A Class of Continuous Mappings in Ideal Topological Spaces

¹S.Maragathavalli and ²C.R.Parvathy

¹Department of Mathematics, KarpagamUniversity, CoimbatoreTamilnadu, India ²Department of Mathematics, PSGR Krishnammal College for women, Coimbatore, Tamilnadu, India

Abstract: In this paper, we introduce the notions of I_{rwg} -continuous maps and I_{rwg} -irresolute maps in ideal topological spaces. We investigate some of their properties. **Key words:** I_{rwg} - closed set, I_{rwg} -continuous maps, I_{rwg} -irresoluteness.

I. Introduction

In 1990, T.R.Hamlett and D.Jankovic[1], introduced the concept of ideals in topological spaces and after that [2,3, 4, 5, 6] several authors turned their attention towards generalizations of various concepts of topology by considering ideal topological spaces.

A non-empty collection I of subsets on a topological space (X, τ) is called a topological ideal if it satisfies the following two conditions:

(i) If $A \in I$ and $B \subset A$ implies $B \in I$ (heredity)

(ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ (finite additivity)

By a space (X, τ) , we always mean a topological space (X, τ) . If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) . Let (X, τ, I) be an ideal topological space and $A \subset X$. $A^*(I, \tau) = \{x \in X / U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$, is called the local function of A with respect to I [7]. For every topological space (X, τ, I) there exists a topology τ^* finer than τ defined as $\tau^* = \{U \subseteq X : cl^*(X-U)=X-U\}$. A Kuratowski closure operator $cl^*(.)$ for topology $\tau^*(I, \tau), cl^*(A) = A \cup A^*$. Clearly, if $I = \{\emptyset\}$, then $cl^*(A) = cl(A)$ for every subset A of X. In this paper, we define I_{rwg} - continuous mappings, I_{rwg} -irresoluteness in ideal spaces and discuss their properties and characterizations.

II. Preliminaries

Definition 2.1:[8]A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is g -continuous if $f^{1}(V)$ is g - closed in (X, τ) for every closed set V of (Y, σ) .

Definition 2.2: A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is I-rg -continuous if $f^{1}(V)$ is I-rg – open in (X, τ, I) for every open set V in (Y, σ) .

Definition 2.3: A function f: $(X,\tau, I) \rightarrow (Y,\Omega,J)$ is said to be weakly I – continuous if for each $x \in X$ and each open set V in Y containing f(x), there exists an open set U containing x such that $f(U) \subset cl^*(V)$.

Definition 2.4[10]: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be $I_{s^*g^-}$ continuous if for every $U \in \sigma$, $f^{-1}(U)$ is $I_{s^*g^-}$ open in (X, τ, I) .

Definition 2.5: A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is * -continuous if $f^{-1}(A)$ is * - closed in X forevery closed set A in Y.

Lemma 2.6[9]: Let (X,τ, I) be an ideal topological space and $A \subset X$. If $A \subset A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$. **Lemma 2.7:** If U is open and A is I_{rwg} - open, then $U \cap A$ is I_{rwg} - open.

III. Regular Weakly Generalized Continuous Mappings In Ideal Topological Spaces

Definition 3.1: A function f: $(X,\tau, I) \rightarrow (Y, \sigma)$ is said to be I_{rwg} -continuous if $f^{-1}(V)$ is I_{rwg} -closed in (X,τ, I) for every closed set V in (Y, σ) .

Theorem 3.2: A function f: $(X,\tau, I) \rightarrow (Y, \sigma)$ is I_{rwg} -continuous if and only if $f^{-1}(V)$ is I_{rwg} -open in (X,τ, I) for every open set V in (Y, σ) .

Proof: Let V be an open set in (Y, σ) and f: $(X, \tau, I) \rightarrow (Y, \sigma)$ be I_{rwg} -continuous. Then V^c is closed in (Y, σ) and $f^{-1}(V^c)$ is I_{rwg} - closed in (X, τ, I) . But $f^{-1}(V^c) = (f^{-1}(V))^c$ and so $f^{-1}(V)$ is I_{rwg} -open in (X, τ, I) .

Conversely, suppose that $f^{1}(V)$ is I_{rwg} -open in (X, τ, I) for each open set V in (Y, σ) . Let F be a closed set in (Y, σ) . Then F^{c} is open in (Y, σ) and by hypothesis $f^{1}(F^{c})$ is $I_{rwg^{-}}$ open in (X, τ, I) . Since $f^{1}(F^{c}) = (f^{1}(F))^{c}$, we have $f^{1}(F^{c})$ is I_{rwg} -closed in (X, τ, I) and so f is I_{rwg} -continuous.

Theorem 3.3: Every *- continuous function is I_{rwg}-continuous.

Proof: Let V be a closed set in (Y, σ) . Then $f^{-1}(V)$ is *-closed in (X, τ, I) because f is * - continuous in X. Since every * - closed set is I_{rwg} - closed, $f^{-1}(V)$ is I_{rwg} - closed in (X, τ, I) . Therefore f is I_{rwg} -continuous. The converse of the above theorem need not be true as seen from the following example.

Example 3.4: $X = \{1,2,3\}, \tau = \{\emptyset, X, \{1\}, \{2,3\}\}, I = \{\emptyset, \{3\}\} \text{ and } \sigma = \{\emptyset, X, \{1,3\}\}.$

The identity map f: $(X,\tau, I) \rightarrow (Y, \sigma)$ is I_{rwg} -continuous but not *- continuous.

Theorem 3.5: Every continuous function is I_{rwg}-continuous.

Proof: Let f be a continuous function and V be a closed set in (Y, σ) . Then $f^1(V)$ is closed in (X, τ, I) . Since every closed set is * -closed and hence I_{rwg} - closed, $f^1(V)$ is I_{rwg} - closed in (X, τ, I) . Therefore, f is I_{rwg} - continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 3.6: Let $X = \{1,2,3\}$, $\tau = \{\emptyset, X, \{1\}, \{2,3\}\}$, $I = \{\emptyset, \{3\}\}$ and $\sigma = \{\emptyset, X, \{1\}\}$.

Define f: $(X, \tau, I) \rightarrow (Y, \sigma)$ as f(1) = 2, f(2) = 1, f(3) = 3. Then f is I_{rwg} -continuous but not continuous.

Remark 3.7: The above relationships are shown in the following diagram:

Continuity \Rightarrow *- Continuity \Rightarrow I_{rwg}-continuity

Definition 3.8:[10] An ideal topological space (X, τ, I) is said to be T-dense if every subset of X is *-dense in itself.

Theorem 3.9: Let (X,τ, I) be T-dense. Then for a function f: $(X,\tau, I) \rightarrow (Y, \sigma)$ the following statements are equivalent:

- (1) f is I_{rwg} -continuous.
- (2) For each $x \in X$ and each open set V in Y with $f(x) \in V$, there exists an I_{rwg} -open set U containing x such that $f(U) \subset V$.

(3) For each $x \in X$ and each open set V in Y with $f(x) \in V$, $f^{-1}(V)$ is an I_{rwg} -open neighborhood of x.

Proof: (1) \Rightarrow (2) Let $x \in X$ and let V be an open set in Y such that $f(x) \in V$. Since f is I_{rwg} -continuous, $f^{-1}(V)$ is an I_{rwg} -open in X. By taking $U = f^{-1}(V)$, we have $x \in U$ and $f(U) \subset V$.

 $(2) \Rightarrow (3)$ Let V be an open set in Y and let $f(x) \in V$. Then by (2), there exists an I_{rwg} - open set U containing x such that $f(U) \subset V$. So $x \in U \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is an I_{rwg} -open neighborhood of x.

 $(3) \Rightarrow (1)$ Let V be an open set in Y and let $f(x) \in V$. Then by (3) $f^{-1}(V)$ is an I_{rwg} -open neighborhood of x. Thus for each $x \in f^{-1}(V)$, there exists an I_{rwg} -open set U_x containing x such that $x \in U_x \subset f^{-1}(V)$. Hence $f^{-1}(V) = \int I I I$

 $\bigcup_{x \in f^{-1}(V)} \mathcal{X} x \text{ and so } f^{-1}(V) \text{ is an } I_{\text{rwg}} \text{ -open in } X.$

Theorem 3.10: Let f: $(X,\tau, I) \rightarrow (Y, \sigma, J)$ be a function and $\{U_{\alpha} : \alpha \in \nabla\}$ be an open cover of a T-dense space X. If the restriction $f \mid U_{\alpha}$ is I_{rwg} -continuous for each $\alpha \in \nabla$, f is I_{rwg} -continuous.

Proof: Suppose V is an arbitrary open set in (Y, σ, J) . Then for each $\alpha \in \nabla$, we have $(f | U_{\alpha})^{-1}(V) = f^{-1}(V) \cap U_{\alpha}$. Because $f | U_{\alpha}$ is I_{rwg} -continuous, therefore $f^{-1}(V) \cap U_{\alpha}$ is I_{rwg} - open set in X for each $\alpha \in \nabla$. Since for each $\alpha \in \nabla$, U_{α} is open in x, by [9 Theorem 5] $f^{-1}(V) \cap U_{\alpha}$ is I_{rwg} - open set in X. Now since X is T-dense, $\bigcup_{\alpha \in \nabla} f^{-1}(V) \cap U_{\alpha} = 0$

 $f^{-1}(V)$ is I_{rwg} - open in X. This implies f is I_{rwg} -continuous.

Theorem 3.11: If (X,τ, I) is T-dense space and f: $(X,\tau, I) \rightarrow (Y, \sigma)$ is I_{rwg} -continuous, then graph function g: $X \rightarrow X \times Y$, defined by g(x) = (x, f(x)) for each $x \in X$, is I_{rwg} -continuous.

Proof: Let $x \in X$ and W be any open set in $X \times Y$ containing g(x) = (x, f(x)). Then there exists a basic open set $U \times V$ such that $g(x) \subset U \times V \subset W$. Since f is I_{rwg} -continuous, there exists an I_{rwg} - open set U_1 in X containing x such that $f(U_1) \subset V$. By Lemma 2.7 $U_1 \cap U$ is I_{rwg} - open in X and we have $x \in U_1 \cap U \subset U$ and $g(U_1 \cap U) \subset U \times V \subset W$. Since X is T-dense, therefore Theorem 3.9, g is I_{rwg} -continuous.

Definition 3.12: For a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$, the subset $\{ (x, f(x)) : x \in X \} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Theorem 3.13: Let f: $(X,\tau, I) \rightarrow (Y, \sigma)$ be a function and g: $X \rightarrow X \times Y$ be the graph function of f. If g is I_{rwg} -continuous, then f is I_{rwg} -continuous.

Proof: Suppose that g is I_{rwg} -continuous. Let $x \in X$ and V be any open set of Y containing f(x). Then $X \times V$ is open in $X \times Y$ and I_{rwg} -continuity of g, then exists $U \in I_{rwg}$ - open of X containing x such that $g(U) \subset X \times V$. Therefore we obtain $f(U) \subset V$. Hence f is I_{rwg} -continuous.

Remark 3.14: The composition of two I_{rwg} -continuous maps need not be I_{rwg} -continuous as seen from the following example.

Example 3.15: Let $X = Y = Z = \{1, 2, 3, 4\}$, $\tau = \{\emptyset, X, \{1\}, \{1, 2, 3\}\}$ and $\sigma = \{\emptyset, Y, \{3\}\}$

 $\Omega = \{ \emptyset, \mathbb{Z}, \{2,4\} \}, \mathbb{I} = \{ \emptyset, \{1\}, \{2\}, \{1,2\} \}, \mathbb{J} = \{ \emptyset, \{3\} \}. \text{ f: } (\mathbb{X}, \tau, \mathbb{I}) \to (\mathbb{Y}, \sigma, \mathbb{J}) \text{ and } \mathbb{I} = \{ \emptyset, \mathbb{Y}, \mathbb{Y},$

g: $(Y, \sigma, J) \rightarrow (Z, \Omega)$ be identity maps. Then the maps f and g are I_{rwg} -continuous but g o f is not I_{rwg} -continuous.

IV. Regular Weakly Generalized Irresoluteness In Ideal Topological Spaces

Definition 4.1 : A function f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be I_{rwg} -irresolute if $f^{-1}(V)$ is I_{rwg} -closed in (X, τ, I) for every I_{rwg} -closed set V in (Y, σ, J) .

Theorem4.2: Every I_{rwg}-irresolute function is I_{rwg}-continuous.

Proof: Suppose f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I_{rwg} -irresolute. Let V be a closed in Y which is I_{rwg} -closed then $f^{-1}(V)$ is I_{rwg} -closed in X. Hence f is I_{rwg} -continuous.

Converse of the theorem is not true as seen from the following example.

Example 4.3: Let $X = Y = \{a,b,c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}, I = \{\emptyset, \{c\}\}, \sigma = \{\emptyset, \{a,b\}\}, J = \{\emptyset, \{b\}\}$. The identity function is I_{rwg} -continuous but not I_{rwg} -irresolute. Since the I_{rwg} -closed sets in Y are the power set of Y and I_{rwg} -closed sets of X are $\{\emptyset, X, \{c\}, \{a,b\}, \{a,b\}, \{b,c\}\}$.

Theorem 4.4: A function f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I_{rwg} -irresolute if and only if the inverse mage of every I_{rwg} -open in (Y, σ, J) is I_{rwg} -open in (X, τ, I) .

Theorem 4.5: If function f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is I_{rwg} - irresolute and g: $(Y, \sigma, J) \rightarrow (Z, \eta)$ is *-continuous then $g \circ f: (X, \tau, I) \rightarrow (Z, \eta)$ is I_{rwg} -continuous.

Proof: Let V be any closed set of (Z, η) . Then $g^{-1}(V)$ is * - closed in (Y, σ, J) . Therefore $f^{-1}(g^{-1}(V) = (g \circ f)^{-1}(V)$ is I_{rwg^-} closed in (X, τ, I) , since every *- closed set is I_{rwg^-} closed. Hence $g \circ f$ is I_{rwg} -continuous.

References

- [1] T. R. Hamlett and D. Jankovic, Compactness with respect to an ideal, Boll. Un. Mat. Ita., (7), 4-B, 849-861. 1990.
- [2] E. Hayashi. Topologies defined by local properties. Math.Ann., 1964, 156: 205-215
- [3] T. R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operator, Boll.Un. Mat. Ita, 7, 863-874. 1990.
- T. R. Hamlett and D. Jankovic, Ideals in General Topology and Applications (Midletown, CT, 1988), 115-125, Lecture Notes in Pure and Appl. Math. Dekker, New York, 1990.
- [5] T. R. Hamlett and D. Jankovic, Compatible extensions of ideals, Boll. Un. Mat. Ita., 7,453-465, 1992.
- [6] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97, 295-310, 1990.
- [7] Kuratowski K. topology, Vol I, Academic Press, New York, 1966.
- [8] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly,70(1963),36-41.
- [9] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1946.
- [10] M.Khan and T.Noiri, On I_{S*g} Continuous functions in ideal topological spaces, European Journal of Pure and applied Mathematics, ISSN Volume 4, Number 3(2011),237-243 ISSN 1307-5543.