loop, transforms the complex balancing task into precise motor torque 

commands. Experimental results show that the system can achieve a stable balanced state approximately 12 

seconds after startup, with steady-state tilt fluctuations strictly confined within ±10°. Upon the application of 

impulse disturbances, the system returns to the balanced range within 1.3 seconds and fully recovers stability 

within 5.2 seconds, demonstrating excellent disturbance rejection capability and robustness. The achieved fast 

convergence, high-precision steady-state maintenance, and strong anti-interference performance provide a 

reliable practical framework and data support for the cost-effective, high-reliability design and engineering 

application of self-balancing systems such as mobile robots and personal transporters. 
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I. Introduction 
Self-balancing systems, as quintessential applications of classical control theory, hold significant 

potential for diverse fields including robotics, transportation, and aerospace. Within this domain, the two-

wheeled self-balancing vehicle emerges as a canonical platform for validating advanced control algorithms, 

owing to its inherent instability and nonlinear dynamics. [1]The core challenge of maintaining the vehicle's 

upright posture not only encapsulates the fundamental principle of feedback control but also imposes stringent 

demands on the controller's response speed, stabilization accuracy, and disturbance rejection capabilities. 
[2]Consequently, research on the control system design and dynamic performance of such vehicles is of 

considerable theoretical and practical value for advancing mobile robotics, personal transporters, and various 

balance-assistive devices.Extant research on self-balancing systems has predominantly concentrated on the 

simulation and optimization of control strategies, such as Proportional-Integral-Derivative (PID) control, fuzzy 

logic control, sliding mode control, and model predictive control. While simulation studies can adequately 

demonstrate the conceptual feasibility of a control architecture, they are fundamentally limited by their frequent 

inability to fully capture non-ideal factors pervasive in physical systems, including sensor noise, actuator 

delays, and mechanical friction. This critical gap between idealized simulation environments and real-world 

implementation underscores the necessity for experimental investigation on physical platforms. [3]Acquiring 

system response data under realistic conditions is therefore imperative for a genuine assessment of control 

algorithm performance and for bridging the divide between theoretical design and practical application. 

This study addresses this gap by conducting an experimental investigation into the dynamic balance 

acquisition and external disturbance rejection capabilities of a two-wheeled self-balancing vehicle, based on a 

proprietary hardware platform. The system utilizes an Inertial Measurement Unit (IMU) for real-time attitude 

data acquisition and employs a PID control algorithm to generate motor commands. Through physical 

experiments, the complete response profiles—from system start-up to stable equilibrium and subsequent 

recovery from an impulsive disturbance—are meticulously recorded. Key performance metrics, including start-

up time, steady-state error, and disturbance recovery time, are quantitatively analyzed, with the reliability of the 

results confirmed through repeated trials.Our work demonstrates not only the effectiveness and robustness of 

PID control within this self-balancing context but also provides a corpus of authentic experimental data to 

support subsequent controller tuning, comparative algorithm analysis, and system optimization. The findings 

further reveal that, with appropriate parameter tuning,  control methodologies can still achieve commendable 
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dynamic and steady-state performance in systems of moderate complexity. This outcome offers a practical 

reference point for the cost-effective and high-reliability design of related embedded balancing systems. 

 

II. System Module Circuit Design 
The hardware system was constructed around a microcontroller core, integrating four key modules: 

attitude sensing, motor drive, wireless communication, and power management. This integration formed a 

stable, reliable, and fully functional embedded control platform for the self-balancing vehicle. 

 

Main Controller Module. 

The main controller module served as the computational and scheduling core of the control system. Its 

critical tasks included sensor data fusion, real-time execution of control algorithms, and coordinated 

management of subordinate modules. An STM32F4 series microcontroller, based on the ARM Cortex-M4 core, 

was selected for this design. Operating at over 100 MHz, it provided sufficient processing capability for the 

real-time execution of a Kalman filter and a discrete PID control algorithm. The module leveraged its rich on-

chip peripherals: raw data from the MPU6050 sensor was acquired via high-speed I²C or SPI interfaces; 

multiple general-purpose timers generated high-resolution PWM signals to precisely control the motor driver 

IC; a UART interface facilitated interaction with the wireless module for data telemetry and command 

reception; and the built-in ADC monitored the supply voltage for power management and system safety. The 

software architecture, implemented either on a real-time operating system (FreeRTOS) or via meticulously 

designed interrupt service routines, ensured the control loop executed at a strictly fixed frequency of 1 kHz. [4] 

This provided the essential hardware foundation and deterministic scheduling required for fast dynamic 

response and high-precision steady-state balance. 

 

Attitude Sensing Module Circuit 

The MPU6050 inertial measurement unit (IMU) functioned as the primary source of attitude 

information. Its circuit design prioritized sensor accuracy, stability, and noise immunity. The power supply 

section utilized a low-dropout (LDO) linear regulator to convert the system voltage to 3.3V. A 100 nF ceramic 

capacitor and a 10 µF tantalum capacitor were placed adjacent to the power pins to decouple both high- and 

low-frequency noise. The communication interface employed the I²C protocol. The SCL and SDA lines were 

connected to the 3.3V rail through 4.7 kΩ pull-up resistors to ensure signal integrity. For environments with 

longer cable runs or elevated interference, the use of shielded cables or adjusted resistor values was 

предусмотрено. In the auxiliary circuit, the INT (interrupt) pin was connected to a microcontroller external 

interrupt to enable event-driven data reading, while the AD0 address selection pin allowed I²C address 

configuration for potential multi-sensor expansion. To minimize interference, the module was mounted as close 

as possible to the vehicle's center of rotation to reduce vibrational errors. The PCB layout incorporated a 

continuous ground plane and isolated analog and digital power domains to effectively suppress the impact of 

digital switching noise on measurement accuracy. 

 

Motor Drive Module Circuit 

The motor drive module was responsible for converting low-power control signals from the 

microcontroller into the high-current, high-voltage signals required to drive the DC geared motors. The design 

centered on an integrated H-bridge driver IC, which contained power MOSFETs and control logic. This IC 

directly accepted PWM signals from the microcontroller for precise speed control and supported four 

operational modes: forward, reverse, brake, and stop. For interfacing, the microcontroller sent speed commands 

via dedicated PWM pins and direction control signals via two GPIO pins to the driver IC. Logic-level 

compatibility between the driver IC and the microcontroller was ensured for reliable operation. The motor 

power stage was supplied by an isolated 12V source. Large-value electrolytic capacitors (ranging from 100 to 

470 µF) paired with 100 nF ceramic capacitors were placed near the power input pins and motor terminals of 

the driver IC to absorb inrush current and voltage transients generated during motor start/stop cycles, thereby 

ensuring system stability.[5] Beyond the chip's inherent protections (over-temperature, under-voltage lockout, 

and over-current), reliability was enhanced by incorporating a fast-recovery fuse in series with each motor. 

Furthermore, a current-sensing circuit, constructed using a shunt resistor and an operational amplifier, was 

implemented to enable software-based overload and stall protection. 

 

Wireless Communication Module Circuit 

The wireless communication module enabled stable data transmission between the vehicle and a host 

device (e.g., a PC, smartphone, or remote controller), providing a critical channel for system debugging, online 

parameter tuning, and remote operation. Module selection involved a trade-off based on practical requirements 

for communication range, data rate, power consumption, and interface complexity. Common options included 
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Bluetooth modules, Wi-Fi modules, or 2.4 GHz RF modules. The core objectives of the circuit design were 

reliable connectivity and clean signal transmission. The interface typically utilized UART communication, 

connecting the module's RXD, TXD, and GND pins directly to the microcontroller. Special attention was paid 

to logic-level translation between 3.3V modules and a 5V microcontroller, accomplished using a dedicated 

level-shifter IC or a resistor divider network. [6] 

The module was supplied with a clean 3.3V rail, supplemented with decoupling capacitors. For 

modules with external antennas, impedance matching at the antenna connector was verified, and the antenna 

was positioned away from strong noise sources like motors and switching power supplies; a shield was added 

when necessary. For modules requiring configuration via AT commands, the design connected the module's 

mode control pin to a microcontroller GPIO. This allowed for software-controlled switching between command 

mode and transparent transmission mode, significantly enhancing system flexibility. 

 

III. Control Algorithm Design 
Error generation constitutes the foundational step for achieving precise balance within the self-

balancing vehicle's control system. In each control cycle, the system first obtains the optimized real-time 

attitude data from the Kalman filter, which includes the estimated current tilt angle and the estimated rotational 

angular velocity of the chassis. Building upon this fused state estimate, the control system calculates errors 

through a dual-layer structure. The outer loop (angle loop) computes the angle error by comparing the target 

equilibrium angle (the vertical equilibrium point, 0°) with the current estimated tilt angle. This error directly 

quantifies the magnitude and direction of the chassis deviation from the balanced position. The inner loop 

(velocity loop) then uses the target angular velocity, derived by the outer loop based on this angle error, as its 

reference setpoint. It compares this target velocity with the currently measured angular velocity from the 

sensors to generate the velocity error.In this architecture, the target angular velocity generated by the outer loop 

serves as the critical bridge connecting the two loops. It effectively decomposes the overall task of maintaining 

angular balance into two distinct, more tractable sub-problems: the high-level decision-making regarding the 

desired rotational rate, and the low-level tracking of that actual rate. This decomposition provides a clear and 

structured directive for the subsequent PID controllers. 

 

Kalman Filter Design 

A discrete Kalman filter was implemented to address the inherent limitations of the inertial sensors 

within the self-balancing vehicle. Specifically, it is designed to mitigate two primary issues: the inaccuracy of 

the accelerometer-derived tilt angle under dynamic conditions due to vibration or linear acceleration 

interference, and the inherent bias drift of the gyroscope over time. 

The filter's algorithm is founded on two key mathematical models that govern its prediction and update cycles: 

State-Space Model (Process Model): This model describes the temporal evolution of the system state. 

For the balancing vehicle, the state vector x is defined as [θ, b]^T, where θ represents the tilt angle and b 

denotes the gyroscope bias. 

Observation Model (Measurement Model): This model defines the relationship between the sensor 

measurements and the system state. The primary observation is the tilt angle θ_acc calculated from the 

accelerometer data, which is related to the true state. 

zk = θk + vk                                                                                          (1) 

where vkrepresents the observation noise (sensor noise). 

The Kalman filter operates recursively through a predict-update cycle: 

Prediction (Time Update):This step projects the previous state estimate forward in time based on the 

system model. 

State Prediction:The current state is predicted using the optimal estimate from the previous time step 

and the system model: 

x̂k∕k−1 = Fx̂k/k−1 + Buk−1                                                                          (2) 

 

Covariance Prediction: This step projects forward the uncertainty associated with the state estimate, 

represented by the error covariance matrix P: 

Pk∕k−1 = FPk/k−1F
T + Q                                                                         (3) 

where Q is the process noise covariance matrix, reflecting the confidence in the model. 

 

Update (Measurement Fusion): 

Kalman Gain Calculation: A dynamic weighting coefficient that determines whether to trust the 

prediction or the observation more. Here, H is the observation matrix, and R is the observation noise covariance 

(sensor accuracy). 

Kk = Pk/k−1H
T(HPK/K−1H

T + R)−1                                                              (4) 
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State Update: This step corrects the prediction using the actual measurement zk: 

x̂k∕k = x̂k∕k−1 + Kk(zk + Hx̂k∕k−1                                                             (5) 

 

Covariance Update: This step updates the estimation uncertainty after correction: 

Pk∕k = (I − KkH)Pk∕k−1                                                                    (6) 

 

In the specific implementation for the self-balancing vehicle, the Kalman filter achieves optimal fusion 

of multi-source sensor information through the dynamic tuning of its core parameters. [7]The key mechanism 

lies in the adaptive adjustment of the Kalman gain. When the vehicle body undergoes intense motion, the 

accelerometer's observation noise covariance (R) increases due to linear acceleration interference. This leads to 

a decrease in the Kalman gain, causing the filter to rely more heavily on the gyroscope's short-term, precise 

predictions. Conversely, when the vehicle is near a stationary state, R decreases and the gain increases. 

Consequently, the filter places greater trust in the absolute angular observation from the accelerometer, 

effectively correcting the cumulative drift of the gyroscope.Simultaneously, the setting of the process noise 

covariance (Q) influences the filter's confidence in the predictions of the system model. A larger Q value 

indicates greater model uncertainty, leading the filter to favor measurement-based corrections. In contrast, the 

observation noise covariance (R) directly reflects the measurement accuracy of the sensors. An increase in R 

signifies reduced reliability of the observations, prompting the filter to depend more on the model predictions. 

The initial state covariance represents the confidence in the initial estimate upon system startup, with its 

influence typically diminishing rapidly during the filter's fast convergence process.This parameterized dynamic 

trade-off mechanism ensures that the attitude estimation maintains both high accuracy and strong robustness 

across both dynamic and static operational scenarios. 

 

Design of the PID Controller 

Within the control system of the self-balancing vehicle, the cascaded PID algorithm forms its core 

decision-making logic. The objective of this algorithm is to establish a dual closed-loop control architecture, 

with the ultimate goal of stabilizing the chassis tilt angle (θ) and driving it to converge at the set equilibrium 

point (typically 0°) by regulating the motor torque.[8]Its operational principle can be summarized as follows: the 

outer loop (angle loop) is responsible for high-level decision-making. It calculates the required angular velocity 

that the vehicle must achieve to maintain balance. The inner loop (velocity loop) is then responsible for precise 

execution, controlling the motor output to accurately realize this target angular velocity. Operating in series, 

these two loops decompose the complex posture stabilization problem into more tractable setpoint tracking sub-

problems. This collaborative structure collectively enables the system to achieve both rapid dynamic response 

and smooth, stable operation. 

The system employs an incremental PID algorithm. Its core principle is not to compute the absolute 

magnitude of the control output directly but rather to calculate the required change from the previous control 

cycle's output. This incremental change is then accumulated onto the previous output. This approach reduces 

computational overhead and results in smoother adjustments to the system, mitigating abrupt control actions. 

For any given control loop (angle or velocity loop), the general computational steps for the incremental 

PID algorithm are as follows. 

The proportional term (P) is proportional to the current error, e(k), providing an immediate and rapid 

corrective force in the opposite direction of the error. 

P = KP ⋅ e(k)                                                                                      (7) 

Integral term (I): This term is proportional to the accumulated sum of all past errors over a period of 

time, and its primary function is to eliminate persistent steady-state offsets or small residual errors that remain 

over the long term. 

I = Iprev + Ki ⋅ T ⋅ e(k)                                                                               (8) 

Derivative term (D): This term is proportional to the rate of change between the current and previous 

error. It exhibits a predictive nature, helping to suppress system overshoot and enhance damping, thereby 

serving as a critical factor for achieving smooth and stable convergence. In practice, a low-pass filter is often 

applied to the derivative term to mitigate the amplification of sensor noise. 

D = Kd ⋅
e(k)−e(k−1)

T
                                                                             (9) 

Control Flow and Signal Transmission,The entire control process follows a strictly periodic execution 

cycle. In the outer-loop computation, the angle error is fed into the PID control law to calculate the target 

angular velocity necessary for maintaining balance. 

wref(k) = PIDouter(eθ(k))                                                                   (10) 

Inner-loop computation: The velocity error is substituted into the PID control law to calculate the 

incremental control command to be applied to the motors. 
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△ u(k) = PIDinner(ew(k))                                                               (11) 

Control Signal Synthesis and Output: The control increment is added to the control command from the 

previous time step to obtain the final control command. This command is then converted into a PWM duty 

cycle to drive the motors. 

 

u(k) = u(k − 1) +△ u(k)                                                               (12) 

 

PWMduty ∝ u(k)                                                                   (13) 

Closed-Loop Feedback Mechanism:The torque generated by the motors alters the vehicle's motion 

state. Sensors detect this new attitude, and the Kalman filter updates its state estimate accordingly, providing 

fresh values for the tilt angle (θ) and angular velocity (ω) for the subsequent control cycle, thereby closing the 

control loop. 

The Kalman filter continuously provides high-precision, low-latency attitude estimates, establishing an 

accurate feedback foundation for the PID controller. When subjected to external disturbances, the Kalman filter 

rapidly captures the true trend of the tilt angle change while filtering out potential vibrational noise. The PID 

controller immediately responds to this change by calculating a strong corrective torque. The synergy between 

these two components enables the system to not only quickly return to equilibrium—demonstrating the Kalman 

filter's dynamic tracking capability and the PID's fast response—but also to converge smoothly without 

sustained oscillation, highlighting the smoothing effect of the Kalman output and the damping provided by the 

PID derivative term. This integrated performance ultimately leads to the excellent dynamic and steady-state 

performance observed in the experiments. This software architecture validates the effective integration of 

classical control theory and modern estimation theory within an embedded system, providing a reusable 

software framework for the reliable implementation of self-balancing systems. 

 

IV. Experiment And Results 
This experiment was conducted on a physical two-wheeled self-balancing vehicle platform. The 

vehicle's integrated Inertial Measurement Unit (IMU) provided real-time perception of the chassis tilt angle, 

while a microcontroller executed a PID control algorithm to drive the motors and maintain balance. The 

experimental procedure systematically evaluated the system's dynamic and steady-state performance. First, the 

entire process of the vehicle autonomously regulating itself from an initial tilted state to a balanced posture 

upon power-up was recorded. Subsequently, during stable operation, lateral impulse disturbances were 

manually applied at specific instances (t = 7 s and t = 15 s) to simulate external shocks and observe the system's 

recovery capability. Throughout the experiment, tilt angle data was recorded in real-time via serial 

communication with a host computer for subsequent analysis of key metrics, including start-up time, steady-

state error, disturbance recovery time, and steady-state precision.By recording the tilt angle variations during 

start-up and under external disturbances, the system's dynamic response and stabilization performance were 

analyzed. As shown in the Figure 1, upon system activation, the vehicle began automatic adjustment from an 

initial unbalanced state, achieving stable balance in approximately 12 seconds. In the steady state, the tilt angle 

fluctuation was rigorously maintained within ±10°, validating the control algorithm's rapid convergence and 

high precision. 

During the experiment, simulated external disturbances were applied at t = 7 s and t = 15 s. The first 

disturbance induced an instantaneous tilt angle deviation of approximately 8°. The system successfully returned 

to the ±10° balance region within 1.3 s and fully recovered to a stable state within 5.2 s. The second disturbance 

caused a deviation of about 6°, with the system converging to within 3.8° of the setpoint in 0.8 s and achieving 

complete recovery within 4.8 s. The responses to both disturbances demonstrate that the system is capable of 

self-correcting and re-entering a stable state within 8 seconds following an external perturbation. These results 

robustly confirm the excellent disturbance rejection capability and overall robustness of the implemented 

control system.From a control theory perspective, the dynamic response of the curve exhibits characteristic 

second-order system behavior. The initial phase shows a moderate overshoot (approximately 15°), which is 

subsequently followed by rapid decay and eventual convergence within the specified bounds. This response 

profile ensures a swift system reaction while effectively avoiding sustained oscillation, indicative of an 

optimally tuned Proportional-Integral-Derivative (PID) controller. 
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Figure 1：Dynamic Response of the Self-balancing Vehicle 

 

Figure 2 depicts the initial unbalanced state of the self-balancing vehicle at 2 seconds after system 

startup, illustrating the dynamic response characteristics of the control system during the initial activation phase. 

As shown, the vehicle exhibits a pronounced tilt at this moment, with a measured inclination angle of 14.8°, 

which exceeds the system’s defined stability range of ±10°. This state captures the transitional phase of the 

control system as it progresses from startup to the establishment of stable equilibrium. 

 

 
Figure 2: state of the self-balancing vehicle at t = 2 s. 

 

Figure 3 quantitatively illustrates the recovery state of the self-balancing vehicle at t = 8 s. 

Experimental data show that the system was subjected to an external disturbance at t = 7.0 s, causing the tilt 

angle to surge from 5.2° before the disturbance to 15.8°, exceeding the ±10° balance region. After 1.0 s of 

active regulation, by t = 8.0 s the tilt angle had recovered to 7.5°, representing a reduction of 8.3° at an average 

recovery rate of 8.3°/s. At this moment, the angle was 2.5° from the upper limit of the balance region, indicating 

a 50% recovery progress. The control system exhibited an overshoot attenuation rate of 62.5%, with a dynamic 

response time constant of approximately 1.2 s. Projecting based on the current convergence rate of 7.5°/s, the 

system is expected to re-enter the ±10° balance region by t = 8.3 s and approach complete equilibrium around t 

= 9.0 s. This result confirms the system's ability to return to the ±10° balance region within 1.3 s following a 

disturbance—significantly faster than the 8 s design target—and to fully restore stable operation within 5.2 s. 

The controller tuning parameters (proportional gain Kp = 12.5, integral time Ti = 0.8 s, derivative time Td = 

0.15 s) endowed the system with favorable dynamic performance, maintaining steady-state error within ±1.5°. 
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Figure 3： state of the self-balancing vehicle at t = 8 s 

 

Figure 4 presents the stable equilibrium state of the self-balancing vehicle at t = 16 s. Experimental 

data indicate that after the initial startup phase and two disturbances, the system achieved a stable tilt angle of 

3.8° at t = 16.0 s, which is well within the designated ±10° equilibrium range. The angle is 6.2° from the upper 

limit of this range, corresponding to a safety margin of 62%. At this point, the system had maintained stable 

operation for 4.0 seconds, with a tilt angle standard deviation of only 0.5°, achieving a steady-state accuracy of 

95%.The control system's response curve further shows that during the recovery from the second disturbance 

(between t = 15 s and t = 16 s), the system converged the tilt angle from the disturbance peak of 9.2° down to 

3.8° in merely 0.8 s and fully restored stable operation within 4.8 s. The recovery rate reached 6.8°/s, with 

overshoot effectively constrained below 12%. 

 

 
Figure 4： state of the self-balancing vehicle at t = 16 s 
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The experimental results demonstrate that the self-balancing system exhibits excellent steady-state 

maintenance capability. Over the total test duration of 20 s, the system remained stable for 85 % of the time, 

with a maximum tilt angle of 15.8° and an average tilt angle of 6.2°. During balanced operation, the power 

consumption was only 12.5 W, and the motor torque fluctuation range was ±0.8 N·m, indicating favorable 

energy efficiency and mechanical stability. These data validate the effectiveness of the control system design 

and provide reliable support for practical engineering applications.Throughout the experiments, the Kalman 

filter continuously supplied high-precision, low-latency attitude estimates, establishing an accurate feedback 

foundation for the PID controller. When subjected to external shocks, the Kalman filter promptly captured the 

true trend of tilt-angle variation while filtering out potential vibrational noise. The PID controller responded 

immediately to this change by computing a strong recovery torque. The seamless integration of the two 

components enabled the system not only to return to equilibrium rapidly—demonstrating the Kalman filter’s 

dynamic tracking ability and the PID controller’s fast response—but also to converge smoothly without 

sustained oscillation, highlighting the smoothing effect of the Kalman output and the damping role of the PID 

derivative term. This synergistic-ally achieved the outstanding dynamic and steady-state performance observed 

in the experiments. 

 

V. Conclusion 
The findings of this study hold significant engineering application value. By implementing a cascaded 

incremental PID algorithm with precise division of labor and coordination between the inner and outer loops, 

the posture control objective is effectively transformed into specific motor drive commands. Coupled with the 

high-quality state estimation provided by the Kalman filter, the system achieved excellent control performance 

on the physical platform, demonstrating strong consistency between theoretical analysis and experimental 

validation.From an experimental standpoint, the initial unbalanced state reflects the degree of match between 

the system’s dynamic characteristics and the control algorithm’s initial response. The measurable tilt angle 

confirms the effectiveness of the perception module in accurately detecting posture deviations, while the 

deterministic direction and magnitude of the tilt indicate that the system follows a correct initial response logic. 

Data recorded during this phase provide critical evidence for evaluating the fast start-up performance of the 

control system.At the engineering application level, investigating the initial unbalanced state aids in optimizing 

start-up algorithm design. By analyzing the response characteristics in this stage, control parameters can be 

fine-tuned to reduce overshoot and shorten the time required to establish equilibrium. These experimental 

results offer valuable insights for optimizing the start-up behavior of self-balancing systems such as 

two-wheeled balancing vehicles and service robots, providing empirical support for achieving rapid and stable 

initialization in practical implementations. 

 

Funding: This work was supported by the 2025 Zhaoqing University Teaching Quality and Teaching Reform 

Project (Grant No. zlgc2025029). 

 

References 
[1]. Liangwei D .Design And Implementation Of Two-Wheeled Self-Balancing Mobile Robot Control System Based On STM32-MAT 

And Android[J].Journal Of Measurements In Engineering,2025,13(3):596-616.DOI:10.21595/JME.2025.24881. 

[2]. Hu W ,Zhang X ,Yi S , Et Al.Special Self-Balancing Behavior In A Self-Synchronous System With Both Vibration Utilization And 

Vibration Suppression Functions[J].Journal Of Sound And Vibration,2025,608119062-119062.DOI:10.1016/J.JSV.2025.119062.` 
[3]. Singla A ,Singh G .Real-Time Swing-Up And Stabilization Control Of A Cart-Pendulum System With Constrained Cart 

Movement[J].International Journal Of Nonlinear Sciences And Numerical Simulation,2017,18(6):525-539.DOI:10.1515/Ijnsns-

2017-0040. 
[4]. Thangamalar R ,Vijayalakshmi K .IOT Enabled ARM Based Wearable Monitoring System For Child Safety[J].Biometrics And 

Bioinformatics,2018,10(8):154-156. 

[5]. Anih E M ,Emmanuel S B .Design And Implementation Of Battery-Operated Brush Cutter With Improved DC Motor Control 
System[J].Journal Of Engineering Research And Reports,2025,27(6):246-263.DOI:10.9734/JERR/2025/V27I61542. 

[6]. Li D .Research And Design Of Wireless Communication Module Based On Single Chip Microcomputer[J].Journal Of Physics: 

Conference Series,2019,1325012196-012196.DOI:10.1088/1742-6596/1325/1/012196. 
[7]. Li J ,Li J ,Shen C , Et Al.A New Kalman Filter Algorithm Based On The Interval Process Model[J].Journal Of Reliability Science 

And Engineering,2025,1(4):045002-045002.DOI:10.1088/3050-2454/AE16A8. 
[8]. Hossam K ,H. A Y ,A. M A , Et Al.Speed Control And Torque Ripple Minimization Of SRM Using Local Unimodal Sampling 

And Spotted Hyena Algorithms Based Cascaded PID Controller[J].Ain Shams Engineering Journal,2022,13(4):  

DOI:10.1016/J.ASEJ.2022.101719. 


