New Method of Computing π value (Siva Method)

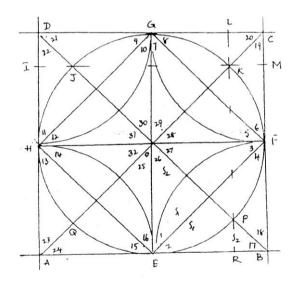
RD Sarva Jagannada Reddy

I. Introduction

 π equal to 3.1415926... is an approximation. It has ruled the world for 2240 years. There is a necessity to find out the **exact** value in the place of this approximate value. The following method gives the **total** area of the square, and also the **total** area of the inscribed circle. π derived from this area is thus exact.

II. Construction procedure

Draw a circle with center '0' and radius a/2. Diameter is 'a'. Draw 4 equidistant tangents on the circle. They intersect at A, B, C and D resulting in ABCD square. The side of the square is also equal to diameter 'a'. Draw two diagonals. E, F, G and H are the mid points of four sides. Join EG, FH, EF, FG, GH and HE. Draw four arcs with radius a/2 and with centres A, B, C and D. Now the circle square composite system is divided into 32 segments and number them 1 to 32. 1 to 16 are of one dimension called S₁ segments and 17 to 32 are of different dimension called S₂ segments.



III. Calculations: ABCD = Square; Side = a, EFGH = Circle, diameter = a, radius = a/2 Area of the S₁ segment = $\left(\frac{6-\sqrt{2}}{128}\right)a^2$; Area of the S₂ segment = $\left(\frac{2+\sqrt{2}}{128}\right)a^2$; Area of the square = $16 \text{ S}_1 + 16\text{ S}_2 = 16\left(\frac{6-\sqrt{2}}{128}\right)a^2 + 16\left(\frac{2+\sqrt{2}}{128}\right)a^2 = a^2$ Area of the inscribed circle = $16\text{ S}_1 + 8\text{ S}_2 = 16\left(\frac{6-\sqrt{2}}{128}\right)a^2 + 8\left(\frac{2+\sqrt{2}}{128}\right)a^2 = \left(\frac{14-\sqrt{2}}{16}\right)a^2$ General formula for the area of the circle $\frac{\pi d^2}{4} = \frac{\pi a^2}{4} = \left(\frac{14-\sqrt{2}}{16}\right)a^2$; where a= d = side = diameter $\therefore \pi = \frac{14-\sqrt{2}}{4}$

www.iosrjournals.org

IV. How two formulae for S₁ and S₂ segments are derived ? $16 S_1 + 16 S_2 = a^2 = \text{area of the Square} \qquad \dots \text{ Eq. (1)}$ $16 S_1 + 8 S_2 = \frac{\pi a^2}{4} = \text{area of the Circle} \qquad \dots \text{ Eq. (2)}$ $(1) - (2) \Rightarrow \qquad 8S_2 = a^2 - \frac{\pi a^2}{4} = \frac{4a^2 - \pi a^2}{4} = \qquad S_2 = \frac{(4 - \pi)a^2}{32} = \frac{a^2}{32}(4 - \pi)$ $(2)x 2 \Rightarrow 32 S_1 + 16 S_2 = \frac{2\pi a^2}{4} \qquad \dots \text{ Eq. (3)}$ $16 S_1 + 16 S_2 = a^2 \qquad \dots \text{ Eq. (1)}$ $(3) - (1) \qquad 16S_1 = \frac{\pi a^2}{2} - a^2 \qquad = S_1 = \frac{a^2(\pi - 2)}{32} = \frac{a^2}{32}(\pi - 2)$

V. Both the π values appear correct when involved in the two formulae a) Official π value = 3.1415926...

b) Proposed π value = 3.1464466... = $\frac{14 - \sqrt{2}}{4}$

Hence, another approach is followed here to decide $real\pi$ value.

VI. Involvement of line-segments are chosen to decide real π value.

A line-segment equal to the value of $(\pi - 2)$ in S₁ segment's formula and second line-segment equal to the value of $(4 - \pi)$ in S₂ segment's formula are **searched** in the above construction.

a) Official π : $\pi - 2 = 3.1415926... - 2 = 1.1415926...$ Proposed π : $\pi - 2 = \frac{14 - \sqrt{2}}{4} - 2$ = $\frac{6 - \sqrt{2}}{4}$

The following calculation gives a line-segment for $\frac{6-\sqrt{2}}{4}$ and no line-segment for 1.1415926..

IM and LR two parallel lines to DC and CB; $OK = OJ = Radius = \frac{a}{2}$; JOK = triangle

JK = Hypotenuse =
$$\frac{\sqrt{2a}}{2}$$

Third square = LKMC; KM = CM = Side = ?
KM = $\frac{IM - JK}{2} = \left(a - \frac{\sqrt{2a}}{2}\right)\frac{1}{2} = \left(\frac{2 - \sqrt{2}}{4}\right)a$; Side of first square DC = a
DC + CM = $a + \left(\frac{2 - \sqrt{2}}{4}\right)a = \left(\frac{6 - \sqrt{2}}{4}\right)a$
b) Official $\pi = 4 - \pi = 4 - 3.1415926... = 0.8584074....$
Proposed $\pi = 4 - \pi = 4 - \frac{14 - \sqrt{2}}{4} = \frac{2 + \sqrt{2}}{4}$
No line-segment for 0.8584074... in this diagram.
MB line-segment is equal to $\frac{2 + \sqrt{2}}{4}$. How ?
Side of the first square CB = a
MB = CB - CM = $a - \left(\frac{2 - \sqrt{2}}{4}\right)a = \left(\frac{2 + \sqrt{2}}{4}\right)a$

VII. Conclusion:

This diagram not only gives two formulae for the areas of S_1 & S_2 segments and also shows two linesegments for (π - 2) and (4 - π). Line-segment is the soul of Geometry.