

Copyright Risks Of Dynamic Image Production In The Era Of Artificial Intelligence

Jia Ru

(College Of Publishing, University Of Shanghai For Science And Technology, Shanghai, China)

Abstract:

Generative AI technology is permeating film, animation, and new media, profoundly transforming the creative logic and dissemination structures of traditional moving images. Unlike previous digital technologies that served merely as auxiliary tools, generative AI has now deeply embedded itself within the very process of dynamic image expression. Copyright risks arising at various stages—including model training, content generation, and dissemination—are becoming increasingly prominent. This paper therefore examines generative AI's involvement in dynamic image production, categorizing and analyzing related copyright risks across three dimensions: training data sources, the generated content itself, and the dissemination process. The study concludes that copyright risks associated with generative AI are not isolated incidents but permeate the entire lifecycle of moving image production and dissemination. These risks challenge traditional copyright law principles—including originality determination, the idea-expression dichotomy, and substantial similarity assessments—while also driving systemic changes in platform liability and infringement attribution frameworks. By mapping this risk structure, this paper aims to provide a clearer analytical framework for addressing copyright issues in AI-generated moving images during the era of artificial intelligence.

Keywords: generative AI; dynamic images; copyright risks; intelligent image production

Date of Submission: 10-01-2026

Date of Acceptance: 20-01-2026

With the rapid advancement of Generative Artificial Intelligence (Generative AI) technology, its applications in intelligent image production continue to deepen. Generative techniques, exemplified by diffusion models, can automatically produce high-quality visual content by learning from vast amounts of image and video data—a phenomenon termed intelligent imaging. Today, ordinary users can swiftly accomplish visual creation tasks that previously required professional creators and complex workflows, simply by inputting text instructions. The widespread adoption of generative AI has not only significantly lowered creative barriers and production costs but also vigorously driven process restructuring and efficiency gains across multiple sectors including film, advertising, animation, and new media (Zhang Xinxin,2025). However, the technological dividends have also brought a series of urgent copyright issues that profoundly challenge the traditional copyright system built around human authorship. Unlike previous digital technologies that served merely as creative aids, generative AI has deeply integrated into the expressive formation process of intelligent imagery. By massively learning from existing works, reorganizing visual features, and outputting results probabilistically, it generates content that appears original. Yet its underlying mechanisms inevitably operate within the ambiguous boundaries of existing

copyright law, introducing unprecedented copyright risks. Copyright disputes related to generative AI have become one of the most pressing and urgent issues in the current AI governance framework.

The high dependence of the intelligent imaging field on specific forms of expression further amplifies the copyright risks associated with generative AI. When generative AI can rapidly produce batches of realistic images that closely mimic the visual style of specific creators or works, the established boundaries of traditional copyright law—regarding originality, the idea-expression dichotomy, and substantial similarity determinations—face new challenges in application. Simultaneously, such content readily gives rise to covert, large-scale, and chain-based infringement during dissemination, further complicating the identification and management of copyright risks(Huang Xu, Hu Yan, Dong Zhiqiang, 2025). Examining the technical workflow of generative AI reveals that copyright risks permeate the entire image production process, not merely the content output stage. First, during model training, vast amounts of image and video data are incorporated into training systems through web scraping or third-party datasets. The legitimacy of these data sources, the scope of their licensing, and the right holders' entitlement to informed consent remain persistently unclear. Second, during content generation, assessing the originality of AI-generated images and determining their substantial similarity to existing works defies straightforward application of traditional copyright standards. Finally, during practical application and dissemination, the boundaries of responsibility among users, platforms, and model developers remain unclear, causing infringement risks to escalate as content spreads (Wan fang, 2025).

This paper focuses on the copyright risks arising from the integration of generative artificial intelligence into intelligent image production, conducting a typological analysis across three dimensions: data sources, generated content, and dissemination processes. By examining the interplay between generative AI mechanisms and intelligent imaging practices, it seeks to trace the logical pathways and concrete manifestations of current copyright risks, thereby providing a clearer analytical framework for addressing copyright issues in intelligent imaging within the AI era.

I. Copyright Risks Associated With Data Sources In Intelligent Image Production

In the process of generating AI-powered intelligent imagery, copyright risks do not originate at the content output stage but are already embedded in the data acquisition phase during training. Rather than abstract debates over the legality of training practices, the legitimacy and controllability of data sources themselves represent the primary prerequisite for addressing generative AI copyright risks. Different data source types exhibit significant variations in licensing methods, clarity of rights holders, and usage boundaries, leading to distinct forms of copyright risks that warrant targeted analysis(Zhao Lili, Hu Chenming, 2025).

1. Copyright Risks Associated with Web Scraping Data Sources

When generative AI learns to create visual content, the most common method of data acquisition involves large-scale harvesting of publicly available visual materials online through automated technologies. This includes photographic works, illustrations, film and television screenshots, and other content, much of which remains under copyright protection. Due to the highly covert and large-scale nature of web scraping, while technically convenient, it also poses significant copyright risks from a legal perspective. From a copyright law perspective, the core value of visual works lies in their specific form of expression. Generative AI,during training, holistically utilizes, deconstructs, and stores parameters of these works. While not existing as traditional “reproductions,”this process does not inherently preclude the possibility of constituting reproduction. Particularly when training occurs without rights holders' permission, incorporating vast amounts of protected works into model training essentially constitutes potential infringement of copyright holders' reproduction rights and information network dissemination rights (Yang Xiaolan, 2012).

Relevant disputes have already emerged in judicial practice. In the landmark case of *Getty Images v. Stability AI*, the plaintiff alleged that its image database was used without permission for model training. It pointed out features such as residual watermarks and highly similar compositions in the generated content, indicating that the model training process heavily relied on specific works. Although the case has yet to reach a final judgment, it highlights a critical issue: when model training relies on untraceable data scraping, rights holders have virtually no way of knowing whether their works have been used, let alone asserting their rights (Su Yi, 2025). Some perspectives attempt to frame such usage within the “fair use” framework, arguing that model training is transformative and not intended to replace the original work (Cao Xinming, Fan Ye, 2024). However, in the field of intelligent imaging, the expressive form of a work itself constitutes its value. When incorporated wholesale into a model’s learning system, it cannot be simplistically regarded as a neutral information processing activity. Thus, web-scraping data sources, lacking authorization and transparency mechanisms, constitute the primary source of copyright risks for generative AI-powered intelligent imaging.

2. Copyright Risks Associated with Third-Party Data Sources

Compared to direct web scraping, acquiring curated intelligent image training datasets from third-party institutions or platforms is often regarded as a more standardized approach to sourcing data. However, this seemingly prudent practice does not fundamentally eliminate copyright risks in practice. Instead, it may create new vulnerabilities due to unclear licensing boundaries. Third-party dataset curators are typically not the copyright holders of the original works. Their collection, annotation, and redistribution of data must be predicated on obtaining lawful authorization. In reality, however, licensing terms for datasets often suffer from vague wording and ambiguous scope. For instance, permissions may be granted solely for “academic research” or “non-commercial use,” yet the data is subsequently repurposed for training commercial models and product development. When model developers utilize such datasets without rigorous scrutiny, they may unwittingly exceed the original authorization scope (Zhuang, Aifan, 2025).

Such disputes are commonplace in the use of open-source datasets abroad. Some widely circulated intelligent image datasets, though labeled as “freely usable,” still contain a significant amount of copyrighted works. Once content generated by models based on these datasets is used for commercial dissemination, rights holders often bypass the dataset curators and directly assert infringement claims against the model developers. This liability structure exposes model developers to the risk of “formal compliance but substantive infringement.” For instance, in the case of *Andersen et al. v. Stability AI et al.*, plaintiffs alleged that defendants trained models using third-party open-source datasets like LAION-5B, which contained substantial unauthorized artistic works. The court’s central consideration was not whether the data was “publicly available,” but whether the dataset curators and users had obtained explicit permission from the copyright holders of the works. This profoundly reveals that even when developers utilize widely circulated “standardized” third-party datasets, the infringement risks arising from inadequate copyright clearance and authorization verification for underlying works are not inherently mitigated by the ‘platformization’ or ‘open-sourcing’ of data sources. Instead, such risks may be systematically amplified during model training and commercial deployment (Liu Xiaolu, 2025). From a risk structure perspective, the issue with third-party datasets lies not in whether data is centralized or standardized, but in the mismatch between licensing entities, scope of authorization, and intended use. When the licensing chain fails to fully cover model training and commercial application stages, so-called “compliant datasets” struggle to serve as genuine safeguards.

3. Copyright Risks Associated with User-Generated Data Sources

Beyond the model pre-training phase, reference images actively uploaded by users during usage also serve as a crucial supplementary source for training data. While this process appears user-driven, the underlying

copyright risks warrant vigilance. In most platforms' user agreements, the platform typically assumes users possess lawful rights to their uploaded content and assigns potential infringement liability to users through standardized clauses. However, in practice, users frequently upload copyrighted photographs, illustrations, or film/TV footage. If the platform lacks effective mechanisms to identify and isolate such content, instead incorporating it into the model's subsequent learning system, a single instance of infringing upload could escalate into persistent, systemic infringement risks.

In a 2025 case heard by the Hangzhou Internet Court, a user uploaded copyrighted images of the "Ultraman" character to an AI platform for training a customized Lora model, resulting in other users generating a large number of infringing images. Although the platform defended itself by invoking "technological neutrality" and the "safe harbor" principle, the court ruled that the platform exercised control over the generated content and profited from it. Given Ultraman's highly recognizable image, the platform should have foreseen the risks but failed to take reasonable measures. Consequently, the court ultimately determined that the platform constituted contributory infringement(Dai Jianglong, He Ruonan, 2025). This ruling indicates that China's judicial practice has begun addressing risks associated with user-input data sources. When a platform's technical architecture can absorb and propagate infringing content input by users, relying solely on unilateral user agreements may prove insufficient for complete exemption from liability. Platforms must assume corresponding obligations for copyright filtering and governance. More significantly, generative AI's utilization of user-uploaded content is not a "disposable" process—the system may technically absorb and internalize it subsequently influencing the generative outcomes for all subsequent users. This infringement pathway, triggered by users and amplified through technical structures, renders the traditional "user infringement-platform exemption" liability framework increasingly inadequate. Consequently, the copyright risks associated with user-input data sources extend beyond mere infringement determinations, pointing to the institutional responsibilities platforms should bear at the levels of data governance and technical architecture.

II. Copyright Risks Associated With Generative AI-Produced Dynamic Image Content

Beyond the risks associated with training data, the intelligent visual content generated by AI poses a direct challenge to traditional copyright assessment frameworks. The determination of originality, the idea-expression dichotomy, and the substantial similarity standard face application dilemmas in generative AI scenarios, necessitating analysis grounded in the underlying generation mechanisms (Lü Bingbin, 2025).

1. The Dilemma of Originality Determination in Intelligent Imaging

The prerequisite for copyright protection lies in the originality of a work. However, determining the originality of generative AI images presents significant uncertainty in practice. The crux of the issue is whether such images should be regarded as "the result of human creation" or "the product of algorithmic computation." On one hand, generated content often exhibits complete visual structures and aesthetic value(Qi Qi, 2025). On the other hand, its creation relies on existing sample works, challenging the traditional standard of "independent creation." In relevant judicial practice, courts typically examine whether generated content constitutes a work by assessing the level of human intellectual input. For instance, in China's first "AI text-to-image" copyright case(Xu Lei, 2025), the court emphasized that human factors—such as prompt selection and parameter adjustments—exerted decisive influence on the generated outcome, thereby affirming its status as a work. However, this judicial reasoning may not directly apply to dynamic image production scenarios. When generated content relies heavily on the model's inherent algorithmic logic with limited human control, the originality of such content becomes susceptible to challenge (Han Xiaoyu, Meng Saifu, 2025). Thus, the originality debate surrounding generative AI imagery extends beyond whether a specific content type merits protection. It reflects the structural inadequacy of

traditional copyright systems—centered on human authorship—when addressing algorithmically generated content (Qi Aimin, 2014). This issue becomes particularly pronounced in fragmented, fast-paced dynamic image production scenarios like short videos.

2. The Paradox of Applying the “Thought-Expression Dichotomy” to Generative AI-Produced Intelligent Dynamic Images

Traditional copyright law employs the idea-expression dichotomy to exclude abstract ideas, styles, and techniques from protection, safeguarding only concrete forms of expression. However, in the dynamic production of generative AI imagery, this distinction reveals significant practical tensions. When technology can reliably replicate “style” itself, the question arises whether the idea-expression dichotomy can still fulfill its original function—a challenge that cannot be avoided. Generative AI can highly stably reproduce specific artistic styles, compositional approaches, and visual characteristics without replicating concrete works. While this “style mimicry” may not formally constitute replication of a single work, it can effectively exert a substitutive impact on the original creator's creative market. For instance, in advertising, promotional videos, and platform-commissioned content, generative AI can reliably produce short-form videos embodying “cinematic flair,” “documentary aesthetics,” or “auteur style.” While not directly replicating specific visual elements, such content achieves striking similarity in cinematographic language and emotional structure to existing works, enabling it to directly substitute human-created output in commercial applications. In this context, style ceases to be an abstract concept and instead exerts a tangible impact on the original creator's market space through recognizable, reproducible dynamic visual expressions. Since style itself is not protected, rights holders often struggle to assert their rights through traditional infringement channels (Chen Lingxiao, Yu Xinquan, Lu Wei, et al., 2025). This creates a paradox: when technological means render abstract styles highly recognizable and replicable, the idea-expression dichotomy—originally designed to balance creative freedom and rights protection—may instead exacerbate the imbalance of rights. This issue is particularly pronounced in the realm of moving images.

3. The Dilemma of Substantive Similarity Determination

Generative AI-powered images typically do not replicate a single work but rather reorganize multiple samples, posing a risk of undermining the traditional “work-to-work” substantial similarity assessment approach. At the infringement determination level, substantial similarity has long been a key criterion for judging AI-generated image infringement. However, generative AI images typically do not originate from a single work but result from the statistical reorganization of vast sample sets, rendering traditional “work-to-work” comparison approaches difficult to apply (Zhang Junfa, 2025). In practice, even when rights holders detect high similarity between generated content and their own works, they often struggle to prove the model's direct reliance on specific works. For instance, in AI-generated narrative segments or stylized short videos, audiences frequently perceive a distinct “resemblance to a certain classic film genre” yet cannot pinpoint the exact source of imitation. This characteristic of dynamic image generation—familiar yet untraceable—makes it difficult to initiate traditional substantive similarity assessments based on “work-to-work” comparisons. This assessment dilemma has dual implications: on one hand, it significantly increases the cost of enforcement and the burden of proof for rights holders; on the other, it weakens the deterrent effect of the law due to blurred infringement boundaries, further exacerbating copyright uncertainty in generative AI dynamic image production.

III. Copyright Risks In Intelligent Image Dissemination

Following the integration of generative AI into intelligent image production, copyright infringement risks extend beyond the content generation phase, proliferating further as generated content spreads. Unlike traditional visual works that primarily rely on single distribution channels, AI-generated imagery often rapidly enters social platforms, content platforms, and commercial applications upon creation. Its dissemination pathways exhibit chain-like and decentralized characteristics. This shift means infringement risks no longer clearly attach to a specific entity but instead continuously diffuse and transfer within complex dissemination networks.

1. Individual-level dissemination risks: Unintentional infringement during the generation and redistribution of content

In the practical application of generative AI-powered intelligent imaging, individual users often serve as the starting point for generated content entering dissemination networks. Users typically obtain generated results by inputting prompts or selecting reference images, then publish them to social media, content communities, or directly deploy them in commercial scenarios without systematic copyright assessment capabilities. Since such generated content often exhibits strong visual integrity and an appearance of “originality,” users frequently fail to recognize the potential infringement risks it may conceal, thereby creating a state of infringement that is not based on subjective intent(Ma Fei, 2025).

On one hand, generative AI has significantly lowered the technical barriers to image production, enabling non-professional creators to rapidly obtain high-quality visuals. However, this has also blurred users' understanding of the boundaries between creation and dissemination responsibilities. When users employ AI-generated imagery for public dissemination—such as social media displays, account management, or commercial promotions—their actions transcend private usage. Yet their comprehension of fair use boundaries often fails to evolve accordingly. This is particularly true when prompting directly specifies an artist's style or characteristics of well-known works, as the similarity between the generated output and existing creations increases, concentrating corresponding copyright risks. On the other hand, individual users often assume the role of “secondary disseminators” in the circulation of generative AI imagery. Even if they are not the original publishers of the generated content, their acts of reposting, re-editing, or commercial exploitation may still expose them to infringement risks due to the dissemination itself. The peculiarity here lies in the fact that infringement does not stem from deliberate plagiarism but from misjudging the legitimacy of generated content. With the proliferation of generative AI tools, this type of unintentional infringement arising from technological convenience is becoming a widespread form of dissemination risk(Chen Xiaodong, 2025).Consequently, in the dissemination of generative AI-generated images, individual users are no longer merely passive adopters of technology; their dissemination actions have become critical points where infringement risks actually materialize.

2. Propagation Risks at the Large Model Tool Level: Amplification of Infringement Spread Through Generation-Output Mechanisms

Unlike traditional tools that merely provide creative assistance, generative AI large models play a dual role in intelligent image production: both generating content and triggering its dissemination. Generated content does not enter the dissemination phase after prolonged user creation; instead, it assumes a complete, disseminable form the instant it is output by the model. This “generation-as-dissemination” technical characteristic shifts infringement risks to the generation stage (Xiao Yang, 2025).

From a technical perspective, large models perform statistical learning on vast amounts of visual data, probabilistically reorganizing existing visual elements during the generation phase. While the generated output typically does not reference a single specific work, it may still exhibit striking similarities to particular artworks

or styles in overall composition, color relationships, or detailed treatment. When generative tools are designed to encourage users to create by specifying artist names or styles of renowned works, the dissemination risks associated with their outputs are significantly amplified. Furthermore, generative AI tools often possess batch generation and rapid iteration capabilities, enabling the mass production of potentially infringing intelligent images within short timeframes. This scaled output transcends the limitations of “individual replication” in traditional visual infringement, causing infringement risks to exhibit characteristics of systemic diffusion. Under such circumstances, even if the infringement determination of a single generated result is disputed, its overall dissemination effect may still substantially impact the market interests of rights holders.

It should be noted that large-scale model tools are not entirely technology-neutral. Decisions regarding algorithm design, training data selection, and parameter settings for generation can all substantially influence the formation of dissemination risks. However, due to the high opacity of model operational mechanisms, infringing outcomes are often difficult to trace clearly at the technical level, further exacerbating the uncontrollability of dissemination risks. In this sense, large-scale models can no longer be regarded as neutral technological tools in the traditional sense.

3. Platform-Level Dissemination Risks: Transfer of Copyright Liability in Algorithm-Based Distribution and Commercialization Mechanisms

In the dissemination of generative AI-generated images, platforms do not merely serve as repositories for information storage or forwarding. Instead, they deeply influence the shaping of content dissemination outcomes through algorithmic recommendations, traffic distribution, and monetization mechanisms. When AI-generated images are incorporated into a platform's recommendation system and gain significant exposure, the potential consequences of infringement are simultaneously amplified.

Taking short-video platforms and video-sharing platforms as examples, generative AI does not exist as an independent technological tool but is embedded within the platform's content ecosystem. Platforms not only provide users with generation interfaces but also directly influence the large-scale production and dissemination of generated content through algorithmic recommendations, traffic incentives, and monetization mechanisms. Within this structure, the platform's role has evolved from a mere information carrier to a critical node in the generative AI dynamic video production chain. Within platforms like Douyin, Kuaishou, Bilibili, and YouTube, generative AI-created videos often seamlessly align with existing content algorithms. These videos typically feature fast pacing, distinct emotional direction, and highly categorized content types—traits that precisely match platform algorithms' preferences for metrics like completion rates and engagement intensity. This enables generatively created content to gain rapid traffic support even without clear author attribution. Under this mechanism, platforms no longer merely provide display space. Instead, through recommendation algorithms and content distribution rules, they exert decisive influence over the dissemination effectiveness of generated videos. When platforms fail to conduct substantive reviews of the origin and legitimacy of generated content, infringement risks are further amplified by algorithmic mechanisms. This risk does not stem from isolated, incidental infringements but is rooted in the systemic incentives embedded within platform structures that drive the continuous production and diffusion of generated content.

This level of deep involvement fundamentally challenges the “safe harbor” principle in traditional copyright law. Traditionally, online service providers could claim liability exemption by asserting technological neutrality when certain conditions were met. However, generative AI platforms occupy a dual identity as both “tool providers” and “content distributors and operators.” On one hand, they wield greater control over content creation and dissemination; on the other, they derive direct commercial benefits from the traffic generated by content distribution, undermining their claim to “neutrality” (Hu Kaizhong & Jiang Ludie, 2025). Judicial practice has

reflected this shift. Rights holders increasingly direct infringement claims directly at platforms, alleging that algorithmic recommendations and commercial promotions actively expand the reach of infringing content. This trend indicates that when platforms proactively shape dissemination through technological means, their role transcends that of a “passive intermediary.” Consequently, in the context of generative AI-generated visual content dissemination, platform liability is no longer determined by mere “knowledge” but must consider their overall level of control over the entire dissemination mechanism. When platforms simultaneously control generation tools, distribution algorithms, and business models, traditional safe harbor rules based on “storage-forwarding” logic struggle to accommodate their operational patterns. This signifies that generative AI is triggering a systemic evolution and restructuring of traditional copyright liability frameworks.

IV. Conclusion

The transformation of intelligent image production methods by generative AI is no longer merely a technological tool innovation, but a systemic challenge to the foundational assumptions of existing copyright systems. This paper categorizes and analyzes the copyright risks arising from the integration of generative AI into intelligent image production across three dimensions: data sources, generated content, and dissemination processes. It aims to reveal the intrinsic mechanisms of risk generation and their practical manifestations. The research indicates that generative AI copyright risks are not localized or isolated but permeate the entire lifecycle of image production and dissemination. At the data source level, the untraceability of training data and incomplete authorization chains (Wang Ruoyu, Hu Shensong, 2025) embed copyright risks from the model training stage. At the generated content level, challenges in originality determination, the idea-expression dichotomy, and substantial similarity assessments expose structural tensions within traditional copyright theory when applied to algorithmic generation. At the dissemination level, the rapid proliferation of generated content and multi-stakeholder participation amplify infringement risks through chain-like propagation and magnified impact, further complicating liability attribution. It should be noted that this paper primarily focuses on typological analysis of copyright risks, offering only preliminary exploration of governance approaches and institutional responses to generative AI technologies. As relevant legislative and judicial processes deepen, the critical challenge remains: how to balance the protection of legitimate rights holders' interests with the preservation of reasonable space for technological innovation and creative freedom. This will remain a vital topic for continued in-depth research.

Acknowledgement

This paper is the phased achievement of the Second Batch of Scientific Research Project Curriculum Cultivation Program of University of Shanghai for Science and Technology in 2025, under the guidance of Supervisor Zhang Xiong.

References:

- [1] Zhang Xinxin. “AI Plus” Publishing: A Review Of AIGC Research Progress—From The Perspective Of The State Council's Opinions On Deepening The Implementation Of The “AI Plus” Initiative [J]. Journal Of Shanghai University Of Science And Technology (Social Sciences Edition), 2025, (12): 4-6.
- [2] Huang Xu, Hu Yan, Dong Zhiqiang. Theoretical Mechanisms, Risks, Challenges, And Enhancement Pathways For Generative AI-Empowered Industrial Transformation And Upgrading [J]. Southwest Finance, 2025, (10): 3-6.
- [3] Wan Fang. The Triple Dimensions Of International Governance For Artificial Intelligence: Product Liability, Ethical Values, And National Security [J]. Chinese And Foreign Law, 2025, 37(06): 1469-1472.
- [4] Zhao Lili, Hu Chenming. Comparative Study On Copyright Risk Governance Of Generative AI Training Data [J]. Journal Of Beijing University Of Posts And Telecommunications (Social Sciences Edition), 2025, 27(02): 65-67.

- [5] Yang Xiaolan. Research On Internet Copyright [M]. Beijing: Intellectual Property Press, 2012: 65-85.
- [6] Su Yi. Returning To Fair Use: A Typological Study Of AI Data Training [J]. Finance And Law, 2025, (06): 118-122.
- [7] Cao Xinming, Fan Ye. Research On Fair Use Rules For Generative AI Data Training [J]. China Copyright, 2024, (04): 23-25.
- [8] Zhuang Aifan. Research On Internet Copyright Crimes [D]. China People's Public Security University, 2025.
- [9] Liu Xiaolu. Study On Copyright Issues In Generative AI Data Training [D]. Yantai University, 2025.
- [10] Lü Bingbin. The Analogy Method In AI Jurisprudence And Its Reflections: Taking AIGC Copyright Protection Issues As An Example [J]. Journal Of Legal Studies, 2025, 47(06):157-165.
- [11] Qi Qi. Exploring The Copyrightability Of AI-Generated Works [J]. Western Academic Journal, 2025, (20):6-7.
- [12] Xu Lei. Copyright Attribution Disputes In AI-Generated Content And Risk Governance In Convergent Publishing Practices [J]. Media Forum, 2025, (23): 22-25.
- [13] Dai Jianglong, He Ruonan. Regulation Of Copyright Infringement Risks In Large Model Training Data [J]. Digital Library Forum, 2025, (12): 3-4.
- [14] Han Xiaoyu, Meng Saifei. Study On Copyright Issues Of AI-Generated Content (AIGC) [J]. Hebei Legal Vocational Education, 2025, 3(09): 117-122.
- [15] Qi Aimin. General Theory Of Intellectual Property Law [M]. Beijing: Peking University Press, 2014: 40-60.
- [16] Chen Lingxiao, Yu Xinquan, Lu Wei, Ye Long. Infringement Certification Of AI Artworks Based On Style Recognition [J]. Research On Information Communication, 2025, 32(05): 3-4.
- [17] Zhang Junfa. Classification Of AI-Generated Content Under Copyright Law [J]. New Media And Society, 2025: 9-10.
- [18] Ma Fei. Challenges In Determining Liability For Infringement Of AI-Generated Content And Countermeasures [D], Yangzhou University, 2025.
- [19] Chen Xiaodong. Criminal Liability Pathways For Generative AI Users' Copyright Infringement Crimes [J]. Jiangsu Social Sciences, 2025:179-181.
- [20] Xiao Yang. Research On Liability Subjects And Obligation Systems Of Generative Artificial Intelligence [D], Lanzhou University, 2025.
- [21] Hu Kaizhong, Jiang Ludie. Study On Copyright Infringement Liability Of AI-Generated Content Service Providers [J]. Journal Of Huazhong University Of Science And Technology (Social Sciences Edition), 2025, 39(05): 56-59.
- [22] Wang Ruoyu, Hu Shensong. Data Traceability Challenges And Collaborative Governance Approaches For Copyright Attribution Of Generative AI Content [J]. Journal Of Kunming University Of Science And Technology (Social Sciences Edition), 2025(06): 23-24.