"Compensation of Reactive Power Using D-STATCOM"

P. Venkata Kishore,¹ Prof. S. Rama Reddy,²

¹ Department of Electrical and Electronics Engineering, Research Scholar, Satyabhama University, Chennai,600119, Tamil Nadu, India. ²Professor, Department of Electrical and Electronics Engineering, Jerusalem College of Engineering Chennai, Tamil Nadu, India.

Abstract: The D-STATCOM is a shunt connected FACTS device which supplies reactive power to the load to improve the voltage stability of the load busses. The D-STAT COM in multi bus system is capable of reducing the losses and improving the voltage regulation. This work deals with comparison of Push Pull and Voltage Inverter based D-STATCOM for multi bus system. Eight bus system is modeled using the elements of SIMULINK. The models are developed for eight bus system with and without D-STATCOM. The two D-STATCOM systems are compared with respect to total harmonic distortion and reactive power comparison. The D-STATCOM is studied with respect to the voltage stability improvement at the load busses. The results of VSI based D-STATCOM system are compared with those of Push pull inverter based D-STATCOM system. **Keywords:** Distribution statics synchro- nous compensator (D-STATCOM), Voltage source inverter (VSI), Push Pull inverter, Power Quality, FACTS.

I. Introduction

The electrical power utilities to improve efficiency in the operation of the power system networks by reregulating the industries and opening it to their private competitors. Developing of new approaches to Power System Operation and Control arerequired for overload relief, and efficient and reliable operation. Supporting dynamic disturbancessuch as transmission lines switching, loss of generation, short-circuits and load rejection, needs thereactive control to be fast enough to maintain the desired voltage levels and the system stability [1].Flexible AC Transmission Systems (FACTS), besides the underlying concept of independent controlof active and reactive power flows, are an efficient solution to the reactive power control problemand voltage in transmission and distribution systems, offering an attractive alternative for achievingsuch objectives. Originally, equipment based on thyristors, like TCR (Thyristor Controlled Reactor), TSC (Thyristor Switched Capacitor), and SVC (Static Var Compensator), have been employed insolving these problems, but now equipment based on controlled switches such as GTO, IGBT and IGCT is common. The Static Synchronous Compensator (StatCom), and Static VAR Compensator (SVC) are twotypes of shunt controllers for injection of reactive current, their primary function is the dynamicvoltage control. Related to the SVC, the current is a function of the line voltage and hence its reactive power is function of square of the line voltage. Thus, when the dynamic voltage is say 80%, the injected reactive power is reduced to 64%, just when more is needed. For similar performance, StatCom size wouldbe much smaller and should be themore cost effective of both. The StatCom is one of the mostused FACTS devices [2] for many applications. In relation to the SVC, the StatCom differs in that itcan synthesize the reactive power from small values of storing elements, and, when operating in the linear region, it exhibits a similar behavior to the SVC. However, it is seen by the system as asource of synchronous voltage, while the SVC is seen as a variable admittance [3][4].From the reactive power point of view, the StatCom provides operating characteristics similar toa rotating synchronous compensator without the mechanical inertia, and it provides rapidcontrollability on the three-phase voltages both in magnitude and phase angle. It has received greatattention due to its diverse possibilities of construction and operation. The improvements andbenefits that can be gained when using a StatCom include the following:

• Rapid response to system disturbances.

• Provides smooth voltage control over a wide range of operating conditions.

- Dynamic voltage control in transmission and distribution systems;
- power oscillation damping in power transmission systems;
- transient stability improvement;

• ability to control not only reactive power but, if needed, also active power (with a DC energy

source available)

- a small footprint, due to the replacing of passive banks by compact electronic converters;
- modular, factory built equipment, reducing site works and commissioning time;
- use of encapsulated electronic converters, which minimizes environmental impact on the equipment.

II. Problem Specification

This paper analyzes the key issues in the power quality problems, as one of the prominent power quality problems, the origin, consequences and mitigation techniques of voltage sag problem has been discussed in detail. The STATCOM is applied to regulate transmission voltage to allow greater power flow in a voltage limitedtransmission network, in the same manner as a static var compensator (SVC), the STATCOM has further potentialby giving an inherently faster response and greater output to a system with depressed voltage and offers improved quality of supply. The FACTS controllers are used to regulate the system voltage. The main applications of the STATCOM are;Distribution STATCOM (D-STATCOM) exhibits high speed control of reactive power to provide voltagestabilization and other type of system control. The DSTATCOM protects the utility transmission or distributionsystem from voltage sag and /or flicker caused by rapidly varying reactive current demand. During the transientconditions the D-STATCOM provides leading or lagging reactive power to active system stability, power factorcorrection and load balancing and /or harmonic compensation of a particular load [6,7].

III. Operating Principle Of D-Statcom

The power electronic based three phase reactive power compensation equipment is the D-STATCOM, which generates and /or absorbs the reactive power whose output can be varied so as to maintain control of specific parameters of the electric power system. The D-STATCOM basically consists of a coupling transformer with a leakage reactance, a three phase GTO/IGBT voltage source inverter (VSI), and a DC capacitor. The Basic Arrangement of D-STATCOM is as shown in fig.1a. The AC voltage difference across the leakage reactance power exchange between the D-STATCOM and the Power system, such that the AC voltages at the bus bar can be regulated to improve the voltage profile of the power system, which is primary duty of the D-STATCOM. However a secondary damping function can be added in to the D-STATCOM for enhancing power system oscillation stability. The D-STATCOM provides operating characteristics similar to a rotating Synchronous compensator without the mechanical inertia. The D-STATCOM employs solid state power switching devices and provides rapid controllability of the three phase voltages, both in magnitude and phase angle. The D-STATCOM employs an inverter to convert the DC link voltage V_{dc} on the capacitor to a voltage source of adjustable magnitude and phase. Therefore the D-STATCOM can be treated as a voltage controlled source.

The objective of a VSI is to produce a sinusoidal AC voltage with minimal harmonic distortion from a DC voltage. The operation of the D-STATCOM is as follows: The voltage is compared with the AC bus voltage system (Vs). When the AC bus voltage magnitude is above that of the VSI magnitude (Vc); the AC system sees the D-STATCOM as inductance connected to its terminals. Otherwise if the VSI voltage magnitude is above that of the AC bus voltage magnitude, the AC system sees the D-STATCOM as capacitance to its terminals. If the voltage magnitudes are equal, the reactive power exchange is zero. If the D-STATCOM has a DC source or energy storage device on its DC side, it can supply real power to the power system. This can be achieved by adjusting the phase angle of the D-STATCOM terminals and the phase angle of the AC power system. When phase angle of the AC power system leads the VSI phase angle, the DSTATCOM absorbs the real power from the AC system. if the phase angle of the AC power system lags the VSI phase angle, the D-STATCOM supplies real power to AC system.

The main function is to regulate key bus voltage magnitude by dynamically absorbing or generating reactive power to the ac grid network, like a thyristor static compensator. This reactive power transfer is done through the leakage reactance of the coupling transformer by using a secondary transformer voltage in phase with the primary voltage (network side). The VI characteristics of the statcom is as shown inFig.1b.

The real and reactive powers in D-STATCOM are given by the following equations.

 $P_{12} = (V_1 V_2 / X_{12}) Sin (\delta_1 - \delta_2) - \dots + (1)$

 $Q_{12} = (V_2/X) (V_1 - V_2) - (2)$

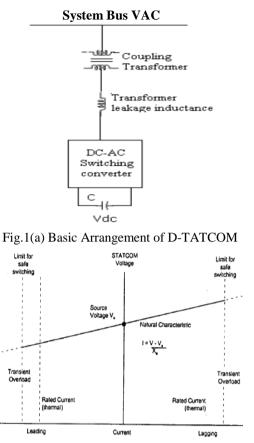
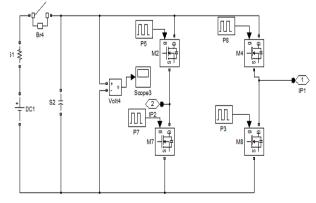



Fig.1(b) Natural V-I characteristic of a D-STATCOM

A) D-STATCOM WITH VOLTAGE SOURSE INVERTER:

The basic principle is to use a voltage source inverter that generates a controllable AC voltage source behind a leakage reactance. The voltage difference across the transformer reactance produces active and reactive power flows with the network. The exchange of reactivepowerwith the network is obtained by controlling the magnitude Vand the exchange of active power results from a control of the phase shift w. The exchange of active power active power is only used to control the DC voltage [8]. Under steady state conditions and ignoring the losses the exchange of active power and thus the DC current are zero. A complete STATCOM generally combines several converters. Alternative inverter structures are being designed, for example using single-phase bridges in series. The most common methods used for controlling the AC voltage generated by the inverter are: DC variable voltage with a full wave inverter, sometimes called Pulse Amplitude Modulation (**PAM**). Constant DC voltage with a pulse-width modulated inverter (**PWM**).

The Voltage Source Inverter (VSI) is the building block of a D-STATCOM and other FACTS devices. A very simple inverter produces a square voltage waveform as it switches the direct voltage source on and off. The basic objective of a VSI is to produce a sinusoidal AC voltage with minimal harmonic distortion from a DC voltage.

www.iosrjournals.org

Fig.2 (a) VSI based D-STATCOM

The STATCOM generates a balanced 3-phase voltage whose magnitude and phase can be adjusted rapidly by using semiconductor switches. The STATCOM is composed of a voltage-source inverter with a DC capacitor, coupling transformer, and signal generation and control circuit. The voltage source inverter for the transmission STATCOM operates in multi-bridge mode to reduce the harmonic level of the output current [9]. Fig.4 shows a single-phase equivalent circuit in which the STATCOM is controlled by changing the phase angle between the **inverter output voltage and the bus voltage at the common point connection point.** The inverter voltage Vi is assumed to be in phase with the AC terminal voltageVt [10].

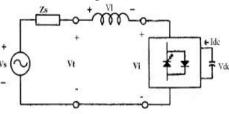


Fig.2(b) Detailed operating principle

The STATCOM supplies reactive powers to the AC system if the magnitude of Vi is greater than that of Vt. $\Box \Box \Box$ It draws reactive power from the AC system if the magnitude of Vt is greater than that if Vi.

B) D-STATCOM WITH PUSH PULL INVERTER

The push-pull inverter circuit comprising a transformer with a power output end coupled to a load and two power input ends is as shown in fig.3. A power driver unit is connected between the two power output ends. A power supply unit, and the power driver unit receives a power signal and outputs two sets of drive signals having same frequency. Circuit diagram of Push-Pull inverter is shown in Fig2. This circuit is also called parallel inverter since the capacitor appears in parallel with the transformer. T_1 and T_2 conduct alternatively to produce the AC output.

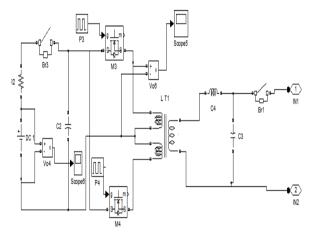


Fig.3 PUSH PULL based D-STATCOM

IV. SimulationResults

For simulation studies, the eightbus system is considered. The circuit model of eight bus system is shown in Fig 4a. Each line is represented by series impedance model. The shunt capacitance of the line is neglected. By closing the breaker in series with the loadanadditionalloadisaddedinparallelwithload-1. Scopesare connected todisplaythevoltagesacross the twoloads. At t = 0.2 sec, additional load is connected. Voltage across theload-1 decreases. This fallinvoltage is due to the increased voltage drop. The voltage across bus 4 is as shown in Fig.4b. The active and reactive power across bus 4 are as shown in Fig.4c.

A. VSI BASED SYSTEM:

The VSI based D-STATCOM addedwith an eightbus system isas showninFig.5a.TheD-STATCOM is connected in the line between buses 4 and 8.TheD- STATCOM Model is shown in Fig.5b. The active and reactive power in the load-1, voltage sacross bus-4 is as shown in Fig.5c. It can be seen that the voltage across load-1 decreases and resures to the rated value due to the injection of voltage by the D-STATCOM. The RMS voltage across bus-4 is as shown in Fig.5d. The real and reactive powers across bus-4 are as shown in Fig.5e. Bus

number Vs Reactive power(Q) is as shown in Fig.5f. The FFT analysis for voltage is as shown in Fig.5g.

B.PUSH PULL BASED SYSTEM

The Push Pull Inverter based D-STATCOMaddedwith aneightbus system is showninFig.6a.TheD-**STATCOMis** connectedin thelinebetweenbuses4and8.The PUSH PULL based D-STATCOMModelisshowninFig.6b. Theactiveand reactivepowerin theload-1,voltagesacrossD-STATCOMareshown in Fig.6c.Itcan beseen thevoltageacrossload-1decreasesandresumesto that theratedvalueduetotheinjection ofvoltageby the D-STATCOM. The RMS voltage across bus-4 is as shown in fig.6d. The real and reactive power across bus-4 is as shown in Fig.6e. Bus number Vs Reactive Power Q) is as shown in Fig.6f. FFT analysis for voltage is as shown in Fig.6g.

Thus theD-STATCOM is able to mitigate the voltages approduced by the additional load. Power quality is improved since the voltage reaches normal value. Summary of real and reactive powers with and without VSI based D-STATCOM are given in Table 1. The reactive power increases by the addition of D-STATCOM. This is due to the increase in the bus voltage. Summary of real and reactive powers with and without PUSH PULL based D-STATCOM is given in the Table 2. The reactive power increases when the D-STATCOM is added. Comparison of VSI and PUSH PULL based D-STSTCOM systems is given in Table 3. THD in Push Pull inverter system is less by 1.7% than VSI based D-STATCOM system.

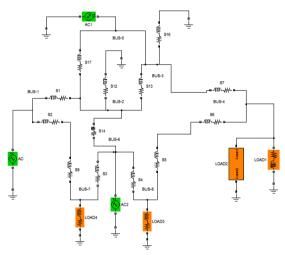


Fig. 4(a). Eight Bus System

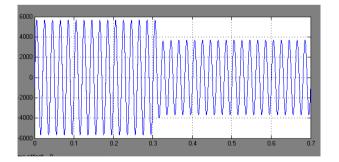


Fig. 4(b) Voltage across bus-4

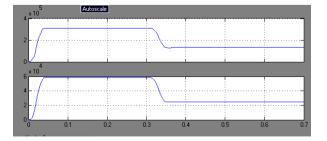


Fig.4(c) Real and Reactive Power across Bus -4

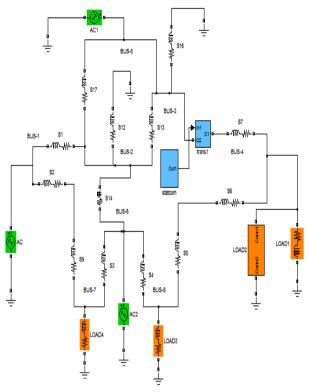
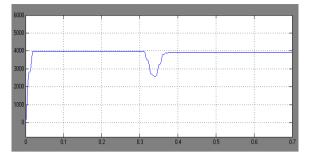



Fig.5(a) Eight Bus System with VSI based D-STSTCOM

Fig. 5(c)Voltage across bus-4

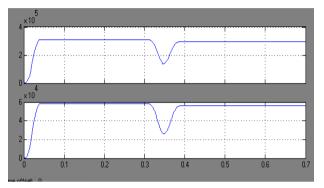


Fig.5(e)real and reactive power across bus-4

Table 1. Summary of Real and Reactive powers with and without VSI based D-STATCOM

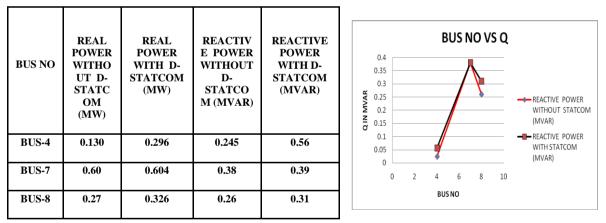
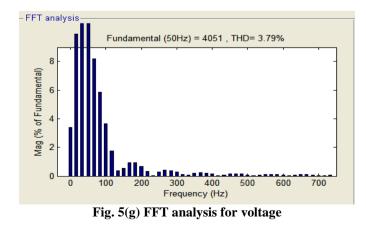



Fig. 5(f) Bus number Vs Reactive Power (Q)

"Compensation Of Reactive Power UsingD-Statcom"

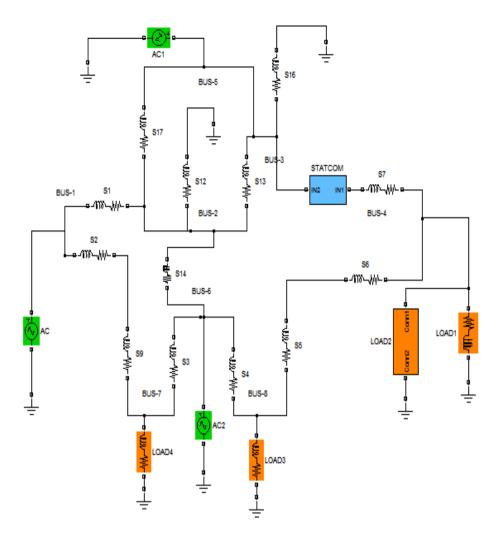


Fig. 6(a) Eight Bus System with PUSHPULL based D-STSTCOM

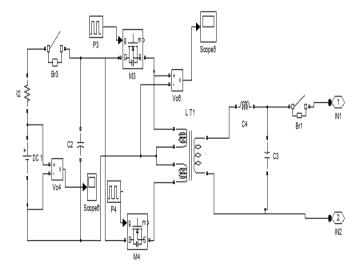


Fig. 6(b) PUSH PULL based D-STATCOM

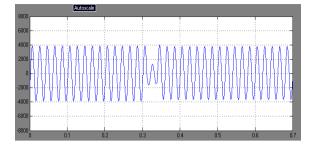


Fig. 6(c) Voltage across bus-4

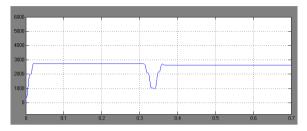


Fig. 6(d) RMS Voltage

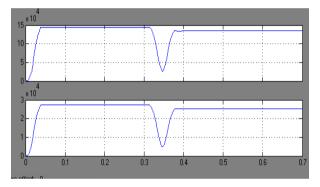


Fig. 6(e) Real and Reactive Power across bus-4

BUS NO	REAL POWER WITHOU T STATCO M (MW)	REAL POWER WITH STATCO M (MW)	REACTIV E POWER WITHOUT STATCOM (MVAR)	REACTIVE POWER WITH STATCOM (MVAR)
BUS-4	0.130	0.134	0.245	0.254
BUS-7	0.60	0.604	0.38	0.382
BUS-8	0.27	0.275	0.26	0.259

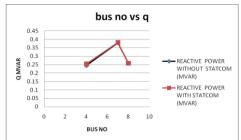


Fig. 6(f) Bus number Vs Reactive Power

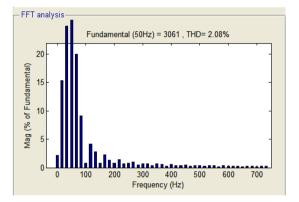


Fig. 6(g) FFT Analysis for Voltage

Table 3. Comparison between VSIand Push Pull Inverterbased D_STSTCOM

INVERT ER TYPE	RMS VOLTAG E(V)	SAG TIME (SEC)	COMP ENSAT ION TIME(S EC)	REACT IVE POWE R (MVA)	THD %
VSI	3919	0.31	0.4	0.55	3.79
PUSH PULL INVERT ER	2640	0.31	0.38	0.254	2.08

V.Conclusion

Eight bus system is modeled and simulated using MATLAB SIMULINK. The simulation results of eight bus system with and without VSI based D-STATCOM are presented. Also, simulation of eight bus system with and without Push Pull inverter based D-STATCOM is done. VSI and Push Pull inverter based D-STATCOM systems are compared. Voltage stability is improved by using both types of D-STATCOM. This system has improved reliability and power quality. Push Pull inverter system is found to be superior to VSI based system. The simulation results are in line with predictions. The scope of present work is the modeling and simulation of eight bus system.

References

- Gyugyi, L. (1998) UnderstandingFACTS:Concepts andTechnology of Flexible AC Transmission Systems.Addison- Wesley, New York, pp 135-207.
- [2] Y. Cheng, C. Qian, M. L. Crow, S.Pekarek, S. Atcitty, "A Comparison ofDiode Clamped and Cascaded MultilevelConverters for a STATCOM with EnergyStorage," IEEE Trans.on Industrial Electronics, Vol. 53, No. 5, pp.1512-1521,2006.

- [3] M.G. Molina and P.E. Mercado, Control Designand simulation of D-STSTCOM with energy storage for Power Quality improvements", in Proc. IEEE/PES trans.4Distrib.L.A. Caracon, Venezuela, 2006.
- [4] IEEE PESworkinggroupFACTSApplications, IEEE press. Pub.No.96-TP-116, 1996.
- [5] N.G.HingoraniandL.Gyugyi, understanding FACTS, concepts and technology of Flexible AC Transmission systems, piscatway, NJ: IEEE press, 2000.
- [6] JianyeCuen, Shan Song, Zanjiwang, "Analysisand implementofThyristerbased STATCOM", 2006, International conference onPowerSystemtechnology.
- [7] MehdiHosseini,MahnoudFotuhiFiruzabad," Modelingofseriesandshuntdistribution FACTS Deviceindistribution system load flow",J.ElectricalSystems4-4(2008),1-12.N.G.Hingorani, L. Gyugi: UnderstandingFACTS. Concepts andTechnology ofFlexible AC Transmission Systems. IEEE Press, New York, 2000
- C. Schauder, "STATCOM for Compensation of Large ElectricArc FurnaceInstallations," Proceedings of the IEEE PES Summer Power Meeting, Edmoton, Alberta, July 1999, pp.1109-1112.
- [9] G. Reed, J. Paserba, T. Croasdaile, M.Takeda, Y. Hamasaki, T. Aritsuka, N. Morishima, S.Jochi, I. Iyoda, M. Nambu, N. Toki, L. Thomas, G. Smith, D.LaForest, W. Allard, D.Haas, "The VELCOSTATCOM-BasedTransmission System Project," Proceedings of the 2001IEEE PES Winter Power Meeting, Columbus, H, January/February 2001.
- [10] C. Schauder, "STATCOM for Compensation of Large Electric Arc FurnaceInstallations," Proceedings of the IEEE PES Summer Power Meeting, Edmonon, Alberta, July 1999.pp.1109-1112.

BIOGRAPHIES FIRST AUTHOR

Mr.P.VenkataKishore has obtained his B.Tech degree from S.V.University India, in 1998 and M. Tech degree From S.V. University India, in 2003. He has 13 years of teaching experience. Heis presently a research scholar at Satyabhama University, Chennai, India.He is working in the area of D-STATCOM. Presently he is working as Professor & HOD in EEE Dept., AVRSVRCET, Nandyal, Kurnool (Dist), AP, INDIA.

SECOND AUTHOR

Dr.S.RamaReddy is professor in the Electrical and Electronics Engineering Department Jerusalem College of Engineering, Chennai, India. He obtained his D.E.E from the S.M.V.M. polytechnic, Tanuku, A.P.,A.M.I.E. in Electrical Engineering from the Institution of Engineers(India), M.E. in Power Systems from Anna University, Chennai, India in1987andHe received Ph.D degree in the area of Resonant Converters from College of Engineering, Anna University, Chennai India in 1995. Hehas published over 40 technical papers in national and international conferences proceedings / journals. He has secured the A.M.I.E. institution gold medal for obtaining the highest

marks. He has won the AIMO best project award and Vijaya Ratna Award. He has 20 years of teaching experience. His research interests include the area so for resonant converters and FACTS. He is a life member of the Institution of Engineers(India), Indian Society for Technical Education, Systems Society of India, Society of PowerEngineersandInstitutionofElectronics and Telecommunication Engineers(India).Hehas published text books on Power Electronics, Solid State Circuitsand Electroniccircuits.