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Abstract
Derivation of Darcy’s law using Homogenization Method
The aim of this work is to show homogenization techniques for solving complex phenomena in heterogeneous 
media. First, we begin with a brief description of a porous medium and some flow equations in a porous 
medium. Then, we will study the homogenization theory whose main objective is to use this homogenization to 
find Darcy’s law. As a reminder, Darcy’s law is a law of flow of water in a porous medium obtained by Henry 
Darcy during his experiments which enabled him to find the connection between the flow of water through the 
sand and the pressure drop of water. We are then interested in Stokes equations considered as equations in the 
microscopic state and using method indicated above, we will solve this equation in order to find Darcy’s 
monophasic and diphasic law.
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I. Introduction
To be able to study the physical phenomena intervening in nature, one firstly needs a model allowing to 

determine equa- tions governing these phenomena, and then one needs to be able to compute the solutions of 
these equations. However, sometimes the resolution of these problems is very difficult because of the 
complexity of problem, for example when the environment in which the physical phenomenon is studied, 
presents itself a very great complexity. We focus on homog- enization method to solve these problems. The 
aim of the homogenization theory is to obtain a homogeneous (simple) approximation of a medium described by 
microscopic properties that are supposed to be very heterogeneous. In this work we are interested in periodic 
homogenization method. We will use latter to determine monophasic Darcy’s law. This well-known Darcy?s 
law is one of the most important equations used to model the fluid flow through a porous medium. Equation 
shows a relationship between the superficial velocity or Darcy velocity and the pressure gradient that was first 
experimentally observed by Henry Darcy in 1855-1856. We will try to use this same method to determine the 
Darcy- Muskat law, which is a two-phase law applied to the flow of two fluids through a heterogeneous porous 
medium. This interest is due to the wide range of applications of such a phenomenon for example: study of 
subsoils (diffusion of oil in porous media), properties of composite materials, etc. This paper is organized as 
follows : First we focus on generalities by describing porous media, their characteristics and properties. We 
also introduce the theory of homogenization. The other part will be devoted to the determination of the Darcy 
equation governs the fluid flow in porous media using periodic homogenization. The following part will be the 
subject of presentation of equations that govern two-phase flows in porous media. We will end with conclusion.

Generality
A porous medium is a medium consisting of a solid matrix and its geometric complement, porous 

space, the latter may be occupied by one or more fluids. Porous media are ubiquitous in our natural 
environment as well as in technological and industrial systems. The porous space is called monophasic when it 
is occupied by a single fluid see figure 2.1 (red is fluid occupying pores and white part is solid). It is diphasic 
when it is occupied by two fluids see figure 2.2 (This figure contains the solid part with white color and two 
fluids occupying the pores, one with red color and the other with blue color).

In general, a volume of porous material can be naturally occupied by a fluid when it has pores. Pores 
are spaces that are not occupied by solid constituents. In this work we are interested in the fluid flow in a 
porous medium consisting of a single solid component characterized by porosity, saturations and permeabilities.
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Homogeneous medium.
A homogeneous medium is a medium where in every point of it, the characteristics are identical. But a 

heterogeneous medium is a medium composed of several identifiable constituents, it is a chemical or physical 
system formed of several phases. We can see in the figure 2.3 starting from the heterogeneous medium to a 
homogeneous medium.

Porosity.
The porosity φ of a material represents the pore density that can be occupied by a liquid or gaseous 

fluid. It is expressed by the ratio of void volume to the total volume occupied by material:
Where vp and vp are respectively the void volume and the total volume occupied by the material. The 

porosity is between

Figure 1: Porous medium occupied by a single fluid

Figure 2: Two-phase porous medium

Figure 3: Diagram showing a homogenized heterogeneous medium.

0 and 1
0 ≤ φ ≤ 1

For example in saturated medium with water, the gaseous phase is completely absent. The maximum 
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proportion of water in the material is therefore equal to the porosity of this material. The voids in the material can 
be connected to each other, this is called open porosity. If the pores are without communication, we talk of 
closed porosity.
Intrinsic permeability κ

Permeability is a physical characteristic that represents the ease with which a material can transfer a 
fluid through a connected network. This characteristic of porous medium is related to the shape of the grains 
and to the communication between the pores. It is independent of the fluid characteristics and depends only on 
the structure and the connectivity of the pores.

Isotropic medium
An isotropic medium is a medium that has the same physical characteristics in all directions; the 

macroscopic properties at one point do not depend on direction.
The permeability coefficient K, or the intrinsic permeability κ, are scalar coefficients if the porous 

medium is isotropic.

Anisotropic medium
An anisotropic medium is a body whose properties vary according to the direction.

When the medium in three-dimensional space is anisotropic, the coefficient of hydraulic 
conductivity is defined by a symmetric tensor of the form :

By locating in the coordinate system whose axes are the directions for which the flow is parallel to the 
load gradient, the conductivity tensor is reduced to its diagonal components :

Two-phase description
Consider a flow of two immiscible fluids through a porous medium such as flow of water and oil. uα 

and Pα are re- spectively the speed and pressure of phase α. α ∈ {w, O} ; og where w represents water phase and 
O represents oil phase.

saturation
In a two-phase porous medium, the saturation S α of phase α is defined by the ratio of volume of the 

phase α to total volume.
Where Vα is the volume of phase α and Vt is the total volume. The sum of saturations is equal to 1.

S w + S o = 1  (4)

density
Density is a physical quantity that characterizes the mass of a material per volume unit. The density ρα 

of the phase α is defined by the ratio of the mass by the volume of this phase. with mα and Vα are respectively 
mass and volume of phase α.

Darcy law
In the framework of his experiments (see figure 4) to improve the quality of filters used for purification 

of water supply of Dijon in France, Henry Darcy was the first to observe in 1856 the relationship between the 
flow rate of steady-state water flow through a porous medium of section S and length L under the effect of a 
load difference ah. Furthermore, the coefficient was dependent on the type of sand used. From these 
observations, he got the following law :

with S the section area of the sand layer, K the permeability coefficient depending on the nature of sand 
used and Q is the flow of filtered water. ah is the pressure drop of the water between top and bottom of sandy 
mass, L the thickness of the sand mass and ah is the hydraulic load gradient . The hydraulic load in one point 
expressing in a general way as follows :

with P pressure, ρ density, g is gravity acceleration and z depth. If one divides the flow Q by section S, 
one obtains a speed, called Darcy velocity u corresponding to a fictitious velocity since it supposes that the whole 
surface, including the matrix, participates in the flow.

This law has been established for a monophasic flow in a saturated porous medium. In modern notation, 
this is expressed, in a local form, by the differential relation

Here ∂P is pressure gradient in the direction of flow, K is the permeability and µ is dynamic viscosity of 
fluid. Darcy’s law is now generalized to incompressible fluids by expressing it according to the intrinsic 
properties of porous medium and the fluid. This law can be generalized to unsaturated media and in 3 
dimensions:

where u is Darcy velocity vector and K represents permeability and depends on the characteristics of 
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the medium and characteristics of fluid. Absolute intrinsic permeability K can be defined by relation :
Darcy’s law is now generalized to compressible fluids by expressing it according to the intrinsic 

properties of the porous medium and fluid.
When a porous medium contains two immiscible fluids, the flow of one of these fluids is slowed by the 

presence of other. Darcy’s law called Darcy-Muskat written for each phase α :
with α ∈ {o, w} where index w represents water phase and o represents oil phase. Each phase has its own 

saturation sα as well as its pressure pα, K is a tensor of absolute permeability, λα is the relative permeability of 
phase α and satisfies λα(0)
= 0, ρα is the density of phase α and g is gravity. Absolute permeability tensor K is expressed as :
Where krα is relative permeability of phase α.

This Darcy-Muskat law makes it possible to generalize Darcy’s law to multiphasic cases. It expresses 
the mass fluxes of different phases by introducing the notion of relative permeability.

Figure 4: Diagram showing flow of water through the sand

We started from mass conservation equations and momentum equation to deduce Navier-Stokes 
equations. Consequently, for the case of a viscous homogeneous incompressible fluid, it has been considered to 
deduce Stokes equations. We will see in the next chapter, the general description of homogenization theory that 
will be applied later to derive Darcy laws.

II. Homogenization Of Stokes Equations
In this section we will present Darcy’s derivation from the Stokes problem. We will use homogenization method.

Stokes problem
Consider a moving fluid in a periodic, open domain, connected Ωs ⊂ R3. Let us denote by ΩF the fluid 

phase, ΩS the solid phase and a continuous liquid-solid interface in pieces Γ = ΓF ∪ ΓS where ΓS and ΓF are the 
boundaries of solid and liquid phases respectively see figure 5. Suppose the fluid is viscous and incompressible 
homogeneous, we model the flow with Stokes equations :
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where us (respectively Ps ) is velocity (respectively pressure) of fluid. f = ( f1, f2, f3) denotes force 
density and µ > 0 the dynamic viscosity of fluid supposed constant and independent of s. The viscosity µ has been 
multiplied by s2 because our system is linear and we can always replace us with s2us .

Figure 5: Porous medium containing single fluid
We note s the ratio of the pore diameter to the overall size of the porous medium: this is the small 

parameter of our asymptotic analysis since the pore size is generally smaller than the characteristic length of the 
reservoir. So let’s take the pore diameter d = 2r where r is the radius and choose L the size of the porous media, 
then s = d « 1.

Since the domain Ωs is assumed to be periodic with period s, consider Y = (0, 1)3 the unit cell of Ωs . 
Let x be a macroscopic variable and define a microscopic variable (x ∈ Ωs then y = x ∈ Y)

Asymptotic development
We will perform an analysis using asymptotic expansion us such that lim us = u with u solution of 

a homogeneous
The results obtained in this chapter have highlighted the interest of the periodic homogenization 

technique to solve prob- lems by from the microscopic state to the macroscopic state Cf. [Cha13]. We apply 
this homogenization method to the Stokes problem for a monphasic flow that allowed us to determine the 
Darcy’s law. We will see in the next chapter, the application of this technique for two-phase case.

III.Periodic Homogenization Method Applied To The Darcy Diphasic Law
We propose in this chapter to present implementation of periodic homogenization 

method for the flow of two fluids in a porous medium. We will show, using periodic 
homogenization method, that the viscous flow of two immiscible fluids is governed by 
macroscopically coupled Darcy laws.

Choice of scales
We assume that Ω∗s be a periodic domain occupied by two fluids water and gas. Ω∗ 

part containing water(w) and Ω∗ the one occupied by gas(g). Interface water-gas noted Γ∗ 
moves slowly. As we did in the previous chapter, we recall the scale separation, we choose 
as macroscopic space variables x∗ and microscopic y∗ are completely independent, which 
amounts to considering the characteristic length of the elementary cell l much smaller than the 
length characteristic of the global structure L :

l  L
We also introduce the perturbation parameter s which represents the ratio between the 

characteristic size at microscopic scale and the characteristic size at macroscopic scale : 

So, scale separation becomes : l
 l
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We use an approach based on an adimensionalization of equilibrium equations using 
reference variables. Then, the dimensionless numbers introduced must be connected to s, 
chosen as the disturbance parameter of the problem, in order to perform the asymptotic 
development of equations.

Microscopic scale description
We assume that the porous medium is rigid, and that the two fluids (water and gas) 

are viscous, Newtonian and incom- pressible. On the other hand, we will also assume the 
inertial effects can be neglected and the two fluids (liquid and gas) are laminar movement, 
permanent and isothermal. At the pore scale, Reynolds numbers associated with the two fluids 
are supposed to be small, that one writes :

Rew  ≤ O()  and  Rew  ≤ O()

At the level of elementary cell, the liquid is governed by Stokes equation (incompressible laminar flow) 
:

where  denotes the liquid-solid interface in the elementary cell of Ω∗.
In the same way, Stokes equation for gas is written :

where   denotes the gas-solid interface.
The boundary conditions at the liquid-gas interface are given by the continuity of pressure on  :

where ,  ,  and respectively denote constraints of liquid and gas, ,    is capillary pressure , and     is 
unitary normal at the interface 
As moves slowly, we note :

.n0()  in 

.n0()   in   
With

.n .n      in  
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We introduce the dimensionless magnitudes of the problem: where the variables indexed by r are the 
reference variables, and the new variables that appear (without star) are dimensionless.
By introducing these dimensionless variables 67 in equations 61 - 66, we obtain the dimensionless 
problem for the liquid

We introduce the dimensionless magnitudes of the problem

 by introducing variables indexed by r which will be the reference variables and the new variables 
which appear (without a star) are dimensionless. By introducing them into the equations above, we 
will obtain the dimensionless problem for the liquid

and similarly we get for the gas :

The chosen approach is based on an adimensionalization of equilibrium equations written in local 
form, so as to reveal dimensionless numbers governing the problem. Then, the asymptotic 
development of equations leads to the desired homogenized macroscopic model. The generalized 
Darcy equation was found by periodic homogenization, connecting the fluid velocity to the pressure 
gradient.

IV. Conclusion
During this Master thesis, we have been interested in describing equations describing 

the flow of an incompressible vis- cous fluid. We started from the microscopic equations of 
Stokes. The objective of this work was to obtain the macroscopic equations of fluid flows in a 
porous medium. These macroscopic equations, that describing the monophasic flow is Darcy’s 
law and the other one describing the two-phase flow is Darcy-Muskat law. To achieve this 
goal, we started from homog- enization theory of periodically heterogeneous medium. This 
part is an important tool for solving microscopic equations describing natural phenomena. 
We defined two variables, one is microscopic variable and the other one is macroscopic. 
These last were related to the s perturbation parameter, the ratio between the microscopic and 
macroscopic scales. From a thermal equation, the implementation of asymptotic expansion 
allowed us to find homogenized problem as well as the homogenized coefficients. Some 
properties for two-scale convergence have been reported closing this part. We used an 
asymptotic development approach to determine Darcy’s law from Stokes equations. Finally, 
the dimensional analysis of flow equation of two fluids governed by Stokes equations, 
allowed us to naturally highlight the relevant dimensionless numbers characterizing the 
problem. The law of Darcy-Muskat was found by the same method previously.

Since the description of our work is focused only on the periodic heterogeneous 
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domains and limited to two scales, among the perspectives that we envisage later in order to 
enrich this work, it would be interesting to expand for the heterogeneous materials, whose 
behaviors local mechanics may be nonlinear or time dependent. In addition, it would be 
interesting to use numerical methods to simulate.

References
[1] [All10] G. Allaire, Introduction To Periodic Homogenization Theory, Cmap, Ecole 

Polytechnique, 2010. [Alo16] Francois Alouges, Introduction To Periodic 
Homogenization, 2016.

[2] [Cha13] Kannanut Chamsri, Derivation Of Darcy’s Law Using Homogenization 
Method, International Journal Of Mathe- Matical And Computational Sciences 7 
(2013), 1399–4013.

[3] [Mch13] Walid Mchirgui (Ed.), Mode´Lisation Des Transferts Hydriques Dans Les 
Milieux Poreux Partiellement Sature´S Par Homoge´Ne´Isation Pe´Riodique : 
Application Aux Mate´Riaux Cimentaires, Me´Canique-Ge´Nie Civil, No. 200, 
American Mathematical Society, Hal, France, 2013.

[4] [Ndi13] Ousseynou Ndiaye, Simulation Nume´Rique De L’e´Coulement Du Pe´Trole 
A L’interieur D’un Reservoir Naturel Bidimensionnel, Tech. Report, Universite 
Gaston Berger De Saint-Louis, Se´Ne´Gal, 2013.

[5] [Pav04] G.A. Pavliotis, Homogenization Theory For Partial Differential Equations, 
2004, Imperial College London. [Pav05] Homogenisation Theory For Partial 
Differential Equations, Casa Seminar (Yves Van Gennip, Ed.),

[6] Center For Analysis, Scientific Computing And Applications, Netherlands, Eindhoven 
University Of Technology,

[7] 2005, Pp. 1–26.
[8] [Sal18] Malick M. Sallah, Homogenization For Elliptic And Parabolic Partial 

Differential Equations., Master, Gaston Berger University, 2018.
[9] [San15]  Daouda Sangare´, Mode´Lisation En Me´Canique Des Fluides, Cours 

Missionnaires, 2015, Pp. 1–17.

Notations
κ :intrinsic permeability
ρ : density (kg/m3)
µ : dynamic viscosity (kg/m.s) g : gravity (m/s2)
Q : outflow (m3/s)
S : Flow section (m2) h : height (m)
L : Porous medium length (m) K : Hydraulic conductivity(m/s)
∆h : Difference of heights (m)
u : Darcy velocity (m/s)
ρα: density of phase α (kg/m3)
S α: saturation of α
µα: viscosity of phase α (kg/m.s)
φ: Porosity
λα: mobility of phase α λ: total mobility ,
Krα: relative permeability of phase α , Pα: pressure of phase α (kg/m.s2) , Pc: capillary pressure 
(kg/m.s2),
uα: Darcy velocity of phase α (m/s),
qα: source term α,
fα: flow fraction of the phase α.
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∇ : gradient
∇. : divergence
a : Laplacian
D : particular derivative
Ω : Domain of porous medium
Γ : boundary of domain
v : volume
vt : total volume
τ : Shear constraint t : time
I3 : identity matrix
σ : constraint tensor
As : differential operator çw : constraint of water çw : constraint of gas
t a : transposed of Laplacian operator
Tr : trace


