A Class of SaG*- Open Sets in Topological Spaces

S. Maragathavalli¹ and S. Ashokkumar²

^{1,2} Department Of Mathematics, Karpagam University, Coimbatore

Abstract: In this paper we introduce the concept of γ -s α g* -open sets and discuss some of their basic properties.

Key words: γ -sag*-open sets and γ -sag*-regular operation. AMS Classification: 54 A 05

I. Introduction

The study of semi open set and semi continuity in topological space was initiated by Levine[14]. Bhattacharya and Lahiri[3] Introduced the concept of semi generalized closed sets in the topological spaces analogous to generalized closed gets introduced by Levine[15]. Further they introduced the semi generalized continuous functions and investigated their properties. Kasahara[11] defined the concept of an operation on topological spaces and introduced the concept of α - closed graphs of a function. Jankovic[10] defined the concept of α - closed sets. Ogata [21] Introduced the notion of τ_{γ} which is the collection of all γ -open sets in the topological space

 (X, τ) and investigated the relation between γ - closure and τ_{γ} - closure.

In this paper, we introduce the concept of γ -s α g*-open sets and discuss some of their basic properties.

II. Premilinaries

Throughout this paper (X, τ) represent non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) denote the closure and interior of A respectively. The intersection of all α -closed sets containing a subset A of (X, τ) is called the α -closure of A and is denoted by $\alpha cl(A)$.

Definition 2.1 [11]: Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ on to power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denote the value of γ at V. It is denoted by $\gamma: \tau \to P(X)$.

Definition 2.2 [21]: A subset A of a topological space (X, τ) is called γ -open set if for each $x \in A$ there exists a open set U such that $x \in U$ and $U^{\gamma} \subseteq A$.

 τ_{γ} denotes set of all γ -open sets in (X, τ).

Definition 2.3[21]: The point $x \in X$ is in the γ - closure of a set $A \subseteq X$ if $U^{\gamma} \cap A \neq \phi$ for each open set U of x. The γ - closure of set A is denoted by $cl_{\gamma}(A)$.

Definition 2.4[21]: Let (X, τ) be a topological space and A be subset of X then τ_{γ} cl $(A) = \cap \{F : A \subseteq F, X - F \in \tau_{\gamma}\}$

Definition 2.5 [21]: Let (X, τ) be topological space. An operation γ is said to be regular if, for every open neighborhood U and V of each $x \in X$, there exists an open neighborhood W of x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$.

Definition 2.6 [21]: A topological space (X, τ) is said to be γ - regular, where γ is an operation of τ , if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that U^{γ} contained in V.

Remark 2.7 [21]: Let (X, τ) be a topological space, then for any subset A of X, $A \subseteq cl(A) \subseteq cl_{\gamma}(A) \subset \tau_{\gamma}$ -cl(A).

Definition 2.8[24]: A subset A of (X, τ) is said to be a γ -semi open set if and only if there exists a γ -open set U such that $U \subseteq A \subseteq cl \gamma(U)$.

Definition 2.9[24]: Let A be any subset of X. Then τ_{γ} -int(A) is defined as

 $\tau_{\gamma}\text{-} \text{ int}(A) = \bigcup \{ U : U \text{ is a } \gamma \text{-} \text{open set and } U \subseteq A \}$

Definition 2.10[24]: A subset A of X is said to be γ -semi closed if and only if X – A is γ -semi open.

Definition 2.11[24]: Let A be a subset of X. Then, τ_{γ} -scl(A) = \cap {F:F is γ -semi closed and A \subseteq F}.

Definition 2.12[20]: A subset A of (X, τ) is said to be a strongly αg^* - closed set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* -open in (X, τ) .

Definition 2.13[20]: If a subset A of (X, τ) is a strongly αg^* -open set then X – A is a strongly αg^* -closed set.

Definition 2.14[20]: A space (X, τ) is said to be a ${}_{s*}T_c$ space if every strongly αg^* - closed set of (X, τ) is closed in (X, τ) .

III. $. \gamma$ -S α G* - Open Sets

Definition 3.1: A subset A of a topological space (X, τ) is called γ -s α g* -open set of (X, τ) if for each $x \in A$, there exists a s α g*-open set U such that $x \in U$ and U $\gamma \subseteq A$.

 τ_{ys^*} denotes the set of all $\,\gamma\text{-s}\alpha g^*$ -open sets in $(X,\,\tau)$

Example 3.2: Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ be a topology on X. For $b \in X$, we define an operation $\gamma: \tau \rightarrow P(X)$ by $\gamma(A) = A^{\gamma} = A$ if $b \in A$, $\gamma(A) = cl(A)$ if $b \notin A$. Then, the γ -sag*-open sets are $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$.

Remark 3.3: The concept of s αg^* -open sets and γ -s αg^* -open sets are independent.

In Example 3.2, the set {a} is $s\alpha g^*$ -open but it is not γ - $s\alpha g^*$ -open. Also the set {c} is γ - $s\alpha g^*$ -open but not $s\alpha g^*$ -open.

Proposition 3.4: Every γ -open set of a topological space (X, τ) is γ -s α g*-open.

Proof: Let A be a γ -open set in X. Let $x \in A$, then there exists an open set G containing x such that $G^{\gamma} \subseteq A$. But every open set is sag*-open. Therefore, A is a γ -sag* -open set in X. Thus, $\tau_{\gamma} \subseteq \tau_{\gamma s}^*$.

The converse of the above theorem is not true always as seen from the following example.

Example 3.5: Let $X = \{a, b, c\}$ and let $\tau = \{\phi, X, \{b\}, \{a, b\}\}$. Let $\gamma: \tau \rightarrow P(X)$ be an operation defined by γ (A) = A. Then, we see that the set A = $\{a\}$ is a γ -s α g*-open set but not a γ -open set.

Remark 3.6: The union and intersection of γ -sag*-open sets are not γ -sag*-open.

In Example 3.2, the sets {b} and {c} are αg^* -open sets but their union {b, c} is not γ -s αg^* -open. Also, the sets {a, b} and {a, c} are γ -s αg^* -open but their intersection {a} is not not a s αg^* -open set.

Definition 3.7: A subset B of (X, τ) is said be γ -s α g*- closed in (X, τ) , if X – B is

 γ -sag*-open in (X, τ).

Definition 3.8: A topological space (X, τ) is said to be γ -s α g*-regular where γ is an operation on τ , if for each $x \in X$ and for every open set U of x, there exists a s α g*- open set W of x such that $W^{\gamma} \subseteq U$.

Proposition 3.9: Every γ - regular space is γ -s α g*-regular space.

Proof: Let (X, τ) be a γ -regular space. Then for each $x \in X$ and for every open neighbourhood U of x, there exists an open neighbourhood W of x such that $W^{\gamma} \subseteq U$. But every open set is sag*-open and therefore for each $x \in X$ and for every open set U of x, there exits a sag*-open set W of x such that $W^{\gamma} \subseteq U$. Hence (X, τ) is γ -sag*- regular space.

The converse of the above theorem is not true always. The topological space in the Example 3.5 is a γ - s α g* - regular space, but not a γ -regular space.

Proposition 3.10: Let $\gamma: \tau \rightarrow P(X)$ be an operation on a ${}_{s^*}T_c$ space (X, τ) . Then (X, τ) is γ -s α g^{*} -regular if and only if $\tau_{\gamma} = \tau_{\gamma s^*}$

Proof: Necessity: Since $\tau_{\gamma} \subseteq \tau_{\gamma s^*}$, it is enough to prove that $\tau_{\gamma s^*} \subseteq \tau_{\gamma}$. Let A be an open set. For any $x \in A$, there exists an open set U of x such that $U \subseteq A$. By the γ -s αg^* - regularity of X, there exists an s αg^* -open set W of x such that $W^{\gamma} \subseteq U$. Since (X, τ) is a $_{s^*}T_c$ space, W is open. Thus, for each $x \in A$, we have an open set W and hence an open neighbourhood such that $x \in W$ and $W^{\gamma} \subseteq A$. Then A is γ -open. Therefore $\tau_{\gamma s^*} \subseteq \tau_{\gamma}$.

Sufficiency: Let $x \in X$ and V be an open set of x. Since $V \in \tau_{\gamma} = \tau_{\gamma s^*}$, there exists an $s\alpha g^*$ -open set W of x such that $W^{\gamma} \subseteq V$. This implies that (X, τ) is γ -s αg^* - regular.

Definition 3.11: Let (X, τ) be a topological space. An operation γ is said to be $s\alpha g^*$ -regular if for every pair of open sets U and V of each $x \in X$, there exists an $s\alpha g^*$ -open set W of x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$.

Proposition 3.12: Every regular operation is $s\alpha g^*$ -regular operation.

Proposition 3.13: On any ${}_{s^*}T_c$ space (X, τ) , let $\gamma: \tau \rightarrow P(X)$ be a regular operation on τ .

(i) If A and B are γ -sag* -open then $A \cap B$ is γ -sag* -open.

(ii) $\tau_{\gamma s^*}$ is a topology on X.

Proof: (i) Let $x \in A \cap B$. Then, $x \in A$ and $x \in B$. So, there exists an $s\alpha g^*$ -open set U such that $x \in U$, $U^{\gamma} \subseteq A$ and a $s\alpha g^*$ -open set V such that $x \in V$, $V^{\gamma} \subseteq B$. Since (X, τ) is a ${}_{s^*}T_c$ Space, U and V are open sets. Since γ is regular there exists an open neighbourhood W of x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$ and hence $W^{\gamma} \subseteq A \cap B$. Since every open set is $s\alpha g^*$ -open, for each x in $A \cap B$, there exists an $s\alpha g^*$ -open set W containing x such that $W^{\gamma} \subseteq A \cap B$. Hence $A \cap B$ is γ - $s\alpha g^*$ -open.

(ii): Clearly, $\phi \in \tau_{\gamma s^*}$. Let $x \in X$, then X is a sag*-open set containing x such that $X^{\gamma} \subseteq X$. Hence $X \in \tau_{\gamma s^*}$. By (i), $\tau_{\gamma s^*}$ is closed under finite intersections. Let $\{A_i\}$, $i \in I$ be any arbitrary collection of γ -sag* open sets. Let $x \in \cup_{i \in I} A_i$. Then, $x \in A_i$ for some i. Since A_i is γ -sag* open , there is a sag*-open set U_i such that $x \in U_i$ and $U^{\gamma}_i \subseteq A_i \subseteq \cup_{i \in I} A_i$. Hence $\cup_{i \in I} A_i$ is a γ -sag* open set. Thus $\tau_{\gamma s^*}$ is a topology on X.

Remark 3.14: If γ is not regular then the above theorem is not true, that is $\tau_{\gamma s^*}$ is not a topology in general. For example, consider the space and the operation γ of Example 3.2. We note that γ is not regular. Also $\tau_{\gamma s^*} = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ which is not a topology on X.

Definition 3.15: (i) The point $x \in X$ is in the γ_{s^*} -closure of a set $A \subseteq X$ if $U^{\gamma} \cap A \neq \phi$ for each sag*-open set U of x. The γ_{s^*} -closure of A is denoted by $cl_{\gamma s^*}$ (A).

(ii) For a family $\tau_{\gamma s^*}$, we define a set of $\tau_{\gamma s^{*-}} cl(A)$ as follows:

 $\tau_{\gamma s^*}\text{-}cl(A) = \bigcap \{F: F \supseteq A, X - F \in \tau_{\gamma s^*} \}$

Proposition 3.16: For a point $x \in X$, $x \in \tau_{\gamma s^*}$ -cl(A) if and only if $V \cap A \neq \phi$ for every γ -s αg^* -open set V containing x.

Proof: Assume that $x \in \in \tau_{\gamma s^*}$ -cl(A). Let V be any γ -s αg^* -open set containing x. We have to show that $V \cap A \neq \phi$. ϕ . Suppose, $V \cap A = \phi$. Then $V^c \supseteq A$, where V^c is a γ -s αg^* - closed set containing A. Since $x \in \tau_{\gamma s^*}$ -cl(A), $x \in V^c$ which contradicts the fact that V contains x. Hence $V \cap A \neq \phi$.

Conversely, let F be any γ -s α g* - closed set containing A. We have to show that $x \in F$. If possible suppose that $x \notin F$. Then, $x \in F^c$. Now, F^c is a γ -s α g* -open set containing x. But F^c and A are disjoint. This contradicts the hypothesis. Therefore, $x \in F$. This implies $x \in \tau_{\gamma s^*}$ - cl(A).

Proposition 3.17: For any subset A of (X, τ) , we have

(i) $cl_{\gamma s^*}(A) \subseteq cl_{\gamma}(A)$

(ii) $cl(A) \supseteq cl_{\gamma s^*}(A)$

(iii) $\operatorname{cl}_{\gamma s^*}(A) \subseteq \tau_{\gamma s^*} - \operatorname{cl}(A)$

Proof: (i) Let $x \notin cl_{\gamma}(A)$. Then there exists an open set U of x such that $U^{\gamma} \cap A = \phi[21]$. Since every open set is $s\alpha g^*$ -open we have $U^{\gamma} \cap A = \phi$ for a $s\alpha g^*$ -open set U. Thus, $x \notin cl_{\gamma s^*}(A)$. Therefore, $cl_{\gamma s^*}(A) \subseteq cl_{\gamma}(A)$.

(ii) Let $x \notin cl(A)$. Then there is an open set U such that $U \cap A=\phi$. Since every open set is $s\alpha g^*$ - open, $x \notin cl_{\gamma s^*}(A)$. Therefore, $cl_{\gamma s^*}(A) \subseteq cl(A)$.

(iii) Let $x \notin \tau_{\gamma s^*}$ -cl(A). Then by Proposition 3.16, there is a γ -sag* -open set U containing x such that $U \cap A = \phi$. Since U is a γ -sag* -open set containing x, there is an sag* -open set W such that $x \in W$ and $W^{\gamma} \subseteq U$. Hence $W^{\gamma} \cap A = \phi$. Therefore, $x \notin cl_{\gamma s^*}$ (A). Thus $cl_{\gamma s^*}(A) \subseteq \tau_{\gamma s^*} - cl(A)$

Proposition 3.18: Let $\gamma: \tau \to P(X)$ be an operation on τ and A be a subset of X.

(i) The subset $cl_{\gamma s^*}$ (A) is closed in (X, τ).

(ii) If (X, τ) is γ -s α g* -regular, $cl_{\gamma s^*}(A) = cl(A)$.

(iii) If γ is open and (X, τ) is a $_{s*}T_c$ space, then $cl_{\gamma s*}(A) = \tau_{\gamma s*} - cl(A)$ and $cl_{\gamma s*}(cl_{\gamma s}*(A)) = cl_{\gamma s*}(A)$.

Proof:(i) Let $y \in cl(cl_{\gamma s^*}(A))$. We have to prove that $y \in cl_{\gamma s^*}(A)$. Let G be a sag*-open set of y. Therefore, we have $G \cap cl_{\gamma s^*}(A) \neq \phi$. So, there exists a point z such that $z \in G$ and $z \in cl_{\gamma s^*}(A)$. Since $z \in cl_{\gamma s^*}(A)$ and G is sag* -open set of z, $G^{\gamma} \cap A \neq \phi$. Thus, for each sag* -open set G of y, we have $G^{\gamma} \cap A \neq \phi$. Hence, $y \in cl_{\gamma s^*}(A)$. Therefore, $cl(cl_{\gamma s^*}(A)) \subseteq cl_{\gamma s^*}(A)$. This implies that $cl_{\gamma s^*}(A)$ is closed in (X, τ) .

(ii) By Proposition 3.17, it is sufficient to prove that the inclusion $cl(A) \subseteq cl_{\gamma s^*}(A)$. Let $x \in cl(A)$. Then for every open set U of x we have $U \cap A \neq \phi$. Since γ is γ -s αg^* -regular, we have for every open neighbourhood U of x, there exists a open neighbourhood V of x such that $V^{\gamma} \subseteq U$. Since every open set is s αg^* -open, we have $x \in cl_{\gamma s^*}(A)$. Hence, the proof of (ii).

(iii) Suppose $x \notin cl_{\gamma s^*}(A)$. Then there exists a $s\alpha g^*$ -open set U such that $x \in U$ and $U^{\gamma} \cap A = \phi$. Since (X, τ) is a ${}_{s^*}T_c$ space U is an open set. Since γ - is open, there is a open set S such that $x \in S \subseteq U^{\gamma}$. ie. A $s\alpha g^*$ -open set such that $x \in S \subseteq U^{\gamma}$. We have $S \cap A = \phi$. By Proposition 3.16, $x \notin \tau_{\gamma s^*}$ - cl(A). Hence $\tau_{\gamma s^*}$ - cl(A) $\subseteq cl_{\gamma s^*}(A) \subseteq \tau_{\gamma s^*}(A) \subseteq \tau_{\gamma s^*}(A) = \tau_{\gamma s^*} - cl(A)$.

Lemma 3.19: For any ${}_{s^*}T_c$ space (X, τ) if γ is γ -s α g*-regular then cl ${}_{\gamma s^*}(A \cup B) = cl {}_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B)$ for any subsets A and B of X.

Proof: Let $x \notin cl_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B)$. Therefore, $x \notin cl_{\gamma s^*}(A)$ and $x \notin cl_{\gamma s^*}(B)$. So there exists an $s\alpha g^*$ -open set U of x such that $U^{\gamma} \cap A = \phi$ and a $s\alpha g^*$ open set V of x such that $V^{\gamma} \cap B = \phi$. Since (X, τ) is a ${}_{s^*}T_c$ space U and V are open in (X, τ) . Since γ is γ -s αg^* -regular, there exists a $s\alpha g^*$ -open set W of x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. Thus $W^{\gamma} \subseteq U^{\gamma}$ and $W^{\gamma} \subseteq V^{\gamma}$. So $W^{\gamma} \cap A = \phi$. $W^{\gamma} \cap B = \phi$. Hence $W^{\gamma} \cap (A \cup B) = \phi$. This implies $x \notin cl_{\gamma s^*}(A \cup B)$ and hence $cl_{\gamma s^*}(A \cup B) \subseteq cl_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B)$.

To prove the reverse inclusion, let $x \notin cl_{\gamma s^*}(A \cup B)$. Then there exists a $s\alpha g^*$ -open set U of x such that $U^{\gamma} \cap (AUB) = \phi$. This implies $U^{\gamma} \cap A = \phi$ and $U^{\gamma} \cap B = \phi$ and so $x \notin cl_{\gamma s^*}(A)$ and $x \notin cl_{\gamma s^*}(B)$. Therefore, $x \notin cl_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B)$. Hence, $cl_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B) \subseteq cl_{\gamma s^*}(A \cup B)$. Thus, $cl_{\gamma s^*}(A \cup B) = cl_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B)$

Remark 3.20: Even if γ is not γ -sag *-regular and (X, τ) is not ${}_{s*}T_c$ space,

from the above Lemma 3.19, we observe that for any subsets A and B of X, $cl_{\gamma s}(A) \cup cl_{\gamma s}(B) \subseteq cl_{\gamma s}(A \cup B)$ always.

Corollary 3.21: For any ${}_{s^*}T_c$ space (X, τ) , if γ is γ -s α g* -regular on (X, τ) , then the operation cl ${}_{\gamma s^*}$ satisfies the Kurotowski closure axioms

Proof: We have to prove that

(i) $cl_{\gamma s^*}(\phi) = \phi.$

(ii) $A \subseteq cl_{\gamma s^*}(A)$

(iii) $cl_{\gamma s^*}(cl_{\gamma s^*}(A)) = cl_{\gamma s^*}(A)$

(iv) $cl_{ys}(A \cup B) = cl_{ys}(A) \cup cl_{ys}(B)$ for any subsets A and B of X.

From the definition of γ_{s^*} - closure of a set, it follows that cl $_{\gamma s^*}(\phi) = (\phi)$. Hence (i). From the Definition 3.15, A $\subseteq cl_{\gamma s^*}(A)$, for any subset A of X. By Proposition 3.18, $cl_{\gamma s^*}[cl_{\gamma s^*}(A)] = cl_{\gamma s^*}(A)$ for any subset A of X. Hence (ii). Also, from the Lemma 3.19, we have $cl_{\gamma s^*}(A \cup B) = cl_{\gamma s^*}(A) \cup cl_{\gamma s^*}(B)$ for any two subsets A and B of X. Hence (iv). Thus the operation cl $_{\gamma s^*}$ satisfies the Kurotowski closure axioms.

Proposition 3.22: Every γ -s α g* -open set is open on a _{s*}T_c space.

Proof: Let A be a γ -s α g^{*} -open set. Let $x \in A$. Then there exists an s α g^{*} -open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. A. But $U \subseteq U^{\gamma}$. Therefore, $U \subseteq A$. Since every s α g^{*} -open set U open in $_{s^*}T_c$ space, for every $x \in A$, we get an open set U such that $x \in U \subseteq A$. Hence A is open.

References

- K. Balachandran P.Sundaram and H.Maki, On generalized continuous maps in topological spaces. Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 12 (1991), 5.13.
- [2] P. Bhattacharyya and B.K. Lahiri, Semi generalized closed sets in topology, Indian J. Math., 29 (1987), 376 382.
- [3] S.G. Crossely and S.K. Hildebrand, Semi closure, Texas. J. Sci., 22 (1971), 99 122.
- [4] W. Dunham, T spaces, Kyungpook Math J., 17 (1977), 161 169.
- $[5] \qquad W. Dunham, A new closure operator for non T_1 topologies, Kyungopook. Math. J., 22 (1982), 55 60.$
- [6] D.S. Jankovic, On functions with α closed graphs, Glasnik Math., 18 (1983), 141 148.
- [7] S. Kasahara, Operation compact spaces, Math. Japonica 24 (1979), 97 105.
- [8] S. Kasahara, On weakly compact regular spaces II Proc. Japan Acad., 33 (1975), 255 259.
- [9] N. Levine, Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36 41.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palerno, (2) 19 (1970), 89 96.

[11] H. Maki. H. Ogata. K. Balachandran P. Sundram, and R. Devi, The digital line operation approaches of T_{1/2} space. Scientiae Mathematicae, 3(2000), 345 – 352.

- [12] H. Maki, T. Nori, Bioperations and some separation axioms, Scientiae Mathematicae Japonicae Online, 4(2001), 165 180.
- [13] H. Maki, K. Balachandran and R. Devi, Remarks on semi generalized closed sets and generalized semi closed sets, Kungpook Math. J., 36(1) (1996), 155 – 163.
- [14] S. Maragatharalli, and M. Shick John, On strongly αg* closed sets in topological spaces, ACTA CIENCIA INDICA, Vol XXXI 2005 No.3, (2005), 805 814.
- [15] H. Ogata Operation on topological spaces and associated topology, Math Japonica . 36(1) (1991), 175 184.
- [16] H. Ogata, Remarks on some operation separation axioms. Bull Fukuoka Univ. Ed. Part III, 40 (1991), 41 43.
- [17] G. Sai Sundara Krishnan A new Class of semi open sets in Topological spaces IJMMS (Online)
- [18] L.A. Steen and J.A. Seebach, Jr., Counter Examples in Topology, Springer Verlag. New York (1978).
- [19] Umehara and H. Maki, Operator approaches of weakly Hausdroff spaces, Mem. Fac. Sci. Kochi Unvi. Ser. A, Math., 11 (1990), 65 - 73.
- [20] J. Umehara, A certain bioperation on topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 15 (1994), 41-49.