
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676, p-ISSN: 2320–3331, Volume 8, Issue 2 (Nov.-Dec.), PP 62-68

www.iosrjournals.org

www.iosrjournals.org 62 | Page

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital

Filters of Odd Length Based on Fast FIR Algorithm

1
Thodeti Madhukar,

2
M. R. N. Tagore,

3
Dr. Giri Babu Kande

1
PG Student (M.Tech VLSI), Dept. Of ECE, Vasireddy Venkatadri Ins. Tech., Nambur, Guntur, AP, India

2
Associate Professor, Dept. Of ECE, Vasireddy Venkatadri Ins. Tech., Nambur, Guntur, AP, India

3
Professor & Head, Dept. Of ECE, Vasireddy Venkatadri Ins. Tech., Nambur, Guntur, AP, India

Abstract: In this Paper, we propose a low-power multiplier design methodology which has multiplier-and-

accumulator for high speed and by adopting the new Shift and adds implementation approach. This multiplier is

designed by equipping the Power Suppression Technique on DA (distributed arithmetic) algorithm. The Shift

and adder will avoid the unwanted addition and thus minimize the switching power dissipation, the performance

was improved. When the DA algorithm is directly applied in FPGA (field programmable gate array) to realize

FIR (finite impulse response) filter, it is easy to achieve the best configuration in the coefficient of FIR filter, the

storage resources and the computing speed. The parallel FIR structures can lead to significant hardware

savings for symmetric convolution in odd length from the existing FFA parallel FIR filter, particularly when the

length of the filter is large. According to this, the paper provides the detailed analysis and discussion in the

algorithm, the memory size and the look up table speed. Also, the corresponding optimization and improvement

measures are discussed. The design results of simulation and test show that this method greatly reduces the

FPGA hardware resource and the high speed filtering is achieved. The design has a big breakthrough compared

to the traditional FPGA realization.

Keywords: DA Algorithm, Fast FIR algorithms (FFAs), parallel FIR, symmetric convolution, very large scale

integration (VLSI).

I. Introduction
With the recent rapid advances in multimedia and communication systems, real-time signal processing

like audio signal processing, video/image processing, or large-capacity data processing are increasingly being

demanded. The multiplier and multiplier-and-accumulator are the essential elements of the digital signal

processing such as filtering, convolution, transfo-rmations and Inner products. There are different entities that

one would like to optimize when designing a VLSI circuit. These entities can often not be optimized

simultaneously, only improve one entity at the expense of one or more others The design of an efficient

integrated circuit in terms of power, area, and speed simultaneously, has become a very challenging problem.

Power dissipation& speed are recognized as critical parameters in modern the objective of a good multiplier is

to provide a physically compact, good speed and low power consuming chip.

In the majority of digital signal processing (DSP) applications the critical operations usually involve

many multiplications and/or accumulations. For real-time signal processing, a high speed and high throughput

Multiplier-Accumulator (MAC) is always a key to achieve a high performance digital signal processing system.

In the last few years, the main consideration of MAC design is to enhance its speed. This is because; speed and

throughput rate is always the concern of digital signal processing system. But for the epoch of personal

communication, low power design also becomes another main design consideration. This is because; battery

energy available for these portable products limits the power consumption of the system. Therefore, the main

motivation of this work is to investigate various Pipelined multiplier/accumulator architectures and circuit

design techniques which are suitable for implementing high throughput signal processing algorithms and at the

same time achieve low power consumption

The paper presents the improvement and optimization of the DA algorithm aiming at the problems of

the configuration in the coefficient of FIR filter, the storage resource and the calculating speed, which make the

memory size smaller and the operation aped faster to improve the computational performance.

II. FIR Multiplier

FIR multiplication is a technique that allows for smaller, faster multiplication circuits, by recoding the

numbers that are multiplied. It is possible to reduce the number of partial products by half, by using the

technique of radix-4 FIR recoding. The basic idea is that, instead of shifting and adding for every column of the

multiplier term and multiplying by 1 or 0, we only take every second column, and multiply by ±1, ±2, or 0, to

obtain the same results. The advantage of this method is the halving of the number of partial products. To FIR

recode the multiplier term, we consider the bits in blocks of three, such that each block overlaps the previous

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of Odd Length Based

www.iosrjournals.org 63 | Page

block by one bit. Grouping starts from the LSB, and the first block only uses two bits of the multiplier. Figure 1

shows the grouping of bits from the multiplier term for use in modified FIR encoding.

Figure 1 Grouping of bits from the multiplier term

Each block is decoded to generate the correct partial product. The encoding of the multiplier Y, using

the modified FIR algorithm, generates the following five signed digits, -2, -1, 0, +1, +2. Each encoded digit in

the multiplier performs a certain operation on the multiplicand, X, as illustrated in Table 1.

Table 1 Operation on the Multiplicand

For the partial product generation, we adopt Radix-4 Modified FIR algorithm to reduce the number of

partial products for roughly one half. For multiplication of 2‟s complement numbers, the two-bit encoding using

this algorithm scans a triplet of bits. When the multiplier B is divided into groups of two bits, the algorithm is

applied to this group of divided bits.

Figure 2, shows a computing example of FIR multiplying two numbers”2AC9” and “006A”. The

shadow denotes that the numbers in this part of FIR multiplication are all zero so that this part of the

computations can be neglected. Saving those computations can significantly reduce the power consumption

caused by the transient signals.

Figure 2 Illustration of multiplication using modified FIR encoding

The PP generator generates five candidates of the partial products, i.e., {-2A,-A, 0, A, 2A}. These are

then selected according to the FIR encoding results of the operand B. When the operand besides the FIR

encoded one has a small absolute value, there are opportunities to reduce the spurious power dissipated in the

compression tree.

Figure 3 FIR partial product selector logic

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of Odd Length Based

www.iosrjournals.org 64 | Page

The multiplication first step generates from A and X a set of bits whose weights sum is the product P.

For unsigned multiplication, P most significant bit weight is positive, while in 2's complement it is negative.

The partial product is generated by doing AND between „a‟ and „b‟ which are a 4 bit vectors as shown in fig.3 If

we take, four bit multiplier and 4-bit multiplicand we get sixteen partial products in which the first partial

product is stored in „q‟. Similarly, the second, third and fourth partial products are stored in 4-bit vector n, x, y.

Figure 4 FIR partial products Generation

The multiplication second step reduces the partial products from the preceding step into two numbers

while preserving the weighted sum. The sough after product P is the sum of those two numbers. The two

numbers will be added during the third step The "Wallace trees" synthesis follows the Dadda's algorithm, which

assures of the minimum counter number. If on top of that we impose to reduce as late as (or as soon as) possible

then the solution is unique. The two binary number to be added during the third step may also be seen a one

number in CSA notation (2 bits per digit).

Figure 5 FIR single partial product selector logic

Multiplication consists of three steps: 1) the first step to generate the partial products; 2) the second

step to add the generated partial products until the last two rows are remained; 3) the third step to compute the

final multiplication results by adding the last two rows. The modified FIR algorithm reduces the number of

partial products by half in the first step. We used the modified FIR encoding (MBE) scheme proposed in. It is

known as the most efficient FIR encoding and decoding scheme. To multiply X by Y using the modified FIR

algorithm starts from grouping Y by three bits and encoding into one of {-2, -1, 0, 1, 2}. Table II shows the

rules to generate the encoded signals by MBE scheme and Fig. 6 (a) shows the corresponding logic diagram.

The FIR decoder generates the partial products using the encoded signals as shown in Fig. 6

Figure 6.a FIR Encoder 6.b FIR Decoder

The partial products generated by the modified FIR algorithm are added in parallel using the Wallace

tree until the last two rows are remained. The final multiplication results are generated by adding the last two

rows. The carry propagation adder is usually used in this step.

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of Odd Length Based

www.iosrjournals.org 65 | Page

Figure 7 Truth Table of MBE scheme

Figure 8 Architecture of the Proposed CSA tree

The architecture of the hybrid-type CSA that complies with the operation of the proposed MAC is

shown in Fig. 5, which performs 8-bit operation. In Fig. 2.11 Si is to simplify the sign expansion and Ni is to

compensate 1‟s complement number into 2‟s complement number. S[i] and C[i] correspond to the i
th

 bit of the

feedback sum and carry. Z[i] is the i
th

 bit of the sum of the lower bits for each partial product that were added in

advance and Z‟[i] is the previous result. In addition, Pj[i] corresponds to the ith bit of the jth partial product.

Since the multiplier is for 8 bits, totally four partial products are generated from the FIR encoder. This CSA

requires at least four rows of FAs for the four partial products. Thus, totally five FA rows are necessary since

one more level of rows are needed for accumulation. For an -bit MAC operation, the level of CSA is (n/2+1) .

The white square in Fig. 2.11 represents an FA and the gray square is a half adder (HA). The rectangular symbol

with five inputs is a 2-bit CLA with a carry input

The critical path in this CSA is determined by the 2-bit CLA. It is also possible to use FAs to

implement the CSA without CLA. However, if the lower bits of the previously generated partial product are not

processed in advance by the CLAs, the number of bits for the final adder will increase. When the entire

multiplier or MAC is considered, it degrades the performance. In Table I, the characteristics of the proposed

CSA architecture have been summarized and briefly compared with other architectures. For the number system,

the proposed CSA uses 1‟scomplement, but ours uses a modified CSA array without sign extension. The biggest

difference between ours and the others is the type of values that is fed back for accumulation. Ours has the

smallest number of inputs to the final adder.

III. Improved Design of The DA Algorithm

The principle of DA algorithm is as follows, the output of linear time-invariant system is shown as Eq. 1.

𝑌 = 𝐴𝑚𝑋𝑚

𝑀

𝑚=1

 − − − − − − − − − 𝐸𝑞. 1

 Where Am is a fixed factor, Xm is the input data (𝑋𝑚 <1). Xm can be expressed as Eq. 2 using the

binary complement.

𝑋𝑚 = −𝑥𝑚0 + 𝑥𝑚𝑛 2−𝑛𝑁−1
𝑛=1

Eq. 2

Where xmn is 0 or 1, xm0 is sign bit; xm N-1 is the least significant bit. Then Y can be expressed as Eq .3.

𝑌 = 𝐴𝑚

𝑀

𝑚=1

 𝑥𝑚𝑛 2−𝑛

𝑁−1

𝑛=1

− 𝑥𝑚0

 = 𝐴𝑚𝑥𝑚𝑛 2−𝑛 + 𝐴𝑚 −𝑥𝑚0
𝑀
𝑚=1

𝑀
𝑚=1

𝑁−1
𝑛=1

Eq.3

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of Odd Length Based

www.iosrjournals.org 66 | Page

In Eq. 3, as the value of xmn is 0 or 1, there are 2
M

kinds of different results of 𝑀
𝑚=1 𝐴𝑚𝑋𝑚 . If we

construct a LUT which can store all the possible combination of values, we can calculate the value of 2
M

 in

advance and store them in the LUT. Using Xmn as the LUT address signal, the shifting (2
-1

 operation) and adding

operation are carried out on the output of the LUT.

Then 𝑀
𝑚=1 𝐴𝑚𝑋𝑚 can be realized through N-1 cycles and the result of multiplication-accumulation

can be achieved directly. So the complicated multiplication-accumulation operation is converted to the shifting

and adding operation. The parallel computing is adopted to improve the speed of calculation. The complicated

multiplication-accumulation operation is converted to the shifting and adding operation when the DA algorithm

is directly applied to realize linear time-invariant system. However, the scale of the LUT will increase

exponentially with the coefficient. If the coefficient is small, it is very convenient to realize through the rich

structure of FPGA LUT; while the coefficient is large, it will take up a lot of storage resources of FPGA and

reduce the calculation speed. Meanwhile, the N-1 cycles also result in the too long LUT time and the low

computing speed.

From Eq. 2, Xm can be expressed as Eq.4.

𝑋𝑚 =
1

2
 𝑋𝑚 − −𝑋𝑚 -------------- Eq.4

Where the -Xm can be expressed as Eq. Eq.5 according to the binary complement operation.

−𝑋𝑚 = −xm0 + xmn N−1
n=1 2−n + 2−(N−1)-Eq .5

Put Eq. (5) and Eq. (2) into Eq. (4), Eq. (6) can be achieved.

𝑋𝑚 =
1

2
 − xm0 − xm0 + (xmn − xmn)2−n

N−1

n=1

− 2−(N−1) − − − − − Eq. 6

For convenience, two variables are defined as follows:


𝑚0

= − 𝑥𝑚0 − 𝑥𝑚0


𝑚𝑛

= − 𝑥𝑚𝑛 − 𝑥𝑚𝑛

In which the, as the value of xmn is 0 or 1, so the value of mn and m0 is ±Eq.6 can be expressed as Eq.7

 𝑋𝑚 =
1

2
 

𝑚𝑛
𝑁−1
𝑛=1 2−𝑛 − 2−(𝑁−1) − −𝐸𝑞. 7

Put Eq. 7 in to Eq.1, Eq.8 can be achieved as follows

𝑌 =
1

2
 𝐴𝑘

𝐾

𝑘=1

 
𝑚𝑛

𝑁−1

𝑛=1

2−𝑛 − 2− 𝑁−1

1

2
 𝐴𝑚

𝑀
𝑚=1 

𝑚𝑛
2−𝑛𝑁−1

𝑛=1 − 𝐴𝑚 2−(𝑁−1)𝑀
𝑚=1 ------------ Eq.8

As there are 2
 M

different kinds of results of 𝐴𝑚
𝑀
𝑚=1 

𝑚𝑛
 and the value of mn is ±1, so the results

show positive and negative symmetry property. If the positive and negative sign are not considered, there are

only 2
M-1

 different kind of results and the size of storage will reduce by half.

Through the algorithm optimization, Eq.8 can be simplified as Eq.9.

𝑌 =
1

2
 𝐴𝑚

𝑀/2
𝑚=1 𝑥𝑚𝑛 2−𝑛𝑁−1

𝑛=1 − 𝐴𝑚 2−(𝑁−1)𝑀/2
𝑚=1 -------------------------------Eq.9

Although the storage size reduces by half through the algorithm optimization, but the scale of the LUT

will increase exponentially with the “m”.so the scale of the LUT can be further reduced by decreasing the size

of “m” then the

 𝐴𝑚

𝑀/2

𝑚=1

𝑥𝑚𝑛

in Eq.9 can be defined as Eq. 10.

 𝐴𝑚𝑥𝑚𝑛

𝑀/2

𝑚=1

= 𝐴𝑚𝑥𝑚𝑛

𝑎

𝑚=1

+ 𝐴𝑚𝑥𝑚𝑛

𝑏

𝑚=𝑎+1

… . . …… + 𝐴𝑚𝑥𝑛

𝑧

𝑚=𝑦

− 𝐸𝑞. 10

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of Odd Length Based

www.iosrjournals.org 67 | Page

In which, z ≥ y, y ≥ b, b ≥ a+1,a > 1,so an inner product operation with the scale of 2
M

 will be realized through

several LUTs with different or same depth and adders. The scale of the memory is 2
a
+2

b-a
+…..+2

z-y
+2

M/2-z

Figure 9 The structure through the algorithm improvement

Though the algorithm improvement, the hardware resource is reduced and the operation speed is

improved. The simplified hardware circuit structure is shown in Fig.9. The hardware circuit is shown in Fig.10.

Figure 10 The circuit structure of FIR system

When using the DA algorithm to implement the linear time-invariant system. The pre-storing value

corresponding to the upper half of the memory address of LUT storage will be the negative of the lower half and

the LUT reduces by half using symmetry. The address maker circuit generates the LUT address. The upper half

of the address looks up its corresponding pre-storing value. Meanwhile, the address is used as control-adding-

decrease implement to complete the positive and negative conversion between the pre-storing value

corresponding to the upper and lower half of it. According to result of the improvement and optimization, the

LUT is divided into two 4-input LUTs and the address maker circuit divides the input signals into four segments

in accordance with the 4-input LUT. The speed of signal sampling under the control of the FPGA can be

adjusted. The data buffer can be established according to the order of the filter. As the designed filter is a 16th-

order one, so the sampled serial data can be sent to the 20 bits serial-in- parallel-out shift register, and then the

data is divided and sent to the LUT in turn. As the coefficient is amplified 216 times, the obtained result is

reduced by the output circuit accordingly.

IV. Results and Conclusions

The complicated multiplication-accumulation operation is converted to the shifting and adding

operation when the DA algorithm is directly applied to realize FIR filter. Aiming at the problems of the best

configuration in the coefficient of FIR filter, the storage resource and the calculating speed, the DA algorithm is

optimized and improved in the algorithm structure, the memory size and the look-up table speed. The arithmetic

expression has clear layers of derivation process and the circuit structure is reasonable, which make the memory

size smaller and the operation speed faster. The design improves greatly compared to the conventional FPGA

realization and it can be flexibility applied to implement high-pass, low-pass and band-stop filters by changing

the order and the LUT coefficient. The proposed new structures exploit the nature of symmetric coefficients of

odd length and further reduce the amount of multipliers required at the expense of additional adders. Since

Area-Efficient VLSI Implementation for Parallel Linear-Phase FIR Digital Filters of Odd Length Based

www.iosrjournals.org 68 | Page

multipliers outweigh adders in hardware cost, it is profitable to exchange multipliers with adders. Moreover, the

number of increased adders stays still when the length of FIR filter becomes large, whereas the number of

reduced multipliers increases along with the length of the FIR filter.

Figure 11 Simulation Result for DA Algorithm

Figure 12 Simulation Results of FIR Result

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments which were very helpful

in improving the quality and presentation of this paper.

References
[1] K. K. Parhi, VLSI Digital Signal Processing systems: Design and Implementation. New York: Wiley, 1999.
[2] Z.-J. Mou and P. Duhamel, “Short-length FIR filters and their use in fast nonrecursive filtering,” IEEE Trans. Signal Process., vol.

39, no. 6, pp. 1322–1332, Jun. 1991.

[3] J. I. Acha, “Computational structures for fast implementation of L-path and L-block digital filters,” IEEE Trans. Circuits Syst., vol.

36, no. 6, pp. 805–812, Jun. 1989.

[4] C. Cheng and K. K. Parhi, “Hardware efficient fast parallel FIR filter structures based on iterated short convolution,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 51, no. 8, pp. 1492–1500, Aug. 2004.
[5] C. Cheng and K. K. Parhi, “Furthur complexity reduction of parallel FIR filters,” in Proc. IEEE ISCAS, May 2005, vol. 2, pp.

1835–1838.

[6] C. Cheng and K. K. Parhi, “Low-cost parallel FIR structures with 2-stage parallelism,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 54, no. 2, pp. 280–290, Feb. 2007.

[7] I.-S. Lin and S. K. Mitra, “Overlapped block digital filtering,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 43,

no. 8, pp. 586–596, Aug. 1996.
[8] Y.-C. Tsao and K. Choi, “Area-efficient parallel FIR digital filter structures for symmetric convolutions based on fast FIR

algorithm,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 2, pp. 366–371, Feb. 2010.

[9] D. A. Parker and K. K. Parhi, “Low-area/power parallel FIR digital filter implementations,” J. VLSI Signal Process. Syst., vol. 17,
no. 1, pp. 75–92, Sep. 1997.

[10] J. G. Chung and K. K. Parhi, “Frequency-spectrum-based low-area lowpower parallel FIR filter design,” EURASIP J. Appl. Signal

Process., vol. 2002, no. 9, pp. 444–453, Jan. 2002.

