Paley Wiener Theorem

A.ParveenBanu

Abstract: In this work we study how to apply PALEY WIENER theorem to the Fourier transforms of functions with compact support.

I. Introduction

One of the classical theorems of Paley and wiener characterizes the entire functions of exponential type, whose restriction to the real axis is in L^{2} as being exactly the Fourier transformation of L^{2}-functions with compact support. We shall give two analogues of this (in several variables), one for
$C^{\infty}(R)=\{f / f$ is differenti al at everywhere $\}$ with compact support, one for distributions with compact support
Note:
In the following two theorems,Support of $\mathrm{rB}=\left\{x \in R^{n} /|x| \leq r\right\}$

Theorem:

entire, and there are constants $\gamma_{N}<\infty$ such that $|f(z)| \leq \gamma_{N}(1+|z|)^{-N} e^{r|i m z|}$
$\left(z \in C^{n}, N=0,1,2 \ldots\right)$. Conversely, if f is an entire function in C^{n} which satisfies(2) for some N then there exists $u \in D^{\prime}\left(R^{n}\right)$, with support in rB , such that (1) holds.

Proof

$\mathrm{rB}=\left\{x \in R^{n} /|x| \leq r\right\}$
If $t \in r B$ then $|t| \leq r$, consider $\left|e^{-i z t}\right|=e^{y . t} \leq e^{|y||t|} \leq e^{|i m z| r}$
let $\mathrm{K}=$ support of $\Phi \in r B$
Claim: $\Phi(t) e^{-i t z} \in L^{\prime}(R)$
Since $\Phi \in D\left(R^{n}\right), \Phi$ is differentiable $\Rightarrow \Phi$ is continuous complex function

$$
\Rightarrow \Phi \text { is measurable }
$$

Also $e^{-i t z}$ continuous complex function
Hence $\Phi(t) e^{-i t z}$ is complex measurable function

$$
\begin{align*}
\text { consider } \int_{R}\left|\Phi(t) e^{-i z} d m(t)\right| & \leq \int_{R}|\Phi(t)| e^{r|i m z|} d m(t) \\
& =e^{r|i m z|} \int_{R} \Phi(t) d m(t) \tag{3}
\end{align*}
$$

since Φ is continuous and support of Φ is compact, Φ is continuous function defined on a compact set Hence Φ is bounded, there exists a real number M such that $|\Phi(t)| \leq M \quad \forall t$
(3) becomes $\int_{R}|\Phi(t) e-i t z| d m t \leq e^{r|i m z|} \int_{R} M d m(t)$

$$
\leq M e^{r|i m z|} m(k)
$$

$$
\leq \infty
$$

Hence $\Phi(t) e^{-i t z} \in L^{\prime}(R)$, therefore for every $z \in C, f(z)=\int \Phi(t) e^{-i t z} d m(t)$ exists on C.
Now to prove f is an entire function, for that it is enough to prove that f is analytic, for proving f is analytic, we have to use morera's theorem(statement: If f is continuous and $\int_{\Gamma} f(z) d z=0$, then f is analytic.)
so first we have to prove that f is continuous

$$
\text { if } \begin{align*}
z_{n} \rightarrow z \text {, then }\left|f\left(z_{n}\right)-f(z)\right| & =\left|\int_{R} \Phi(t) e^{-i z_{n} t} d m(t)-\int \Phi(t) e^{-i z t} d m(t)\right| \\
& =\int_{k} \Phi(t)\left(e^{-i z_{n} t}-e^{-i z t}\right) d m(t) \mid \text { since,outsideK, } \Phi(t)=0 \\
& \leq \int_{k}|\Phi(t)|\left|e^{-i z_{n} t}-e^{-i z t}\right| d m(t) \\
& =\int_{k} M\left|e^{-i z_{n} t}-e^{-i z t}\right| d m(t) \tag{4}
\end{align*}
$$

consider $\left|e^{-i z_{n} t}-e^{-i z t}\right| \leq\left|e^{-i z_{n} t}\right|+\left|e^{-i z t}\right|$

$$
\begin{aligned}
& \leq e^{t y_{n}}+e^{t y} \\
& \leq e^{|t|\left|y_{n}\right|}+e^{|t| y \mid} \\
& \leq e^{|t|(1+|y|)}+e^{|t||y|} \quad\left[\text { since } y_{n} \rightarrow y,\left|y_{n}-y\right| \leq 1,\left|y_{n}\right| \leq 1+|y|\right] \\
& =e^{|t||y|}\left(e^{|t|}+1\right) \\
& \leq e^{r|i m z|}\left(1+e^{r}\right)=g(z) \text { (say) }
\end{aligned}
$$

now consider $\int_{R}|g(x)| d m(x)=\int_{k}\left|e^{r|y|}\left(1+e^{r}\right)\right| d m(x)$

$$
\begin{aligned}
& =\left|e^{r|y|}\left(1+e^{r}\right)\right| \int_{k} d m(x) \\
& =\left|e^{r|y|}\left(1+e^{r}\right)\right| m(k) \text { which is finite }
\end{aligned}
$$

also $e^{r|i m z|}\left(1+e^{r}\right)$ is continuous, therefore measurable
hence $g(z) \in L^{\prime}(R)$
also since $z_{n} \rightarrow z \Rightarrow e^{-i z_{n} t} \rightarrow e^{-i z t}$ as $n \rightarrow \infty$

$$
\Rightarrow\left(e^{-i z_{n} t}-e^{-i z t}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

hence by dominated convergent theorem, $\int_{k}\left|e^{-i z_{n} t}-e^{-i z t}\right| d m(t) \rightarrow 0$
therefore (4) becomes $\left|f\left(z_{n}\right)-f(z)\right| \leq \int_{k} M\left|e^{-i z_{n} t}-e^{-i z t}\right| d m(t)$

$$
\rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

$f\left(z_{n}\right) \rightarrow f(z)$ as $n \rightarrow \infty$
hence f is continuous
Claim: $\int_{\Gamma_{\alpha}} f(z) d z=0$
let $z=\omega(s) a \leq s \leq b, d z=\omega^{\prime}(s) d \omega$
consider $\int_{a}^{b} f(\omega) \omega^{\prime}(s) d \omega=\int_{a}^{b} \int_{R} \Phi(t) e^{-i t \omega} \frac{d t}{\sqrt{2 \pi}} \omega^{\prime}(s) d \omega$
since $\Phi(t) \in D\left(R^{n}\right) \Rightarrow \Phi(t)$ is differentiable

$$
\Rightarrow \Phi \text { is continuous }
$$

$\Rightarrow \Phi$ is measurable
$e^{-i t \omega}$ is continuous, therefore measurable
hence $\Phi(t) e^{-i t \omega}$ is measurable
consider $\int_{a}^{b} \omega^{\prime}(s) \int_{k}\left|\Phi(t) e^{-i t \omega}\right| \frac{d t}{\sqrt{2 \pi}} d \omega \leq \int_{a}^{b} \omega^{\prime}(s) \int_{k} M e^{r|i m \omega|} \frac{d t}{\sqrt{2 \pi}} d \omega$

$$
\leq \int_{a}^{b} \omega^{\prime}(s) M e^{r|i m z|} \frac{m(k)}{\sqrt{2 \pi}} d \omega \text { which is finite }
$$

Conversely assume that f is an entire function and $|f(z)| \leq \gamma_{N}(1+|z|)^{-N} e^{r|i m g z|}$.
Define $\Phi(t)=\int f(x) e^{i t x} d m(x) \quad(t \in R)$
Claim: $(1+|x|)^{-N} f(x) \in L^{\prime}(R)$
Since $f(x)$ is analytic, f is continuous.
Therefore f is measurable.

$$
\begin{aligned}
\text { consider } \int_{R}\left|1+|x|^{-N}\right| f(x) \mid d m(x) & \leq \int_{-\infty}^{\infty}\left|1+|x|^{-N} \gamma_{N}\right| 1+|x|^{N-2} e^{r|i m g x|} \frac{d x}{\sqrt{2 \pi}} \\
& =\int_{-\infty}^{\infty}\left|1+|x|^{-2} \gamma_{N} e^{r(0)} \frac{d x}{\sqrt{2 \pi}}\right. \\
& =\frac{\gamma_{N}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left|1+|x|^{-2} d x\right. \\
& \leq \frac{\gamma_{N}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|1+|x||^{-2} d x \quad\left[\text { since } \frac{1}{(1+x)^{2}} \leq \frac{1}{\left(1+x^{2}\right)^{2}}\right] \\
& <\infty
\end{aligned}
$$

$|1+|x||^{-N} f(x) \in L^{\prime}(R)$.
Claim: $\Phi \in C^{\infty}(R)$
Let $f_{n}(x)=\frac{f(x)\left(e^{i t_{n} x}-e^{i s x}\right)}{t_{n}-s}$

$$
\begin{aligned}
\operatorname{Lim}_{n \rightarrow \infty} f_{n}(x) & =\operatorname{Lim}_{n \rightarrow \infty} \frac{f(x)\left(e^{i t_{n} x}-e^{i s x}\right)}{t_{n}-s} \\
& =f(x) \operatorname{Lim}_{n \rightarrow \infty} \frac{\left(e^{i t_{n} x}-e^{i s x}\right)}{t_{n}-s} \\
& =f(x) e^{i s x} \operatorname{Lim}_{n \rightarrow \infty} \frac{\left(e^{i\left(t_{n}-s\right) x}-1\right)}{t_{n}-s}
\end{aligned}
$$

$$
=f(x) e^{i s x} \operatorname{Lim}_{n \rightarrow \infty} \frac{\left(e^{i h_{n} x}-1\right)}{h_{n}} \quad \text { where } h_{n}=t_{n}-s
$$

$\operatorname{Lim}_{n \rightarrow \infty} f_{n}(x)=f(x) e^{i s x} \quad i x\left(\operatorname{Lim}_{n \rightarrow \infty} \frac{1+i h_{n} x+\frac{\left(i h_{n} x\right)^{2}}{2!}+\ldots}{h_{n}}\right)$
$\operatorname{Lim}_{n \rightarrow \infty} f_{n}(x)=f(x) e^{i s x} i x$
$f_{n}(x)=f(x) \frac{\left(e^{i_{n} x}-e^{i s x}\right)}{t_{n}-s}$ is measurable.
Consider $\left|f_{n}(x)\right|=\left|f(x) \frac{\left(e^{i t_{n} x}-e^{i s x}\right)}{t_{n}-s}\right|$
$=\left|f(x) e^{i s x} \frac{\left(e^{i\left(t_{n}-s\right) x}-1\right)}{t_{n}-s}\right|$
$=\left|f(x) e^{i s x} \frac{\left(e^{i h_{n} x}-1\right)}{h_{n}}\right|$
$=\left|f(x) e^{i s x} e^{i \frac{h_{n}}{2} x} \frac{\left(e^{i \frac{h_{n}}{2} x}-e^{-i \frac{h_{n}}{2} x}\right)}{h_{n}}\right|$
$=|f(x)|\left|\frac{\sin \frac{h_{n}}{2} x}{h_{n}}\right|$
$=|f(x)|\left|\frac{\sin \frac{h_{n}}{2} x}{h_{n} \cdot \frac{x}{2}} \frac{x}{2}\right|$
$=|f(x)|\left|\frac{x}{2}\right|\left|\frac{\sin \frac{h_{n}}{2} x}{\frac{x h_{n}}{2}}\right|$
$\leq|f(x)|\left|\frac{x}{2}\right|$
$\left[\sin c e\left|\frac{\sin \frac{h_{n}}{2} x}{h_{n}}\right| \leq 1\right]$
let $\left.g(x)=|f(x)| \frac{x}{2} \right\rvert\,$
Claim: $g \in L^{\prime}(R)$

$$
\begin{aligned}
\int_{R}|g(x)| d m(x) & =\int_{-\infty}^{\infty}|f(x)|\left|\frac{x}{2}\right| d m(x) \\
& \leq \int_{-\infty}^{\infty} \gamma_{N}(1+|x|)^{-N} e^{r \mid i m g} x\left|\frac{x}{2}\right| d m(x) \\
& \leq \gamma_{N} \int_{-\infty}^{\infty}(1+|x|)^{-N}\left|\frac{x}{2}\right| d m(x) \\
\text { Choose } \mathrm{N}=2 & =\gamma_{2} \int_{-\infty}^{\infty}(1+|x|)^{-2}\left|\frac{x}{2}\right| d m(x) \\
& \leq \gamma_{2} \int_{-\infty}^{\infty} \frac{1}{\left(1+|x|^{2}\right)}\left|\frac{x}{2}\right| \frac{d x}{\sqrt{2 \pi}} \\
& <\infty
\end{aligned}
$$

therefore $f(x)\left|\frac{x}{2}\right| \in L^{\prime}(R)$.
by dominated convergent theorem,
$\operatorname{Lim}_{n \rightarrow \infty} \int_{R} \frac{f(x)\left(e^{i t_{n} x}-e^{i s x}\right)}{t_{n}-s} d m(x)=\int_{R} f(x) e^{i s x} i x d m(x)$
$\operatorname{Lim}_{n \rightarrow \infty} \frac{\Phi\left(t_{n}\right)-\Phi(s)}{t_{n}-s}=\int_{R} f(x) e^{i s x} i x d m(x)$
$\Phi^{\prime}(t)=\int_{R} f(x) e^{i s x} i x d m(x)$
$\Phi^{\prime}(t)$ exists
Φ is differential at everywhere
$\Phi \in C^{\infty}(R)$
Claim: $\int f(\xi+i \eta) e^{i t(\xi+i \eta)} d \xi$ is independent of η for arbitrary t.
Let Γ be a rectangular path in $(\xi+i \eta)$ plane with one edge on the real axis, one on the line $\eta=\eta_{1}$ whose vertical edges move off to infinity
Since f and $e^{i t(\xi+i \eta)}$ are analytic
therefore $f e^{i t(\xi+i \eta)}$ is analytic and Γ be the closed path,
therefore by cauchy's theorem $\int_{\Gamma} f(\xi+i \eta) e^{i t(\xi+i \eta)} d \xi=0$
$\int_{\xi_{1}}^{\xi_{2}} f(\xi) e^{i t \xi} d \xi+\int_{0}^{\eta_{1}} f\left(\xi_{2}+i \eta\right) e^{i t\left(\xi_{2}+i \eta\right)} i d \eta+\int_{\xi_{2}}^{\xi_{1}} f\left(\xi+i \eta_{1}\right) e^{i t\left(\xi+i \eta_{1}\right)} d \xi+\int_{\eta_{1}}^{0} f\left(\xi_{1}+i \eta\right) e^{i t\left(\xi_{1}+i \eta\right)} i d \eta=0$
(7)

Consider $\left|\int_{0}^{\eta_{1}} f\left(\xi_{2}+i \eta\right) e^{i t\left(\xi_{2}+i \eta\right)} i d \eta\right| \leq \int_{0}^{\eta_{1}}\left|f\left(\xi_{2}+i \eta\right)\right| e^{i t\left(\xi_{2}+i \eta\right)} \mid d \eta$

$$
=\int_{0}^{\eta_{1}}\left|f\left(\xi_{2}+i \eta\right)\right| e^{-t \eta} d \eta
$$

$$
\begin{aligned}
& \leq \int_{0}^{\eta_{1}}\left(1+\left|\xi_{2}+i \eta\right|\right)^{-N} \gamma_{N} e^{r \eta} e^{-t \eta} d \eta \\
& =\gamma_{N} \int_{0}^{\eta_{1}} \frac{e^{(r-t) \eta}}{\left(1+\left|\xi_{2}+i \eta\right|\right)^{N}} d \eta \\
& \leq \gamma_{N} \int_{0}^{\eta_{1}} \frac{e^{(r-t) \eta}}{1+\left|\xi_{2}\right|^{N}} d \eta \text { since }\left|\xi_{2}+i \eta\right|^{N} \geq\left|\xi_{2}\right|^{N} \\
& \leq \gamma_{N} \int_{0}^{\eta_{1}} \frac{e^{(r-t) \eta}}{\left|\xi_{2}\right|^{N}} d \eta \\
& =\frac{\gamma_{N}}{\left|\xi_{2}\right|^{N}} \frac{e^{(r-t) \eta_{1}}-1}{r-t} \\
& =\frac{\gamma_{N}}{\left|\xi_{2}\right|^{N}} \frac{1-e^{(r-t) \eta_{1}}}{t-r} \\
& \leq \frac{\gamma_{N}}{\left|\xi_{2}\right|^{N}} \\
& \rightarrow 0
\end{aligned}
$$

Similarly $\int_{\eta_{1}}^{0} f\left(\xi_{1}+i \eta\right) e^{i t\left(\xi_{1}+i \eta\right)} i d \eta=0 \quad$ as $\xi_{1} \rightarrow \infty$
Taking $\xi_{1} \rightarrow-\infty$ in (7)
$\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{\xi_{1}}^{\xi_{2}} f(\xi) e^{i t \xi} d \xi+\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{0}^{\eta_{1}} f\left(\xi_{2}+i \eta\right) e^{i t\left(\xi_{2}+i \eta\right)} i d \eta+\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{\xi_{2}}^{\xi_{1}} f\left(\xi+i \eta_{1}\right) e^{i t\left(\xi+i \eta_{1}\right)} d \xi+\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{\eta_{1}}^{0} f\left(\xi_{1}+i \eta\right) e^{i t\left(\xi_{1}+i \eta\right)} i d \eta=0$
$\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{\xi_{1}}^{\xi_{2}} f(\xi) e^{i t \xi} d \xi+\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{\xi_{2}}^{\xi_{1}} f\left(\xi+i \eta_{1}\right) e^{i t\left(\xi+i \eta_{1}\right)} d \xi+\operatorname{Lim}_{\xi_{1} \rightarrow-\infty} \int_{\eta_{1}}^{0} f\left(\xi_{1}+i \eta\right) e^{i t\left(\xi_{1}+i \eta\right)} i d \eta=0 \mathrm{by}(8)$

Taking $\xi_{2} \rightarrow \infty$
$\int_{-\infty}^{\infty} f(\xi) e^{i t \xi} d \xi+\int_{\infty}^{-\infty} f\left(\xi+i \eta_{1}\right) e^{i t\left(\xi+i \eta_{1}\right)} d \xi=0$
$\int_{R} f(\xi) e^{i t \xi} d \xi-\int_{R} f\left(\xi+i \eta_{1}\right) e^{i t\left(\xi+i \eta_{1}\right)} d \xi=0(9)$
From (9), (5) becomes $\Phi(t)=\int f(x+i y) e^{i t(+i y x)} d x \quad(t \in R)$
Given $t \in R^{n}, \quad t \neq 0$
Choose $y=\frac{\lambda t}{|t|} \quad$ where $\quad \lambda>0$
Then $t \cdot y=t \cdot \frac{\lambda t}{|t|}$
If $t<0$ then $t \cdot y=t \cdot \frac{\lambda t}{-t}=-t \lambda$

If $t>0$ then $t \cdot y=t \cdot \frac{\lambda t}{t}=t \lambda$
Therefore $t \cdot y=\lambda|t|$
$|y|=|\lambda|=\lambda \quad[\sin c e \lambda>0]$
Now consider $\left|f(x+i y) e^{i t(x+i y)}\right|=|f(x+i y)|\left|e^{i t(x+i y)}\right|$

$$
\leq \gamma_{N}(1+|x+i y|)^{-N} e^{r|i m g(x+i y)|}\left|e^{-t y}\right|
$$

$$
=\gamma_{N}(1+|x+i y|)^{-N} e^{r|y|}\left|e^{-t y}\right| \quad[\text { since }|x+i y|>|x|]
$$

$$
\leq \gamma_{N}(1+|x|)^{-N} e^{r|y|} e^{-|t||y|}
$$

$$
\leq \gamma_{N}(1+|x|)^{-N} e^{r|y|} e^{-|t||y|}
$$

$$
=\gamma_{N}(1+|x|)^{-N} e^{(r-|t|)|y|}
$$

$$
=\gamma_{N}(1+|x|)^{-N} e^{(r-|t|) \lambda}
$$

Now consider $\Phi(t)=\int_{R} f(x+i y) e^{i t(+i y x)} d m x$

$$
\begin{aligned}
|\Phi(t)| & \leq \int_{R}\left|f(x+i y) e^{i t(+i y x)}\right| d m x \\
& \leq \int_{R} \gamma_{N} e^{|r-|t|| \lambda}(1+|x|)^{-N} d m x \\
& =\gamma_{N} e^{|r-|t|| \lambda} \int_{R}(1+|x|)^{-N} d m x
\end{aligned}
$$

Where N is chosen so large, choose $\mathrm{N}=2$

$$
\begin{aligned}
|\Phi(t)| & =\gamma_{2} e^{|r-|t|| \lambda} \int_{R}(1+|x|)^{-2} d m x \\
& \leq \frac{\gamma_{2} e^{|r-|t| \lambda}}{\sqrt{2 \pi}} \int_{R}\left(1+|x|^{-2}\right) d x \\
& <\infty
\end{aligned}
$$

Now to prove support of Φ in rB
If $|t|>r$
Then $\Phi(t) \leq \gamma_{N} e^{-(|t|-r) \lambda} \int_{R}(!+|x|)^{-N} d m x$
As $\lambda \rightarrow \infty|\Phi(t)|=0$
$\Phi(t)=0$ if $|t|>r$
$\Phi(t) \neq 0$ if $|t| \leq r$
Therefore support of Φ in rB
Apply inversion theorem to (A) we get, $f(x)=\int_{R} \Phi(t) e^{-i t x} d m(t)$ for real z
This completes the proof.

II. Conclusion:

I have tried a brief note on PaleyWiener in C. This is a very useful result as it enables one pass to the Fourier transform of a function in the Hardy space and perform calculations in the easily understood space.

III. Bibliography :

[1]. Michael Reed and Barry Simon, Functional analysis, volume I of the series Methods of Modern Mathematical Physics, Academic Press, 1972.
[2]. Michael Reed and Barry Simon, Fourier analysis, selfadjointness, volume II of the series Methods of Modern Mathematical Physics, Academic Press, 1975.
[3]. Laurent Schwartz, Théeorie des distributions, Hermann,. This is the first edition of the original two volumes in one, 1966.
[4]. Laurent Schwartz, M’ethodesmath'ematiques pour les sciences physiques, Hermann, 1966. Translated into English as Mathematics for the physical sciences.
[5]. Rudin, Walter, Real and complex analysis (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-054234-1, MR 924157, 1987.

